Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China
Abstract
:1. Introduction
2. Methods
2.1. Study Settings and Participant Selection
2.2. Data Collection and Biological Sample Testing
2.3. Outcome and Covariation Evaluation
2.4. Whole Blood Metal Concentration Detection
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics and Whole Blood Metal Levels
3.2. Associations of Whole Blood Metal Quartiles with Hyperuricemia Risk
3.3. Dose–Response Relationships of Whole Blood Metal Levels and Hyperuricemia Risk
3.4. BKMR Analyses
3.5. Subgroup and Interaction Analyses
4. Discussion
4.1. Vanadium
4.2. Cobalt
4.3. Chromium
4.4. Other Metals
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, P.; Wang, H.; Xia, W.; Chang, X.; Wang, M.; An, L. Prevalence and correlates of hyperuricemia in the middle-aged and older adults in China. Sci. Rep. 2018, 8, 4314. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Qiu, L.; Cheng, X.Q.; Xu, T.; Wu, W.; Zeng, X.J.; Ye, Y.C.; Guo, X.Z.; Cheng, Q.; Liu, Q.; et al. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci. Rep. 2017, 7, 5456. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ma, Z.F.; Zhang, Y.; Wan, Z.; Li, Y.; Zhou, H.; Chu, A.; Lee, Y.Y. Geographical distribution of hyperuricemia in mainland China: A comprehensive systematic review and meta-analysis. Glob. Health Res. Policy 2020, 5, 52. [Google Scholar] [CrossRef]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [Green Version]
- Engel, B.; Hoffmann, F.; Freitag, M.H.; Jacobs, H. Should we be more aware of gender aspects in hyperuricemia? Analysis of the population-based German health interview and examination survey for adults (DEGS1). Maturitas 2021, 153, 33–40. [Google Scholar] [CrossRef]
- Yahyaoui, R.; Esteva, I.; Haro-Mora, J.J.; Almaraz, M.C.; Morcillo, S.; Rojo-Martínez, G.; Martínez, J.; Gómez-Zumaquero, J.M.; González, I.; Hernando, V.; et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons. J. Clin. Endocrinol. Metab. 2008, 93, 2230–2233. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Charchar, F.J. Establishment of sex difference in circulating uric acid is associated with higher testosterone and lower sex hormone-binding globulin in adolescent boys. Sci. Rep. 2021, 11, 17323. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y. Associations of Blood Heavy Metals with Uric Acid in the Korean General Population: Analysis of Data from the 2016-2017 Korean National Health and Nutrition Examination Survey. Biol. Trace Elem. Res. 2021, 199, 102–112. [Google Scholar] [CrossRef]
- Wang, T.; Lv, Z.; Wen, Y.; Zou, X.; Zhou, G.; Cheng, J.; Zhong, D.; Zhang, Y.; Yu, S.; Liu, N.; et al. Associations of plasma multiple metals with risk of hyperuricemia: A cross-sectional study in a mid-aged and older population of China. Chemosphere 2022, 287, 132305. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Sun, H.; Wang, N.; Chen, C.; Nie, X.; Han, B.; Li, Q.; Zhu, C.; Chen, Y.; Xia, F.; Chen, Y.; et al. Cadmium exposure and its association with serum uric acid and hyperuricemia. Sci. Rep. 2017, 7, 550. [Google Scholar] [CrossRef] [Green Version]
- Remedios, C.; Shah, M.; Bhasker, A.G.; Lakdawala, M. Hyperuricemia: A reality in the Indian obese. Obes. Surg. 2012, 22, 945–948. [Google Scholar] [CrossRef]
- Yang, L.; He, Z.; Gu, X.; Cheng, H.; Li, L. Dose-Response Relationship Between BMI and Hyperuricemia. Int. J. Gen. Med. 2021, 14, 8065–8071. [Google Scholar] [CrossRef]
- Park, S.-J.; Youn, C.-K.; Hyun, J.W.; You, H.J. The Anti-obesity Effect of Natural Vanadium-Containing Jeju Ground Water. Biol. Trace Elem. Res. 2013, 151, 294–300. [Google Scholar] [CrossRef]
- Ngala, R.A.; Awe, M.A.; Nsiah, P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case-control study. PLoS ONE 2018, 13, e0197977. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wu, W.; Zheng, H.M.; Li, P.; McDonald, D.; Sheng, H.F.; Chen, M.X.; Chen, Z.H.; Ji, G.Y.; Zheng, Z.D.; et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 2018, 24, 1532–1535. [Google Scholar] [CrossRef]
- Kuo, C.C.; Weaver, V.; Fadrowski, J.J.; Lin, Y.S.; Guallar, E.; Navas-Acien, A. Arsenic exposure, hyperuricemia, and gout in US adults. Environ. Int. 2015, 76, 32–40. [Google Scholar] [CrossRef]
- Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary manganese and type 2 diabetes mellitus: Two prospective cohort studies in China. Diabetologia 2018, 61, 1985–1995. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association (ADA). Standards of medical care in diabetes—2010. Diabetes Care 2010, 33, S11–S61. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Yang, S.; Zhuang, Q.; Sun, J.; Wei, P.; Zhao, X.; Chen, Y.; Chen, X.; Li, M.; Wei, L.; et al. The Associations of Lipid Profiles with Cardiovascular Diseases and Death in a 10-Year Prospective Cohort Study. Front. Cardiovasc. Med. 2021, 8, 745539. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.F.; Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Qi, D.; Liu, J.; Wang, C.; Wang, L.; Zhang, X.; Lin, Q.; Tu, J.; Wang, J.; Ning, X.; Cui, J. Sex-specific differences in the prevalence of and risk factors for hyperuricemia among a low-income population in China: A cross-sectional study. Postgrad. Med. 2020, 132, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coker, E.; Chevrier, J.; Rauch, S.; Bradman, A.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ. Int. 2018, 113, 122–132. [Google Scholar] [CrossRef]
- Valeri, L.; Mazumdar, M.M.; Bobb, J.F.; Claus Henn, B.; Rodrigues, E.; Sharif, O.I.A.; Kile, M.L.; Quamruzzaman, Q.; Afroz, S.; Golam, M.; et al. The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20-40 Months of Age: Evidence from Rural Bangladesh. Environ. Health Perspect. 2017, 125, 067015. [Google Scholar] [CrossRef] [Green Version]
- Andersson, T.; Alfredsson, L.; Kallberg, H.; Zdravkovic, S.; Ahlbom, A. Calculating measures of biological interaction. Eur. J. Epidemiol. 2005, 20, 575–579. [Google Scholar] [CrossRef]
- Gruzewska, K.; Michno, A.; Pawelczyk, T.; Bielarczyk, H. Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2014, 65, 603–611. [Google Scholar]
- Fatola, O.I.; Olaolorun, F.A.; Olopade, F.E.; Olopade, J.O. Trends in vanadium neurotoxicity. Brain Res. Bull. 2019, 145, 75–80. [Google Scholar] [CrossRef]
- Dai, X.; Deng, Q.; Guo, D.; Ni, L.; Li, J.; Chen, Z.; Zhang, L.; Xu, T.; Song, W.; Luo, Y.; et al. Association of urinary metal profiles with serum uric acid: A cross-sectional study of traffic policemen in Wuhan, China. BMJ Open 2019, 9, e022542. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Fan, Y.; Sheng, J.; Gu, L.; Tao, Q.; Huang, R.; Liu, K.; Yang, L.; Chen, G.; Cao, H.; et al. Association Between Blood Heavy Metal Concentrations and Dyslipidemia in the Elderly. Biol. Trace Elem. Res. 2020, 199, 1280–1290. [Google Scholar] [CrossRef]
- Francik, R.; Krośniak, M.; Barlik, M.; Kudła, A.; Gryboś, R.; Librowski, T. Impact of Vanadium Complexes Treatment on the Oxidative Stress Factors in Wistar Rats Plasma. Bioinorg. Chem. Appl. 2011, 2011, 206316. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Zhao, C.C.; Li, T.T.; Zhu, Y.; Yu, T.P.; Bao, Y.Q.; Li, L.X.; Jia, W.P. Serum uric acid levels are associated with obesity but not cardio-cerebrovascular events in Chinese inpatients with type 2 diabetes. Sci. Rep. 2017, 7, 40009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Cui, R.; Gao, M.; Rampersad, S.; You, H.; Sheng, C.; Yang, P.; Sheng, H.; Cheng, X.; Bu, L.; et al. The Associations of Serum Uric Acid with Obesity-Related Acanthosis nigricans and Related Metabolic Indices. Int. J. Endocrinol. 2017, 2017, 5438157. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.L.; Mansouri, K.; Judson, R.; Browne, P. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites. Chem. Res. Toxicol. 2016, 29, 1410–1427. [Google Scholar] [CrossRef] [PubMed]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Cao, B.; Fang, C.; Peng, X.; Li, X.; Hu, X.; Xiang, P.; Zhou, L.; Liu, H.; Huang, Y.; Zhang, Q.; et al. U-shaped association between plasma cobalt levels and type 2 diabetes. Chemosphere 2021, 267, 129224. [Google Scholar] [CrossRef]
- Xu, J.; White, A.J.; Niehoff, N.M.; O’Brien, K.M.; Sandler, D.P. Airborne metals exposure and risk of hypertension in the Sister Study. Environ. Res. 2020, 191, 110144. [Google Scholar] [CrossRef]
- Stea, S.; Pasquale, D.; Beraudi, A.; Catalani, S.; Amabile, M.; Bracci, G.; Toni, A. Ischemia-Modified Albumin Expression: Is there a Difference between Male and Female Subjects? Clin. Lab. 2019, 65, 903–908. [Google Scholar] [CrossRef]
- Rivera-Núñez, Z.; Ashrap, P.; Barrett, E.S.; Watkins, D.J.; Cathey, A.L.; Vélez-Vega, C.M.; Rosario, Z.; Cordero, J.F.; Alshawabkeh, A.; Meeker, J.D. Association of biomarkers of exposure to metals and metalloids with maternal hormones in pregnant women from Puerto Rico. Environ. Int. 2021, 147, 106310. [Google Scholar] [CrossRef]
- Danzeisen, R.; Williams, D.L.; Viegas, V.; Dourson, M.; Verberckmoes, S.; Burzlaff, A. Bioelution, Bioavailability, and Toxicity of Cobalt Compounds Correlate. Toxicol. Sci. 2020, 174, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, T.; Hanao, N.; Nishiyama, K.; Kadota, Y.; Inoue, M.; Sato, M.; Suzuki, S. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 2012, 258, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Ohtomo, S.; Nangaku, M.; Izuhara, Y.; Takizawa, S.; Strihou, C.v.Y.d.; Miyata, T. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol. Dial. Transplant. 2007, 23, 1166–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehoff, N.M.; Keil, A.P.; O’Brien, K.M.; Jackson, B.P.; Karagas, M.R.; Weinberg, C.R.; White, A.J. Metals and trace elements in relation to body mass index in a prospective study of US women. Environ. Res. 2020, 184, 109396. [Google Scholar] [CrossRef]
- Albarracin, C.A.; Fuqua, B.C.; Evans, J.L.; Goldfine, I.D. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2008, 24, 41–51. [Google Scholar] [CrossRef]
- Lushchak, O.V.; Kubrak, O.I.; Lozinsky, O.V.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Chromium(III) induces oxidative stress in goldfish liver and kidney. Aquat. Toxicol. 2009, 93, 45–52. [Google Scholar] [CrossRef]
- Cardenas-Gonzalez, M.; Osorio-Yanez, C.; Gaspar-Ramirez, O.; Pavkovic, M.; Ochoa-Martinez, A.; Lopez-Ventura, D.; Medeiros, M.; Barbier, O.C.; Perez-Maldonado, I.N.; Sabbisetti, V.S.; et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 2016, 150, 653–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.L.; Li, H.; Lu, J.; Guan, Q.; Cheng, L. Assessment of 12 Metals and Metalloids in Blood of General Populations Living in Wuhan of China by ICP-MS. Biol. Trace Elem. Res. 2019, 189, 344–353. [Google Scholar] [CrossRef]
- Onakpoya, I.; Posadzki, P.; Ernst, E. Chromium supplementation in overweight and obesity: A systematic review and meta-analysis of randomized clinical trials. Obes. Rev. 2013, 14, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, I.J.N.; Rao, K.R.; Venu, L.; Ganeshan, M.; Kumar, K.A.; Rao, C.N.; Harishankar, N.; Ismail, A.; Raghunath, M. Chronic Maternal Dietary Chromium Restriction Modulates Visceral Adiposity: Probable Underlying Mechanisms. Diabetes 2009, 59, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J. Trace Elem. Med. Biol. 2014, 28, 364–371. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Qiu, H. Association between Dietary Zinc Intake and Hyperuricemia among Adults in the United States. Nutrients 2018, 10, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, D.-x.; Xiong, Y.-l.; Zeng, C.; Wei, J.; Yang, T.; Li, H.; Wang, Y.-l.; Gao, S.-g.; Li, Y.-s.; Lei, G.-h. Association between low dietary zinc and hyperuricaemia in middle-aged and older males in China: A cross-sectional study. BMJ Open 2015, 5, e008637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeki, S.; Ohga, R.; Konishi, Y.; Yasuda, T.; Morimoto, K.; Terao, A. Oral zinc therapy normalizes serum uric acid level in Wilson’s disease patients. Am. J. Med. Sci. 1986, 292, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wan, X.; Xu, L.; Weng, H.; Yan, M.; Miao, M.; Sun, Y.; Xu, G.; Dooley, S.; Li, Y.; et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds. J. Hepatol. 2015, 62, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Song, S.W.; Choi, W.S. Association between serum zinc level and body composition: The Korean National Health and Nutrition Examination Survey. Nutrition 2016, 32, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.C.; Moon, K.A.; Wang, S.L.; Silbergeld, E.; Navas-Acien, A. The Association of Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the Epidemiological Evidence. Environ. Health Perspect. 2017, 125, 087001. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Flora, S.J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S.; Azimi-Nezhad, M. The role of arsenic in obesity and diabetes. J. Cell. Physiol. 2019, 234, 12516–12529. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yin, Z.; Lv, Y.; Luo, J.; Shi, W.; Fang, J.; Shi, X. Plasma element levels and risk of chronic kidney disease in elderly populations (>/= 90 Years old). Chemosphere 2020, 254, 126809. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Chen, S.; Sun, T.; Luo, C.; Guo, Y.; Yu, X.; Yang, W.; Hu, F.B.; Liu, L. U-Shaped Association between Plasma Manganese Levels and Type 2 Diabetes. Environ. Health Perspect. 2016, 124, 1876–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer-Baron, M.; Schäper, M.; Knapp, G.; Lucchini, R.; Zoni, S.; Bast-Pettersen, R.; Ellingsen, D.G.; Thomassen, Y.; He, S.; Yuan, H.; et al. The neurobehavioral impact of manganese: Results and challenges obtained by a meta-analysis of individual participant data. NeuroToxicology 2013, 36, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, R.M.; Gocheva, V.; Harris, M.; Ngo, L.; Abdelouahab, N.; Wilkinson, J.; Doty, R.L.; Park, R.; Roels, H.A. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. NeuroToxicology 2011, 32, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, G.L.; Cueto, R.; Splenser, A.E.; Valavanidis, A.; Zhang, H.; Uppu, R.M.; Pryor, W.A. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch. Biochem. Biophys. 2000, 376, 333–337. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Wang, Z.; Li, H.; Liu, Y.; Di, D. Effect of occupational manganese exposure on uric Acid levels in human urine. Biomed. Environ. Sci. 2011, 24, 222–227. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, C.; Lopez-Chaves, C.; Gomez-Aracena, J.; Galindo, P.; Aranda, P.; Llopis, J. Association of plasma manganese levels with chronic renal failure. J. Trace Elem. Med. Biol. 2015, 31, 78–84. [Google Scholar] [CrossRef]
- Yang, J.; Yang, A.; Cheng, N.; Huang, W.; Huang, P.; Liu, N.; Bai, Y. Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011–2016. Chemosphere 2020, 258, 126940. [Google Scholar] [CrossRef]
- Daniel, J.; Ziaee, H.; Pynsent, P.B.; McMinn, D.J. The validity of serum levels as a surrogate measure of systemic exposure to metal ions in hip replacement. J. Bone Jt. Surg. Br. 2007, 89, 736–741. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Chen, Y.; Zeng, M.; Feng, J.; Tang, J.; Yu, L. Simultaneous multielement analysis by ICP-MS with simple whole blood sample dilution and its application to uremic patients undergoing long-term hemodialysis. Scand. J. Clin. Lab. Investig. 2020, 80, 247–255. [Google Scholar] [CrossRef] [PubMed]
Variables a | Total | p-Value | |
---|---|---|---|
No Hyperuricemia (n = 2275) | Hyperuricemia (n = 754) | ||
Age (years) | 51.97 ± 0.32 | 54.72 ± 0.53 | <0.001 * |
Gender (%) | <0.001 * | ||
Male | 939 (41.3) | 433 (57.4) | |
Female | 1336 (58.7) | 321 (42.6) | |
Residence area (%) | 0.702 | ||
Coastal | 1240 (54.5) | 417 (55.3) | |
Inland | 1035 (45.5) | 337 (44.7) | |
Education level (%) | 0.120 | ||
Below high school | 1694 (74.5) | 536 (71.1) | |
High school | 363 (16.0) | 144 (19.1) | |
Over high school | 218 (9.5) | 74 (9.8) | |
Alcohol use (%) | 0.002 * | ||
Drinker | 799 (35.1) | 311 (41.2) | |
Non-drinker | 1476 (64.9) | 443 (58.8) | |
Smoking status (%) | 0.002 * | ||
Current smokers | 562 (24.7) | 232 (30.8) | |
Former smokers | 142 (6.2) | 52 (6.9) | |
Nonsmokers | 1571 (69.1) | 470 (62.3) | |
Sitting time (%) | 0.362 | ||
<4 h/day | 925 (40.7) | 284 (37.7) | |
4 to <6 h/day | 643 (28.3) | 212 (28.1) | |
6 to <8 h/day | 324 (14.2) | 122 (16.2) | |
≥8 h/day | 383 (16.8) | 136 (18.0) | |
Physical activity (%) | 0.023 * | ||
Yes | 379 (16.7) | 153 (20.3) | |
No | 1896 (83.3) | 601 (79.7) | |
WHt R | 0.50 (0.46, 0.54) | 0.52 (0.49, 0.57) | <0.001 * |
BMI (kg/m2) | 22.66 (20.64, 24.91) | 24.24 (22.11, 26.74) | <0.001 * |
UA (μmol/L) | 301.20 (256.50, 343.20) | 448.30 (415.33, 497.75) | <0.001 * |
Log2UA | 8.19 ± 0.01 | 8.83 ± 0.01 | <0.001 * |
TC (mmol/L) | 4.98 (4.34, 5.61) | 5.20 (4.57, 5.97) | <0.001 * |
TG (mmol/L) | 0.96 (0.68, 1.44) | 1.43 (0.98, 2.11) | <0.001 * |
Diabetes mellitus (%) | 0.005 * | ||
Yes | 176 (7.7) | 83 (11.0) | |
No | 2099 (92.3) | 671 (89.0) | |
Hypertension (%) | <0.001 * | ||
Yes | 730 (32.1) | 360 (47.7) | |
No | 1545 (67.9) | 394 (52.3) | |
Central obesity (%) | <0.001 * | ||
Yes | 834 (36.7) | 411 (54.5) | |
No | 1441 (63.3) | 343 (45.5) | |
Blood metals (μg/L) | |||
V | 0.97 (0.52, 1.51) | 1.02 (0.35, 1.62) | 0.287 |
Cr | 4.87 (3.71, 6.29) | 5.26 (3.86, 7.07) | <0.001 * |
Mn | 13.87 (10.73, 17.93) | 14.14 (10.70, 17.97) | 0.466 |
Co | 0.28 (0.14, 0.40) | 0.28 (0.14, 0.37) | 0.163 |
Ni | 2.24 (1.29, 4.03) | 2.21 (1.22, 3.92) | 0.483 |
Cu | 943.11 (844.56, 1055.08) | 945.20 (848.19, 1044.35) | 0.954 |
Zn | 5500.30 (4717.59, 6400.11) | 5812.56 (4926.99, 6698.70) | <0.001 * |
As | 4.38 (2.61, 6.90) | 4.87 (2.81, 7.74) | <0.001 * |
Se | 164.27 (137.04, 193.00) | 168.57 (140.39, 201.59) | 0.005 * |
Mo | 1.05 (0.71, 2.05) | 1.09 (0.71, 2.27) | 0.164 |
Cd | 2.23 (1.33, 4.27) | 2.33 (1.23, 4.54) | 0.691 |
Tl | 0.14 (0.14, 0.14) | 0.14 (0.14, 0.14) | 0.535 |
Pb | 38.29 (25.49, 58.64) | 42.34 (29.29, 62.24) | <0.001 * |
Whole Blood Metals a | Q1 | Q2 | Q3 | Q4 | p-Trend (p-FDR) b |
---|---|---|---|---|---|
Male | |||||
Cr | Ref | 0.95 (0.64, 1.41) | 1.08 (0.73, 1.60) | 1.70 (1.18, 2.45) * | 0.001 * (0.005 *) |
Co | Ref | 1.34 (0.91, 1.96) | 1.39 (0.99, 1.95) | 1.76 (1.26, 2.46) * | 0.002 * (0.005 *) |
Cu | Ref | 0.81 (0.56, 1.16) | 1.14 (0.80, 1.64) | 1.30 (0.90, 1.89) | 0.054 (0.09) |
Zn | Ref | 1.47 (1.02, 2.11) * | 1.08 (0.74, 1.56) | 1.40 (0.97, 2.04) | 0.245 (0.245) |
As | Ref | 0.75 (0.52, 1.09) | 0.99 (0.69, 1.41) | 1.27 (0.87, 1.85) | 0.157 (0.196) |
Female | |||||
V | Ref | 0.55 (0.38, 0.81) * | 0.66 (0.44, 0.98) * | 0.68 (0.47, 0.99) * | 0.108 |
Blood Metals (μg/L) | Group | Group PIPs | Con PIPs |
---|---|---|---|
V | 1 | 0.932 | 0.814 |
Cr | 1 | 0.932 | 1.000 |
Mn | 2 | 0.986 | 0.894 |
Co | 2 | 0.986 | 0.920 |
Zn | 3 | 0.490 | 0.490 |
Q1 | Q2 | Q3 | Q4 | p-Trend a | |
---|---|---|---|---|---|
Male | |||||
Cr (μg/L) | ≤3.84 | 3.85–5.11 | 5.12–6.84 | ≥6.85 | |
Hyperuricemia/total | 92/338 | 93/344 | 110/343 | 138/341 | |
BMI <28 kg/m2 | Ref | 0.96 (0.64, 1.46) | 1.08 (0.72, 1.64) | 1.66 (1.13, 2.44) * | 0.005 * |
BMI ≥28 kg/m2 | Ref | 1.81 (0.39, 8.43) | 2.11 (0.55, 8.08) | 8.38 (1.71, 41.00) * | 0.012 * |
WHt R <0.6 | Ref | 0.93 (0.62, 1.39) | 1.07 (0.72, 1.59) | 1.58 (1.09, 2.30) * | 0.008 * |
WHt R ≥ 0.6 | Ref | 1.27 (0.05, 33.69) | 6.72 (0.38, 119.71) | 165.77 (2.57, 10,707.79) * | 0.015 * |
Non-central obesity | Ref | 1.04 (0.60, 1.81) | 1.17 (0.67, 2.03) | 1.82 (1.10, 3.02) * | 0.012 * |
Central obesity | Ref | 0.79 (0.44, 1.44) | 1.03 (0.59, 1.81) | 1.74 (0.99, 3.06) | 0.031 * |
Co (μg/L) | ≤0.14 | 0.15–0.25 | 0.26–0.34 | ≥0.35 | |
Hyperuricemia/total | 140/493 | 72/218 | 102/321 | 119/340 | |
BMI < 28 kg/m2 | Ref | 1.37 (0.92, 2.04) | 1.34 (0.93, 1.92) | 1.65 (1.17, 2.35) * | 0.006 * |
BMI ≥ 28 kg/m2 | Ref | 0.68 (0.14, 3.30) | 0.90 (0.23, 3.60) | 1.56 (0.39, 6.16) | 0.609 |
WHt R < 0.6 | Ref | 1.30 (0.88, 1.93) | 1.37 (0.97, 1.95) | 1.64 (1.16, 2.31) * | 0.005 * |
WHt R ≥ 0.6 | Ref | 0.01 (0.01, 4.74) | 0.07 (0.01, 3.52) | 0.12 (0.01, 1.86) | 0.123 |
Non-central obesity | Ref | 1.53 (0.90, 2.61) | 1.58 (0.99, 2.53) | 1.62 (1.03, 2.55) * | 0.041 * |
Central obesity | Ref | 1.09 (0.62, 1.92) | 1.17 (0.70, 1.96) | 1.98 (1.18, 3.34) * | 0.238 |
Cu (μg/L) | ≤811.13 | 811.14–898.60 | 898.61–1005.97 | ≥1005.98 | |
Hyperuricemia/total | 99/343 | 99/343 | 113/343 | 122/343 | |
BMI < 28 kg/m2 | Ref | 0.84 (0.57, 1.24) | 1.09 (0.75, 1.60) | 1.26 (0.85, 1.86) | 0.121 |
BMI ≥ 28 kg/m2 | Ref | 0.57 (0.16, 1.99) | 0.80 (0.20, 3.20) | 1.76 (0.42, 7.43) | 0.431 |
WHt R < 0.6 | Ref | 0.85 (0.59, 1.24) | 1.17 (0.81, 1.70) | 1.25 (0.85, 1.82) | 0.105 |
WHt R ≥ 0.6 | Ref | 0.06 (0.01, 3.40) | 0.06 (0.01, 4.84) | 8.03 (0.12, 517.39) | 0.156 |
Non-central obesity | Ref | 1.05 (0.63, 1.76) | 1.27 (0.77, 2.11) | 1.94 (1.17, 3.23) * | 0.007 * |
Central obesity | Ref | 0.59 (0.34, 1.02) | 0.91 (0.52, 1.60) | 0.78 (0.44, 1.38) | 0.796 |
Zn (μg/L) | ≤5141.11 | 5141.12–5906.57 | 5906.58–6781.64 | ≥6781.65 | |
Hyperuricemia/total | 91/343 | 113/343 | 103/343 | 126/343 | |
BMI < 28 kg/m2 | Ref | 1.47 (1.00, 2.15) * | 1.07 (0.73, 1.59) | 1.28 (0.86, 1.90) | 0.536 |
BMI ≥ 28 kg/m2 | Ref | 1.07 (0.28, 4.04) | 1.39 (0.34, 5.73) | 4.44 (0.99, 19.89) | 0.056 |
WHt R < 0.6 | Ref | 1.45 (1.00, 2.11) * | 1.13 (0.77, 1.65) | 1.37 (0.93, 2.01) | 0.285 |
WHt R ≥ 0.6 | Ref | 2.09 (0.10, 46.04) | 2.55 (0.13, 50.67) | 51.42 (0.53, 5013.22) | 0.187 |
Non-central obesity | Ref | 1.27 (0.77, 2.09) | 1.04 (0.62, 1.73) | 1.10 (0.65, 1.86) | 0.955 |
Central obesity | Ref | 1.59 (0.91, 2.75) | 1.09 (0.62, 1.92) | 1.74 (1.00, 3.02) | 0.138 |
As (μg/L) | ≤2.74 | 2.75–4.60 | 4.61–7.31 | ≥7.31 | |
Hyperuricemia/total | 109/344 | 88/343 | 111/342 | 125/343 | |
BMI < 28 kg/m2 | Ref | 0.73 (0.50, 1.08) | 1.03 (0.71, 1.50) | 1.33 (0.89, 1.98) | 0.090 |
BMI ≥ 28 kg/m2 | Ref | 0.30 (0.06, 1.48) | 0.29 (0.07, 1.24) | 0.30 (0.06, 1.49) | 0.152 |
WHt R < 0.6 | Ref | 0.70 (0.48, 1.02) | 0.94 (0.66, 1.36) | 1.28 (0.87, 1.88) | 0.133 |
WHt R ≥ 0.6 | Ref | 0.01 (0.01, 2.67) | 1.06 (0.05, 21.33) | 0.69 (0.04, 11.77) | 0.911 |
Non-central obesity | Ref | 0.96 (0.59, 1.56) | 0.89 (0.54, 1.46) | 1.07 (0.63, 1.82) | 0.914 |
Central obesity | Ref | 0.46 (0.26, 0.83) * | 1.13 (0.65, 1.95) | 1.37 (0.77, 2.42) | 0.091 |
Female | |||||
V (μg/L) | ≤0.53 | 0.54–0.98 | 0.99–1.55 | ≥1.56 | |
Hyperuricemia/total | 97/408 | 63/407 | 79/408 | 77/407 | |
BMI < 28 kg/m2 | Ref | 0.58 (0.39, 0.87) * | 0.73 (0.47, 1.12) | 0.67 (0.45, 1.00) * | 0.121 |
BMI ≥ 28 kg/m2 | Ref | 0.39 (0.13, 1.13) | 0.38 (0.12, 1.15) | 0.69 (0.24, 1.93) | 0.479 |
WHt R < 0.6 | Ref | 0.55 (0.37, 0.83) * | 0.68 (0.44, 1.05) | 0.73 (0.49, 1.09) | 0.273 |
WHt R ≥ 0.6 | Ref | 0.64 (0.23, 1.77) | 0.68 (0.24, 1.90) | 0.42 (0.11, 1.53) | 0.321 |
Non-central obesity | Ref | 0.39 (0.21, 0.71) * | 0.56 (0.30, 1.05) | 0.74 (0.43, 1.29) | 0.657 |
Central obesity | Ref | 0.69 (0.42, 1.13) | 0.75 (0.44, 1.26) | 0.63 (0.38, 1.04) | 0.103 |
n (Hyperuricemia/Non-Hyperuricemia) | OR (95% CI) | OR- Int a | RERI b (95% CI) | AP b (95% CI) | S b (95% CI) | |
---|---|---|---|---|---|---|
Zn-BMI | 2.28 (1.02, 5.06) * | 1.67 (0.02, 3.33) * | 0.56 (0.23, 0.88) * | 6.02 (0.52, 69.37) | ||
Low Zn + BMI < 28 | 178/446 | Ref | ||||
Low Zn + BMI ≥ 28 | 26/36 | 1.37 (0.77, 2.43) | ||||
High Zn + BMI < 28 | 188/432 | 0.97 (0.74, 1.26) | ||||
High Zn + BMI ≥ 28 | 41/25 | 3.01 (1.70, 5.31) * | ||||
Cr-BMI | 1.62 (0.73, 3.6) | 1.58(−0.36,3.53) | 0.44(0.08,0.81) * | 2.62 (0.82, 8.4) | ||
Low Cr + BMI < 28 | 160/467 | Ref | ||||
Low Cr + BMI ≥ 28 | 24/35 | 1.56 (0.87, 2.80) | ||||
High Cr + BMI < 28 | 206/411 | 1.41 (1.09, 1.82) * | ||||
High Cr + BMI ≥ 28 | 43/26 | 3.68 (2.12, 6.40) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Huang, H.; Ji, G.; Li, L.; Xing, X.; Dong, M.; Ma, A.; Li, J.; Wei, Y.; Zhao, D.; et al. Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China. Nutrients 2023, 15, 552. https://doi.org/10.3390/nu15030552
Wu S, Huang H, Ji G, Li L, Xing X, Dong M, Ma A, Li J, Wei Y, Zhao D, et al. Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China. Nutrients. 2023; 15(3):552. https://doi.org/10.3390/nu15030552
Chicago/Turabian StyleWu, Shan, Huimin Huang, Guiyuan Ji, Lvrong Li, Xiaohui Xing, Ming Dong, Anping Ma, Jiajie Li, Yuan Wei, Dongwei Zhao, and et al. 2023. "Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China" Nutrients 15, no. 3: 552. https://doi.org/10.3390/nu15030552
APA StyleWu, S., Huang, H., Ji, G., Li, L., Xing, X., Dong, M., Ma, A., Li, J., Wei, Y., Zhao, D., Ma, W., Bai, Y., Wu, B., Liu, T., & Chen, Q. (2023). Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China. Nutrients, 15(3), 552. https://doi.org/10.3390/nu15030552