The Low Energy Availability in Females Questionnaire (LEAF-Q) as a Useful Tool to Identify Female Triathletes at Risk for Menstrual Disorders Related to Low Energy Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Body Composition Analysis
2.2.2. Questionnaire
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, M.; Young, K. Tribal Play: Subcultural Journeys through Sport; Atkinson, M., Young, M., Eds.; Emerald Group: Wagon Lake, Bingley, UK, 2008; pp. 49–113. [Google Scholar]
- Lepers, R.; Rüst, C.A.; Stapley, P.J.; Knechtle, B. Relative improvements in endurance performance with age: Evidence from 25 years of Hawaii Ironman racing. Age 2013, 35, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Lepers, R. Analysis of Hawaii Ironmen performances in elite triathletes from 1981 to 2007. Med. Sci. Sports Exerc. 2008, 40, 1828–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal Fat Oxidation is Related to Performance in an Ironman Triathlon. Int. J. Sports Med. 2017, 13, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Nikolaidis, P.T.; Rosemann, T.; Rüst, C.A. Ironman Triathlon. Praxis 2016, 105, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Wirth, A.; Baumann, B.; Knechtle, P.; Rosemann, T.; Oliver, S. Differential Correlations Between Anthropometry, Training Volume, and Performance in Male and Female Ironman Triathletes. J. Strenght. Cond. Res. 2010, 24, 2785. [Google Scholar] [CrossRef]
- Sim, A.; Burns, S.F. Review: Questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes. J. Eat. Disord. 2021, 9, 41. [Google Scholar] [CrossRef]
- Koehler, K.; Hoerner, N.R.; Gibbs, J.C.; Zinner, C.; Braun, H.; De Souza, M.J.; Schaenzer, W. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J. Sports Sci. 2016, 34, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Azizan, N.A.; Yusof, H.A.; Shariff, N.M.; Azizi, M.K. A narrative review of low energy availability. Mal. J. Med. Health Sci. 2021, 17, 189–194. [Google Scholar]
- Williams, N.I.; Statuta, S.M.; Austion, A. Female athlete triad future directions for energy availability and eating disorder research and practice. Clin. Sports Med. 2017, 36, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Daily, J.P.; Stumbo, J.R. Female athlete triad. Prim. Care. Clin. Office Pract. 2018, 45, 615–624. [Google Scholar] [CrossRef]
- Matzkin, E.; Curry, E.J.; Whitlock, K. Female ahlete triad: Past, present, and future. J. Am. Acad. Orthop. Surg. 2015, 23, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional hypothalamic amenorrhea: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef]
- Loucks, A.B.; Kiens, B.; Wright, H.H. Energy availability in athletes. Sport Sci. 2011, 29, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B. Energy balance and energy availability. In The Encyclopaedia of Sports Medicine: An IOC Medical Commission Publication, 1st ed.; Maughan, R.J., Ed.; John Wiley & Sons: New York, NY, USA, 2014; pp. 72–87. [Google Scholar]
- Jontony, N.; Hill, E.B.; Taylor, C.A.; Boucher, L.C.; O’Brien, V.; Weiss, R.; Spees, C.K. Diet Quality, Carotenoid Status, and Body Composition in NCAA Division I Athletes. Am. J. Health Behav. 2020, 44, 432–443. [Google Scholar] [CrossRef]
- Cadegiani, F.A.; Kater, C.E. Hormonal aspects of overtraining syndrome: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Elliott-Sale, K.J.; Tenforde, A.S.; Parziale, A.L.; Holtzman, B.; Ackerman, K.E. Endocrine effects of relative energy deficiency in sport. Int. J. Nutr. Exerc. Metab. 2018, 28, 335–349. [Google Scholar] [CrossRef]
- Lanser, E.M.; Zach, K.N.; Hoch, A.Z. The female athlete triad and endothelial dysfunction. AAPM&R 2011, 3, 458–465. [Google Scholar]
- Hoch, A.Z.; Papanek, P.; Szabo, A.; Widlansky, M.E.; Schimke, J.E.; Gutterman, D.D. Association between the female athlete triad and endothelial dysfunction in dancers. Clin. J. Sport Med. 2011, 21, 119–125. [Google Scholar] [CrossRef]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, K.E.; Slusarz, K.; Guereca, G.; Pierce, L.; Slattery, M.; Mendez, N.; Herzog, D.B.; Misra, M. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am. J. Physiol. Endocrinol. Metab. 2012, 302, 800–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheid, J.L.; De Souza, M.J. Menstrual irregularities and energy deficiency in physically active women: The role of ghrelin, PYY and adipocytokines. Med. Sport Sci. 2010, 55, 82–102. [Google Scholar]
- Schorr, M.; Lawson, E.A.; Dichtel, L.E.; Klibanski, A.; Miller, K.K. Cortisol measures across the weight spectrum. J. Clin. Endocrinol. Metab. 2015, 100, 3313–3321. [Google Scholar] [CrossRef]
- Logue, D.; Madigan, S.M.; Delahunt, E.; Heinen, M.; Mc Donnell, S.J.; Corish, C.A. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018, 48, 73–96. [Google Scholar] [CrossRef]
- De Borja, C.; Holtzman, B.; McCall, L.M.; Carson, T.L.; Moretti, L.J.; Farnsworth, N.; Ackerman, K.E. Specific dietary practices in female athletes and their association with positive screening for disordered eating. J. Eat. Disord. 2021, 9, 50. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur. J. Clin. Nutr. 2013, 67 (Suppl. S1), 14–21. [Google Scholar] [CrossRef] [Green Version]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjodin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.; Castela, I.; Silva, A.M.; Branco, P.A.; Sousa, M. Risk of low energy availability among female and male elite runners competing at 26th European Cross-Country Championships. Nutrients 2021, 13, 873. [Google Scholar] [CrossRef]
- Meng, K.; Qiu, J.; Benardot, D.; Carr, A.; Yi, L.; Wang, J.; Liang, Y. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J. Int. Sports Nutr. 2020, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Monedero, J.; Duff, C.; Egan, B. Dietary intakes and the risk of low energy availability in male and female advanced and elite rock climbers. J. Strength Cond. Res. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Slater, J.; McLay-Cooke, R.; Brown, R.; Black, K. Female recreational excercisers at risk for low energy availability. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Condo, D.; Lohman, R.; Kelly, M.; Carr, A. Nutritional intake, sports nutrition knowledge and energy availability in female Australian rules football players. Nutrients 2019, 11, 971. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, K.; DiFolco, A.; Glasgow, S.; Pritchett, R.; Williams, K.; Stellingwerff, T.; Roney, P.; Scaroni, S.; Broad, E. Risk of low energy availability in national and international level paralympic athletes: An exploratory investigation. Nutrients 2021, 13, 979. [Google Scholar] [CrossRef] [PubMed]
- Magee, M.K.; Lockard, B.; Zabriskie, H.A.; Schaefer, A.Q.; Luedke, J.A.; Erickson, J.L.; Jones, M.T.; Jagim, A.R. Prevelence of low energy availability in collegiate women soccer athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Folscher, L.L.; Grant, C.C.; Flatcher, L.; Janse van Rensberg, D.C.H. Ultra-marathon athletes at risk for the female athlete triad. Sports Med. Open 2015, 1, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Łuszczki, E.; Jagielski, P.; Bartosiewicz, A.; Kuchciak, M.; Dereń, K.; Stolarczyk, A.; Pakosz, P.; Oleksy, ł. The LEAF questionnaire is a good screening tool for the identification of the Female Athlete Triad/Relative Energy Deficiency in Sport among young football players. PeerJ 2021, 9, e12118. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International society of sports nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Déchelotte, P.; Coëffier, M. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef] [Green Version]
- Pyne, D.B.; Anderson, M.E.; Hopkins, W.G. Monitoring changes in lean mass of elite male and female swimmers. Int. J. Sports Physiol. Perform. 2006, 1, 14–26. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Udia, C.; Minderico, S.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2015, 9, e97846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poczta, J.; Almeida, N.; Malchrowicz-Mośko, E. Socio-psychological functions of men and women triathlon participation. Int. J. Environ. Res. Public Health 2021, 18, 11766. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.D.; Knight, C.J.; Falk Neto, J.H.; Uzzell, K.S.; Szabo, S.W. Futureproofing triathlon: Expert suggestions to improve health and performance in triathletes. BMC Sports Sci. Med. Rehabil. 2020, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I. Olympic preparation of a world-class female triathlete. Int. J. Sports. Physiol. Perform. 2014, 9, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Wonerow, M.; Rüst, C.A.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Performance trends in age group triathletes in the olympic distance triathlon at the world championships 2009-2014. Chin. J. Physiol. 2017, 60, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Sundgot-Borgen, J.; Torstveit, M.K. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin. J. Sport Med. 2004, 14, 25–32. [Google Scholar] [CrossRef]
- Bratland-Sanda, S.; Sundgot-Borgen, J. Eating disorders in athletes: Overview of prevalence, risk factors and recommendations for prevention and treatment. Eur. J. Sport Sci. 2013, 13, 499–508. [Google Scholar] [CrossRef]
- Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: A systematic review. Sports Med. Open 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Cuba-Dorado, A.; Álvarez-Yates, T.; García-García, O. Elite triathlete profiles in draft-legal triathlons as a basis for talent identification. Int. J. Environ. Res. Public Health 2022, 19, 881. [Google Scholar] [CrossRef]
- Malcata, R.M.; Hopkins, W.G.; Pearson, S.N. Tracking career performance of successful triathletes. Med. Sci. Sports Exerc. 2014, 46, 1227–1234. [Google Scholar] [CrossRef]
- Werneck, F.Z.; Lima, J.R.P.; Coelho, E.F.; Matta, M.; Figueiredo, A.J.B. Relative age effect on olympic triathlon athletes. Rev. Bras. Med. Esporte 2014, 20, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, R.; Rüst, C.A.; Rosemann, T.; Knechtle, B. The best triathletes are older in longer race distances—A comparison between Olympic, Half-Ironman and Ironman distance triathlon. SpringerPlus 2014, 3, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasa, T.; Minato, S.; Imaizumi, J.; Yoshida, A.; Kawakita, T.; Yoshida, K.; Yamamoto, Y. Effects of low energy availability on female reproductive function. Reprod. Med. Biol. 2021, 21, e12414. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Mayila, Y.; Yanagihara, R.; Yamamoto, Y.; Kuwahara, A.; Irahara, M. Effects of Low Energy Availability on Reproductive Functions and Their Underlying Neuroendocrine Mechanisms. J. Clin. Med. 2018, 7, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cialdella-Kam, L.; Kulpins, D.; Manore, M. Vegetarian, gluten-free, and energy restricted diets in female athletes. Sports 2016, 4, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathisen, T.F.; Heia, J.; Raustol, M.; Sandeggen, M.; Fjellestad, I.; Sundgot-Borgen, J. Physical health and symptoms of relative energy deficiency in female fitness athletes. Scand. J. Med. Sci. Sports 2020, 30, 135–147. [Google Scholar] [CrossRef] [PubMed]
Mean | Median | SD | |||||||
---|---|---|---|---|---|---|---|---|---|
No Problem (n = 23) | Problem (n = 7) | No Problem (n = 23) | Problem (n = 7) | No Problem (n = 23) | Problem (n = 7) | U | p | d | |
Age [years] | 32.5 | 36.9 | 31.0 | 32.0 | 8.8 | 10.3 | 59.5 | 0.302 | −0.47 |
Height [cm] | 169.0 | 168.9 | 170.0 | 169.0 | 6.3 | 4.6 | 72.0 | 0.676 | 0.03 |
Weight [kg] | 61.7 | 61.7 | 61.3 | 61.4 | 10.1 | 7.4 | 77.0 | 0.864 | <0.01 |
BMI [kg/m2] | 21.5 | 21.5 | 21.2 | 21.5 | 2.7 | 1.9 | 73.0 | 0.713 | −0.01 |
FM [kg] | 16.5 | 16.1 | 15.3 | 16.1 | 5.5 | 2.4 | 66.0 | 0.477 | 0.09 |
FM [%] | 26.4 | 24.7 | 24.7 | 23.7 | 5.3 | 4.8 | 66.0 | 0.477 | 0.32 |
VAT [I] | 0.4 | 0.3 | 0.4 | 0.3 | 0.2 | 0.2 | 57.0 | 0.240 | 0.57 |
FFM [kg] | 44.8 | 47.0 | 43.3 | 43.6 | 6.8 | 6.0 | 61.0 | 0.339 | −0.33 |
FFM [%] | 73.7 | 73.6 | 75.3 | 75.3 | 5.3 | 5.1 | 78.0 | 0.902 | 0.03 |
MM [kg] | 20.5 | 21.7 | 19.3 | 19.6 | 4.0 | 3.7 | 66.5 | 0.492 | −0.30 |
TBW [%] | 33.4 | 34.7 | 31.7 | 31.1 | 5.7 | 5.3 | 68.5 | 0.556 | −0.22 |
ECW [%] | 14.7 | 14.6 | 13.9 | 13.8 | 1.8 | 2.2 | 76.5 | 0.844 | 0.02 |
ECW/TBW [%] | 42.6 | 42.1 | 42.4 | 41.7 | 1.7 | 1.5 | 74.0 | 0.750 | 0.30 |
No. of weekly training sessions | 6.5 | 7.3 | 7.0 | 7.0 | 1.8 | 0.8 | 61.0 | 0.326 | −0.48 |
Low Energy Availability in Females Questionnaire | Menstruation | |||
---|---|---|---|---|
Absences from your training, or participation in competitions during the last year due to injuries | ||||
chi2(1) = 0.15; p = 0.698, Cv = 0.07 OP = 0.07 (1602) | No problem | Problem | ||
N | % | N | % | |
No, not at all | 15 | 65.2 | 4 | 57.1 |
Yes, once or twice | 8 | 34.8 | 3 | 42.9 |
23 | 100.0 | 7 | 100.0 | |
Numbers of days’ absence from training or participation in competition due to injuries | ||||
chi2(2) = 0.50; p = 0.780, Cv = 0.21 OP = 0.09 (219) | ||||
1–7 days | 4 | 50.0 | 2 | 66.7 |
8–14 days | 3 | 37.5 | 1 | 33.3 |
15–21 days | 0 | 0 | 0 | 0 |
22 days or more | 1 | 12.5 | 0 | 0 |
8 | 100.0 | 3 | 100.0 | |
Do you feel gaseous or bloated in the abdomen, also when you do not have your period? | ||||
chi2(1) = 0.31; p = 0.575, CV = 0.10 OP = 0.09 (785) | ||||
Yes, once or twice a week or more seldom | 1 | 4.4 | 0 | 0 |
Rarely or never | 22 | 95.6 | 7 | 100.0 |
23 | 100.0 | 7 | 100.0 | |
Do you get cramps or stomach-ache that cannot be related to your menstruation? | ||||
chi2(1) = 0.31; p = 0.575, CV = 0.10 OP = 0.09 (785) | ||||
Yes, once or twice a week or more seldom | 1 | 4.4 | 0 | 0 |
Rarely or never | 22 | 95.6 | 7 | 100.0 |
23 | 100.0 | 7 | 100.0 | |
When did you have your last period? | ||||
chi2(1) = 3.40; p = 0.065, CV = 0.34 OP = 0.34 (68) | ||||
2–3 months ago | 23 | 100.0 | 6 | 85.7 |
4–5 months ago | 0 | 0 | 1 | 14.3 |
6 months ago or more | 0 | 0 | 0 | 0 |
23 | 100.0 | 7 | 100.0 | |
Have your periods ever stopped for 3 consecutive months or longer (besides pregnancy)? | ||||
chi2(2) = 30.00; p < 0.001, CV = 0.99 OP > 0.99 (10) | ||||
No, never | 23 | 100.0 | 0 | 0 |
Yes, it has happened before | 0 | 0 | 4 | 57.1 |
Yes, that’s the situation now | 0 | 0 | 3 | 42.9 |
23 | 100.0 | 7 | 100.0 | |
Does your menstruation change when you increase your exercise intensity, frequency or duration? | ||||
chi2(1) = 16.28; p < 0.001, CV = 0.74 OP = 0.98 (15) | ||||
Yes | 2 | 8.7 | 6 | 85.7 |
No | 21 | 91.3 | 1 | 14.3 |
23 | 100.0 | 7 | 100.0 | |
If yes, how? | ||||
chi2(1) = 16.28; p < 0.001 OP = 0.98 (15) | ||||
I bleed less | 2 | 8.7 | 6 | 85.7 |
No changes | 21 | 91.3 | 1 | 14.3 |
23 | 100.0 | 7 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkoś, J.; Błażejewski, G.; Gierach, M. The Low Energy Availability in Females Questionnaire (LEAF-Q) as a Useful Tool to Identify Female Triathletes at Risk for Menstrual Disorders Related to Low Energy Availability. Nutrients 2023, 15, 650. https://doi.org/10.3390/nu15030650
Witkoś J, Błażejewski G, Gierach M. The Low Energy Availability in Females Questionnaire (LEAF-Q) as a Useful Tool to Identify Female Triathletes at Risk for Menstrual Disorders Related to Low Energy Availability. Nutrients. 2023; 15(3):650. https://doi.org/10.3390/nu15030650
Chicago/Turabian StyleWitkoś, Joanna, Grzegorz Błażejewski, and Marcin Gierach. 2023. "The Low Energy Availability in Females Questionnaire (LEAF-Q) as a Useful Tool to Identify Female Triathletes at Risk for Menstrual Disorders Related to Low Energy Availability" Nutrients 15, no. 3: 650. https://doi.org/10.3390/nu15030650
APA StyleWitkoś, J., Błażejewski, G., & Gierach, M. (2023). The Low Energy Availability in Females Questionnaire (LEAF-Q) as a Useful Tool to Identify Female Triathletes at Risk for Menstrual Disorders Related to Low Energy Availability. Nutrients, 15(3), 650. https://doi.org/10.3390/nu15030650