Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals and Experimental Design
2.3. Cell Culture
2.4. Open Field Test (OFT)
2.5. Determination of the Molecular Weight and Amino Acid Composition of OPs
2.6. Determination of the Peptide Composition of OPs by UPLC-MS/MS
2.7. ELISA
2.8. Histopathology
2.9. Immunohistochemistry and Immunofluorescence (IF)
2.10. RT-qPCR and Western Blotting (WB)
2.11. Microbial Composition Analysis by 16S rRNA Sequencing
2.12. Determination of Short-Chain Fatty Acids (SCFAs)
2.13. Molecular Docking
2.14. Statistical Analysis
3. Results
3.1. OPs Alleviate the Symptoms of DSS-Induced Colitis in Mice
3.2. OPs Alleviate Inflammation and Oxidative Stress in Mice with Colitis
3.3. OPs Repair the Intestinal Mechanical Barrier
3.4. OPs Alleviate DSS-Induced Behavioral Disorders
3.5. OPs Regulate the Production of SCFAs
3.6. OPs Alleviate DSS-Induced Intestinal Bacterial Disorders
3.7. Screening of Bioactive Peptides in OPs and Prediction of Target Proteins via Molecular Docking
3.8. OPs Regulate the Keap1-Nrf2 Signaling Axis in Caco-2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AB | alcian blue |
ASV | amplicon sequence variants |
CD | Crohn’s disease |
CCK-8 | Cell Counting Kit-8 |
DAI | disease activity index |
DSS | dextran sulfate sodium salt |
ELISA | enzyme-linked immunosorbent assay |
ETBF | Enterotoxigenic Bacteroidesfragilis |
HE | hematoxylin–eosin |
IBD | inflammatory bowel disease |
IF | immunofluorescence |
IHC | immunohistochemistry |
LEfSe | LDA Effect Size |
MDA | malondialdehyde |
MEM | minimum essential medium |
MS | mass spectrum |
Muc2 | mucin 2 |
NMDS | nonmetric multidimensional scaling |
OFT | open field test |
OPs | oat peptides |
OTU | operational taxonomic units |
PAS | periodic acid-Schiff |
PCA | principal component analysis |
PCoA | principal coordinate analysis |
PVDF | polyvinylidene difluoride |
RT-qPCR | real-time quantitative PCR |
SCFA | short-chain fatty acid |
SEC | size exclusion chromatography |
SOD | superoxide dismutase |
SPF | specific pathogen free |
T-AOC | total antioxidant capacity |
TNBS | trinitrobenzene sulfonic acid |
Tregs | regulatory T cells |
UC | ulcerative colitis |
UPLC | ultra-performance liquid chromatography |
WB | Western blotting |
References
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef]
- Panaccione, R.; Danese, S.; Zhou, W.; Klaff, J.; Ilo, D.; Yao, X.; Levy, G.; Higgins, P.D.R.; Loftus, E.V., Jr.; Chen, S.; et al. Efficacy and safety of upadacitinib for 16-week extended induction and 52-week maintenance therapy in patients with moderately to severely active ulcerative colitis. Aliment. Pharmacol. Ther. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Sandborn, W.J.; D’Haens, G.R.; Sands, B.E.; Panaccione, R.; Ng, S.C.; Lawendy, N.; Kulisek, N.; Modesto, I.; Guo, X.; Mundayat, R.; et al. Tofacitinib for the Treatment of Ulcerative Colitis: An Integrated Summary of up to 7.8 Years of Safety Data from the Global Clinical Programme. J. Crohns Colitis 2023, 17, 338–351. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Vermeire, S.; D’Haens, G.; Panes, J.; Dignass, A.; Magro, F.; Nazar, M.; Le Bars, M.; Lahaye, M.; Ni, L.; et al. Clinical trial: Clinical and endoscopic outcomes with ustekinumab in patients with Crohn’s disease: Results from the long-term extension period of STARDUST. Aliment. Pharmacol. Ther. 2023. online ahead of print. [Google Scholar] [CrossRef]
- deBruyn, J.C.; Huynh, H.Q.; Griffiths, A.M.; Jacobson, K.; Mack, D.; Deslandres, C.; El-Matary, W.; Otley, A.R.; Church, P.C.; Lawrence, S.; et al. Adalimumab Versus Infliximab in Luminal Pediatric Crohn’s Disease: Comparable Outcomes in a Prospective Multicenter Cohort Study. Am. J. Gastroenterol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Penas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef]
- Chu, Y.F.; Wise, M.L.; Gulvady, A.A.; Chang, T.; Kendra, D.F.; Jan-Willem van Klinken, B.; Shi, Y.; O’Shea, M. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chem. 2013, 139, 426–431. [Google Scholar] [CrossRef]
- Chen, C.Y.; Milbury, P.E.; Collins, F.W.; Blumberg, J.B. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J. Nutr. 2007, 137, 1375–1382. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Li, Y.; Chen, Z. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 2018, 239, 260–267. [Google Scholar] [CrossRef]
- Kilci, A.; Gocmen, D. Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats. Food Chem. 2014, 145, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Varga, M.; Jojart, R.; Fonad, P.; Mihaly, R.; Palagyi, A. Phenolic composition and antioxidant activity of colored oats. Food Chem. 2018, 268, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Bei, Q.; Wu, Z.; Chen, G. Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation. Food Chem. 2020, 305, 125269. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, K.; Hac-Wydro, K.; Skora, M.; Tymecka, M.; Obloza, M. Preliminary Studies on the Mechanism of Antifungal Activity of New Cationic beta-Glucan Derivatives Obtained from Oats and Barley. ACS Omega 2022, 7, 40333–40343. [Google Scholar] [CrossRef]
- Liu, B.; Lin, Q.; Yang, T.; Zeng, L.; Shi, L.; Chen, Y.; Luo, F. Oat beta-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015, 6, 3454–3463. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Al-Ansi, W.; Wang, J.; Xue, L.; Liu, J.; Wang, Y.; Fan, M.; Qian, H.; Li, Y.; et al. Oat beta-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct. 2021, 12, 8976–8993. [Google Scholar] [CrossRef]
- Chudan, S.; Ishibashi, R.; Nishikawa, M.; Tabuchi, Y.; Nagai, Y.; Ikushiro, S.; Furusawa, Y. Effect of soluble oat fiber on intestinal microenvironment and TNBS-induced colitis. Food Funct. 2023, 14, 2188–2199. [Google Scholar] [CrossRef]
- Immonen, M.; Myllyviita, J.; Sontag-Strohm, T.; Myllarinen, P. Oat Protein Concentrates with Improved Solubility Produced by an Enzyme-Aided Ultrafiltration Extraction Method. Foods 2021, 10, 3050. [Google Scholar] [CrossRef] [PubMed]
- Sargautis, D.; Kince, T. Effect of Enzymatic Pre-Treatment on Oat Flakes Protein Recovery and Properties. Foods 2023, 12, 965. [Google Scholar] [CrossRef]
- Wang, H.; Xie, L.; Liu, S.; Dai, A.; Chi, X.; Zhang, D. Non-targeted metabolomics and microbial analyses of the impact of oat antimicrobial peptides on rats with dextran sulfate sodium-induced enteritis. Front. Nutr. 2022, 9, 1095483. [Google Scholar] [CrossRef]
- Esfandi, R.; Willmore, W.G.; Tsopmo, A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019, 279, 49–57. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, F.; Chen, Z.; Chen, Y.; Yuan, J.; Xiong, Q.; Hou, S.; Huang, S.; Liu, C.; Liang, J. Vitexin Protects against Dextran Sodium Sulfate-Induced Colitis in Mice and Its Potential Mechanisms. J. Agric. Food Chem. 2022, 70, 12041–12054. [Google Scholar] [CrossRef]
- Yang, W.; Huang, Z.; Xiong, H.; Wang, J.; Zhang, H.; Guo, F.; Wang, C.; Sun, Y. Rice Protein Peptides Alleviate Dextran Sulfate Sodium-Induced Colitis via the Keap1-Nrf2 Signaling Pathway and Regulating Gut Microbiota. J. Agric. Food Chem. 2022, 70, 12469–12483. [Google Scholar] [CrossRef]
- Chen, K.; Gao, C.; Tang, M.; Dong, Q.; Wang, N.; Man, S.; Lu, F.; Wang, H. Dietary soybeans worsen dextran sodium sulfate-induced colitis by disrupting intestinal ecology. Food Funct. 2022, 13, 6205–6216. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Hirano, H.; Shimizu, S.; Kishioka, C.; Sakakura, Y.; Majima, Y. Differential properties of mucous glycoproteins in rat nasal epithelium. A comparison between allergic inflammation and lipopolysaccharide stimulation. Am. J. Respir. Crit. Care Med. 2001, 164, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Spatz, M.; Ciocan, D.; Merlen, G.; Rainteau, D.; Humbert, L.; Gomes-Rochette, N.; Hugot, C.; Trainel, N.; Mercier-Nome, F.; Domenichini, S.; et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis. JHEP Rep. 2021, 3, 100230. [Google Scholar] [CrossRef]
- Qi-Xiang, M.; Yang, F.; Ze-Hua, H.; Nuo-Ming, Y.; Rui-Long, W.; Bin-Qiang, X.; Jun-Jie, F.; Chun-Lan, H.; Yue, Z. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency. Gut Microbes 2022, 14, 2112882. [Google Scholar] [CrossRef] [PubMed]
- Rajendhran, J.; Gunasekaran, P. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 2011, 166, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Rudi, K.; Zimonja, M.; Trosvik, P.; Naes, T. Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int. J. Food Microbiol. 2007, 120, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; He, S.; Dang, C. Assisted Selection of Biomarkers by Linear Discriminant Analysis Effect Size (LEfSe) in Microbiome Data. J. Vis. Exp. 2022, 183, e61715. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Zhu, M.J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta 2019, 196, 249–254. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Chen, C.C.; Lin, Y.T.; Wu, W.K.; Chang, L.C.; Lai, C.H.; Wu, M.S.; Kuo, C.H. Evaluation and Optimization of Sample Handling Methods for Quantification of Short-Chain Fatty Acids in Human Fecal Samples by GC-MS. J. Proteome Res. 2019, 18, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Recinella, L.; Gorica, E.; Chiavaroli, A.; Fraschetti, C.; Filippi, A.; Cesa, S.; Cairone, F.; Martelli, A.; Calderone, V.; Veschi, S.; et al. Anti-Inflammatory and Antioxidant Effects Induced by Allium sativum L. Extracts on an Ex Vivo Experimental Model of Ulcerative Colitis. Foods 2022, 11, 3559. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Mikocka-Walus, A.; Knowles, S.R.; Keefer, L.; Graff, L. Controversies Revisited: A Systematic Review of the Comorbidity of Depression and Anxiety with Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2016, 22, 752–762. [Google Scholar] [CrossRef]
- Neuendorf, R.; Harding, A.; Stello, N.; Hanes, D.; Wahbeh, H. Depression and anxiety in patients with Inflammatory Bowel Disease: A systematic review. J. Psychosom. Res. 2016, 87, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Horst, S.; Chao, A.; Rosen, M.; Nohl, A.; Duley, C.; Wagnon, J.H.; Beaulieu, D.B.; Taylor, W.; Gaines, L.; Schwartz, D.A. Treatment with immunosuppressive therapy may improve depressive symptoms in patients with inflammatory bowel disease. Dig. Dis. Sci. 2015, 60, 465–470. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Bonnlander, B.; Lang, S.C.; Pischel, I.; Forster, J.; Khan, J.; Jackson, P.A.; Wightman, E.L. Acute and Chronic Effects of Green Oat (Avena sativa) Extract on Cognitive Function and Mood during a Laboratory Stressor in Healthy Adults: A Randomised, Double-Blind, Placebo-Controlled Study in Healthy Humans. Nutrients 2020, 12, 1598. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef] [PubMed]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Lu, M.C.; Ji, J.A.; Jiang, Z.Y.; You, Q.D. The Keap1-Nrf2-ARE Pathway as a Potential Preventive and Therapeutic Target: An Update. Med. Res. Rev. 2016, 36, 924–963. [Google Scholar] [CrossRef]
- Tontini, G.E.; Vecchi, M.; Pastorelli, L.; Neurath, M.F.; Neumann, H. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J. Gastroenterol. 2015, 21, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014, 345, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, Y.; Zhao, C.; Zhang, Y.; Lv, H.; Ji, X.; Wang, J.; Pang, W.; Wang, X.; Wang, S. Protective effects of bioactive peptides in foxtail millet protein hydrolysates against experimental colitis in mice. Food Funct. 2022, 13, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Wlodarczyk, J.; Swierczynski, M.; Kordek, R.; Grzybowski, M.M.; Olczak, J.; Fichna, J. The Anti-Inflammatory Effect of Acidic Mammalian Chitinase Inhibitor OAT-177 in DSS-Induced Mouse Model of Colitis. Int. J. Mol. Sci. 2022, 23, 2159. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, W.; Wang, X.; Guo, F.; Cheng, Y.; Cao, L.; Zhu, W.; Sun, Y.; Xiong, H. Industrially Produced Rice Protein Ameliorates Dextran Sulfate Sodium-Induced Colitis via Protecting the Intestinal Barrier, Mitigating Oxidative Stress, and Regulating Gut Microbiota. J. Agric. Food Chem. 2022, 70, 4952–4965. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Itagaki, K.; Zhu, B.; Lin, Y.; Song, H.; Wang, L.; Xiong, L.; Weng, Z.; Shen, X. Wheat Germ-Derived Peptide Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice. J. Agric. Food Chem. 2023, 71, 15593–15603. [Google Scholar] [CrossRef]
- Hong, Z.; Shi, C.; Hu, X.; Chen, J.; Li, T.; Zhang, L.; Bai, Y.; Dai, J.; Sheng, J.; Xie, J.; et al. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An In Silico Analysis and in Vivo Investigation. J. Agric. Food Chem. 2023, 71, 15604–15619. [Google Scholar] [CrossRef]
- Li, J.W.; Fang, B.; Pang, G.F.; Zhang, M.; Ren, F.Z. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. Pestic. Biochem. Physiol. 2019, 159, 68–79. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Li, T.; Wang, W.; Gao, H.; Bai, Y.; Zhang, S.; Zang, J.; Li, D.; Wang, J. Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models. Sci. China Life Sci. 2019, 62, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Pittayanon, R.; Lau, J.T.; Leontiadis, G.I.; Tse, F.; Yuan, Y.; Surette, M.; Moayyedi, P. Differences in Gut Microbiota in Patients with vs without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 2020, 158, 930–946.e1. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.X.; Li, Y.D.; Hu, X.J.; Shi, H.Y.; Li, L.J. Whole-genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut Pathog. 2014, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Xiao, F.; Li, X.; Li, Y.; Wang, X.; Yu, G.; Zhang, T.; Wang, Y. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice. J. Transl. Med. 2022, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Yang, L.; Wu, W.; Lv, L.; Jiang, X.; Wang, Q.; Wu, J.; Li, Y.; Ye, J.; Fang, D.; et al. Pediococcus pentosaceus LI05 alleviates DSS-induced colitis by modulating immunological profiles, the gut microbiota and short-chain fatty acid levels in a mouse model. Microb. Biotechnol. 2020, 13, 1228–1244. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J. Gastroenterol. 2022, 28, 4053–4060. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, Z.; Yan, Y.; Ji, L.; He, J.; Xuan, B.; Shen, C.; Ma, Y.; Jiang, S.; Ma, D.; et al. Enterotoxigenic Bacteroidesfragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology 2021, 161, 1552–1566.e12. [Google Scholar] [CrossRef]
- Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef]
- Banfi, D.; Moro, E.; Bosi, A.; Bistoletti, M.; Cerantola, S.; Crema, F.; Maggi, F.; Giron, M.C.; Giaroni, C.; Baj, A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 22, 1623. [Google Scholar] [CrossRef]
- Ott, C.; Scholmerich, J. Extraintestinal manifestations and complications in IBD. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Ferro, J.M.; Oliveira Santos, M. Neurology of inflammatory bowel disease. J. Neurol. Sci. 2021, 424, 117426. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Alizadeh-Tabari, S.; Singh, S.; Loomba, R. Meta-analysis: Prevalence of, and risk factors for, non-alcoholic fatty liver disease in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022, 55, 894–907. [Google Scholar] [CrossRef] [PubMed]
No. | Molecular Weight Distribution | Percentage (%) |
---|---|---|
1 | >10 kDa | 1.02 |
2 | 5–10 kDa | 3.94 |
3 | 1–5 kDa | 50.92 |
4 | 0.5–1 kDa | 28.25 |
5 | <500 Da | 15.87 |
No. | Peptide | Length | Mass (Da) | Error (ppm) | Experimental m/z | Retention Time (min) | Peptide Ranker Score # | Percentage of Ops (%) |
---|---|---|---|---|---|---|---|---|
1 | WGVGVRAERDA | 11 | 1214.62 | −3.2 | 608.32 | 21.46 | 0.15 | 33.55% |
2 | QPPFVQQEQP | 10 | 1196.58 | 6 | 599.31 | 96.73 | 0.22 | 18.19% |
3 | QPQMQQQFFQPQ | 12 | 1533.70 | 7.5 | 767.87 | 86.7 | 0.36 | 5.33% |
4 | STPAPAPAPA | 10 | 878.45 | −0.2 | 440.23 | 24.19 | 0.54 | 4.05% |
5 | GLVQPQTQMAGQVFIQPQQLAQYQAMKVVAMQT | 33 | 3733.86 | 0.3 | 934.48 | 27.07 | 0.02 | 3.70% |
6 | QPQLQQVFNQPQ | 12 | 1495.74 | −7.8 | 748.88 | 72.63 | 0.21 | 3.65% |
7 | QMGLVQPQTQMASQVFIQPQQLPQYQA | 27 | 3086.53 | 3.3 | 618.32 | 20.21 | 0.11 | 2.76% |
8 | QPPFVQQEQPFVQQQ | 15 | 1826.90 | −6.4 | 914.45 | 43.21 | 0.19 | 2.74% |
9 | QAGLYFL | 7 | 852.44 | 6.6 | 427.23 | 12.02 | 0.84 | 2.30% |
10 | EFPLGYKTFGEAIPPQ | 16 | 1792.90 | −8.4 | 897.46 | 104.62 | 0.48 | 2.17% |
11 | QVSQPQLQLQQQVFQPQ | 17 | 2065.06 | 9.6 | 1033.55 | 57.25 | 0.15 | 1.78% |
12 | PQLQQVFNQPQ | 11 | 1325.67 | 4 | 663.85 | 78.7 | 0.19 | 1.53% |
13 | EQQQSILQQQQMLLQQQQQMLL | 22 | 2785.37 | −2.3 | 697.35 | 35.86 | 0.14 | 1.28% |
14 | AGERPEEAAVQPQ | 13 | 1422.67 | 7.9 | 712.35 | 35.11 | 0.10 | 1.00% |
15 | HYINNSQALRSGI | 13 | 1471.75 | 1.7 | 368.95 | 17.66 | 0.17 | 0.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.-H.; Xie, W.-Y.; Zhao, P.-S.; Wu, H.-Y.; Ren, W.-Z.; Hu, J.-P.; Gao, W.; Yuan, B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients 2023, 15, 5055. https://doi.org/10.3390/nu15245055
Ji Z-H, Xie W-Y, Zhao P-S, Wu H-Y, Ren W-Z, Hu J-P, Gao W, Yuan B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients. 2023; 15(24):5055. https://doi.org/10.3390/nu15245055
Chicago/Turabian StyleJi, Zhong-Hao, Wen-Yin Xie, Pei-Sen Zhao, Hong-Yu Wu, Wen-Zhi Ren, Jin-Ping Hu, Wei Gao, and Bao Yuan. 2023. "Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis" Nutrients 15, no. 24: 5055. https://doi.org/10.3390/nu15245055
APA StyleJi, Z. -H., Xie, W. -Y., Zhao, P. -S., Wu, H. -Y., Ren, W. -Z., Hu, J. -P., Gao, W., & Yuan, B. (2023). Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients, 15(24), 5055. https://doi.org/10.3390/nu15245055