Impact of Nut Consumption on Cognition across the Lifespan
Abstract
:1. Introduction
2. Nut Consumption and Neurodevelopment in Early Life (Gestation to Young Adulthood)
2.1. Nut Consumption and Prenatal Cognitive Development
2.2. Nut Consumption and Early Life (Childhood and Adolescence) Cognitive Development
2.3. Nut Consumption and Cognitive Health in Young Adulthood
3. Nut Consumption and Cognitive Performance in Adulthood
3.1. Epidemiological Studies Examining the Association of Nut Consumption with Cognitive Performance
3.2. Randomized Controlled Trials of Nuts with Outcomes on Cognitive Performance
4. Potential Mechanisms of Action of Nuts in Cognitive Health
4.1. Nuts and Extracellular Plaque Deposits of Aβ
4.1.1. Pathophysiologic Overview
4.1.2. Nuts and Aβ
4.1.3. Potential of Aβ Biomarkers in Future Research on the Neuroprotective Properties of Nuts
4.2. Nuts and Neurofibrillary Tangles
4.2.1. Pathophysiologic Overview
4.2.2. Nuts and Neurofibrillary Tangles
4.2.3. How Biomarkers Can Help in Future Research
5. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Rates%20of%20dementia,and%20139%20million%20in%202050. (accessed on 11 January 2023).
- Gabbianelli, R.; Damiani, E. Epigenetics and Neurodegeneration: Role of Early-Life Nutrition. J. Nutr. Biochem. 2018, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, M.; Snyder, H.M.; Carrillo, M.C.; Fazio, S.; Kim, H.; Johns, H. Summary of the Evidence on Modifiable Risk Factors for Cognitive Decline and Dementia: A Population-Based Perspective. Alzheimer’s Dement. 2015, 11, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Solfrizzi, V.; Agosti, P.; Lozupone, M.; Custodero, C.; Schilardi, A.; Valiani, V.; Sardone, R.; Dibello, V.; di Lena, L.; Lamanna, A.; et al. Nutritional Intervention as a Preventive Approach for Cognitive-Related Outcomes in Cognitively Healthy Older Adults: A Systematic Review. J. Alzheimer’s Dis. 2018, 64, S229–S254. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Cunnane, S.C.; Minihane, A.M. Can Nutrition Support Healthy Cognitive Ageing and Reduce Dementia Risk? BMJ 2020, 369, m2269. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimer’s Dis. 2018, 62, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10, 422–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, L.; Folch, A.; Rojas, M.; Cantero, J.L.; Atienza, M.; Folch, J.; Camins, A.; Ruiz, A.; Papandreou, C.; Bulló, M. Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2021, 13, 3728. [Google Scholar] [CrossRef]
- Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Scarmeas, N. Mediterranean Diet and Risk for Dementia and Cognitive Decline in a Mediterranean Population. J. Am. Geriatr. Soc. 2021, 69, 1548–1559. [Google Scholar] [CrossRef]
- Andreu-Reinón, M.E.; Chirlaque, M.D.; Gavrila, D.; Amiano, P.; Mar, J.; Tainta, M.; Ardanaz, E.; Larumbe, R.; Colorado-Yohar, S.M.; Navarro-Mateu, F.; et al. Mediterranean Diet and Risk of Dementia and Alzheimer’s Disease in the Epic-Spain Dementia Cohort Study. Nutrients 2021, 13, 700. [Google Scholar] [CrossRef]
- Radd-Vagenas, S.; Duffy, S.L.; Naismith, S.L.; Brew, B.J.; Flood, V.M.; Fiatarone Singh, M.A. Effect of the Mediterranean Diet on Cognition and Brain Morphology and Function: A Systematic Review of Randomized Controlled Trials. Am. J. Clin. Nutr. 2018, 107, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Drouka, A.; Mamalaki, E.; Karavasilis, E.; Scarmeas, N.; Yannakoulia, M. Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients 2022, 14, 2345. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease-A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J. Alzheimer’s Dis. 2019, 67, 583–619. [Google Scholar] [CrossRef]
- WHO. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; World Health Organization: Geneva, Switzerland, 2019; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Ros, E.; Singh, A.; O’Keefe, J.H. Nuts: Natural Pleiotropic Nutraceuticals. Nutrients 2021, 13, 3269. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-Y.; Tey, S.L.; Brown, R. Nuts and Older Adults’ Health: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 1848. [Google Scholar] [CrossRef]
- Alderman, H.; Behrman, J.R.; Glewwe, P.; Fernald, L.; Walker, S. Evidence of Impact of Interventions on Growth and Development during Early and Middle Childhood. In Disease Control Priorities, Third Edition (Volume 8): Child and Adolescent Health and Development; Bundy, D.A.P., de Silva, N., Horton, S., Jamison, D.T., Patton, G.C., Eds.; The World Bank: Washington, DC, USA, 2017; Volume 8, pp. 79–98. [Google Scholar]
- Sizonenko, S.v.; Babiloni, C.; de Bruin, E.A.; Isaacs, E.B.; Jönsson, L.S.; Kennedy, D.O.; Latulippe, M.E.; Hasan Mohajeri, M.; Moreines, J.; Pietrini, P.; et al. Brain Imaging and Human Nutrition: Which Measures to Use in Intervention Studies? Br. J. Nutr. 2013, 110, S1–S30. [Google Scholar] [CrossRef]
- Júlvez, J.; Paus, T.; Bellinger, D.; Eskenazi, B.; Tiemeier, H.; Pearce, N.; Ritz, B.; White, T.; Ramchandani, P.; Gispert, J.D.; et al. Environment and Brain Development: Challenges in the Global Context. Neuroepidemiology 2016, 46, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Moody, L.; Chen, H.; Pan, Y.X. Early-Life Nutritional Programming of Cognition-the Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv. Nutr. 2017, 8, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Konkel, L. The Brain before Birth: Using FMRI to Explore the Secrets of Fetal Neurodevelopment. Environ. Health Perspect. 2018, 126, 112001. [Google Scholar] [CrossRef]
- Karr, J.E.; Alexander, J.E.; Winningham, R.G. Omega-3 Polyunsaturated Fatty Acids and Cognition throughout the Lifespan: A Review. Nutr. Neurosci. 2011, 14, 216–225. [Google Scholar] [CrossRef]
- Gignac, F.; Romaguera, D.; Fernández-Barrés, S.; Phillipat, C.; Garcia Esteban, R.; López-Vicente, M.; Vioque, J.; Fernández-Somoano, A.; Tardón, A.; Iñiguez, C.; et al. Maternal Nut Intake in Pregnancy and Child Neuropsychological Development up to 8 Years Old: A Population-Based Cohort Study in Spain. Eur. J. Epidemiol. 2019, 34, 661–673. [Google Scholar] [CrossRef]
- Morrison, K.E.; Rodgers, A.B.; Morgan, C.P.; Bale, T.L. Epigenetic Mechanisms in Pubertal Brain Maturation. Neuroscience 2014, 264, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selemon, L.D. A Role for Synaptic Plasticity in the Adolescent Development of Executive Function. Transl. Psychiatry 2013, 3, e238. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kang, S.W. Relationships between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents. J. Lifestyle Med. 2017, 7, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julvez, J.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; Torrent, J.; et al. Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Front. Pediatr. 2021, 9, 593847. [Google Scholar] [CrossRef]
- Julvez, J.; Davey Smith, G.; Ring, S.; Grandjean, P. A Birth Cohort Study on the Genetic Modification of the Association of Prenatal Methylmercury With Child Cognitive Development. Am. J. Epidemiol. 2019, 188, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- Tahaei, H.; Gignac, F.; Pinar, A.; Fernandez-Barrés, S.; Romaguera, D.; Vioque, J.; Santa-Marina, L.; Subiza-Pérez, M.; Llop, S.; Soler-Blasco, R.; et al. Omega-3 Fatty Acid Intake during Pregnancy and Child Neuropsychological Development: A Multi-Centre Population-Based Birth Cohort Study in Spain. Nutrients 2022, 14, 518. [Google Scholar] [CrossRef]
- Sala-Vila, A.; Fleming, J.; Kris-Etherton, P.; Ros, E. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Adv. Nutr. 2022, 13, 1584–1602. [Google Scholar] [CrossRef]
- Pinar-Martí, A.; Fernández-Barrés, S.; Gignac, F.; Persavento, C.; Delgado, A.; Romaguera, D.; Lázaro, I.; Ros, E.; López-Vicente, M.; Salas-Salvadó, J.; et al. Red Blood Cell Omega-3 Fatty Acids and Attention Scores in Healthy Adolescents. Eur. Child Adolesc. Psychiatry, 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Pribis, P.; Bailey, R.N.; Russell, A.A.; Kilsby, M.A.; Hernandez, M.; Craig, W.J.; Grajales, T.; Shavlik, D.J.; Sabatè, J. Effects of Walnut Consumption on Cognitive Performance in Young Adults. Br. J. Nutr. 2012, 107, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Bettio, L.E.B.; Rajendran, L.; Gil-Mohapel, J. The Effects of Aging in the Hippocampus and Cognitive Decline. Neurosci. Biobehav. Rev. 2017, 79, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Langa, K.M.; Levine, D.A. The Diagnosis and Management of Mild Cognitive Impairment: A Clinical Review. JAMA J. Am. Med. Assoc. 2014, 312, 2551–2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Cognitive Performance among the Elderly in Relation to the Intake of Plant Foods. the Hordaland Health Study. Br. J. Nutr. 2010, 104, 1190–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nooyens, A.C.J.; Bueno-De-Mesquita, H.B.; van Boxtel, M.P.J.; van Gelder, B.M.; Verhagen, H.; Verschuren, W.M.M. Fruit and Vegetable Intake and Cognitive Decline in Middle-Aged Men and Women: The Doetinchem Cohort Study. Br. J. Nutr. 2011, 106, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls-Pedret, C.; Lamuela-Raventós, R.M.; Medina-Remón, A.; Quintana, M.; Corella, D.; Pintó, X.; Martínez-González, M.Á.; Estruch, R.; Ros, E. Polyphenol-Rich Foods in the Mediterranean Diet Are Associated with Better Cognitive Function in Elderly Subjects at High Cardiovascular Risk. J. Alzheimer’s Dis. 2012, 29, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Samieri, C.; Grodstein, F.; Rosner, B.A.; Kang, J.H.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Willett, W.C.; Okereke, O.I. Mediterranean Diet and Cognitive Function in Older Age. Epidemiology 2013, 24, 490–499. [Google Scholar] [CrossRef]
- O’Brien, J.; Okereke, O.; Devore, E.; Rosner, B.; Breteler, M.; Grodstein, F. Long-Term Intake of Nuts in Relation to Cognitive Function in Older Women. J. Nutr. Health Aging 2014, 18, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Arab, L.; Ang, A. A Cross Sectional Study of the Association between Walnut Consumption and Cognitive Function among Adult Us Populations Represented in NHANES. J. Nutr. Health Aging 2015, 19, 284–290. [Google Scholar] [CrossRef]
- Dong, L.; Xiao, R.; Cai, C.; Xu, Z.; Wang, S.; Pan, L.; Yuan, L. Diet, Lifestyle and Cognitive Function in Old Chinese Adults. Arch. Gerontol. Geriatr. 2016, 63, 36–42. [Google Scholar] [CrossRef]
- De Amicis, R.; Leone, A.; Foppiani, A.; Osio, D.; Lewandowski, L.; Giustizieri, V.; Cornelio, P.; Cornelio, F.; Fusari Imperatori, S.; Cappa, S.F.; et al. Mediterranean Diet and Cognitive Status in Free-Living Elderly: A Cross-Sectional Study in Northern Italy. J. Am. Coll. Nutr. 2018, 37, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Z. A Prospective Association of Nut Consumption with Cognitive Function in Chinese Adults Aged 55+ _ China Health and Nutrition Survey. J. Nutr. Health Aging 2019, 23, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Rabassa, M.; Zamora-Ros, R.; Palau-Rodriguez, M.; Tulipani, S.; Miñarro, A.; Bandinelli, S.; Ferrucci, L.; Cherubini, A.; Andres-Lacueva, C. Habitual Nut Exposure, Assessed by Dietary and Multiple Urinary Metabolomic Markers, and Cognitive Decline in Older Adults: The InCHIANTI Study. Mol. Nutr. Food Res. 2020, 64, e1900532. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Georgousopoulou, E.N.; Cardoso, B.R.; Daly, R.M.; George, E.S. Associations between Nut Intake, Cognitive Function and Non-alcoholic Fatty Liver Disease (NAFLD) in Older Adults in the United States: NHANES 2011-14. BMC Geriatr. 2021, 21, 313. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Sheng, L.T.; Feng, L.; Pan, A.; Koh, W.P. Consumption of Dietary Nuts in Midlife and Risk of Cognitive Impairment in Late-Life: The Singapore Chinese Health Study. Age Ageing 2021, 50, 1215–1221. [Google Scholar] [CrossRef]
- Bishop, N.J.; Zuniga, K.E. Investigating Walnut Consumption and Cognitive Trajectories in a Representative Sample of Older US Adults. Public Health Nutr. 2021, 24, 1741–1752. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Sachdev, P.S.; Kochan, N.A.; O’Leary, F.; Brodaty, H. Dietary Patterns and Cognitive Health in Older Adults: Findings from the Sydney Memory and Ageing Study. J. Nutr. Health Aging 2021, 25, 255–262. [Google Scholar] [CrossRef]
- Li, F.; Jiang, W.; Wang, J.; Zhang, T.; Gu, X.; Zhai, Y.; Wu, M.; Xu, L.; Lin, J. Beneficial Effects of Nut Consumption on Cognitive Function Among Elderly: Findings From a 6-Year Cohort Study. Front. Aging Neurosci. 2022, 14, 816443. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Chapter 11; Oxford University: New York, NY, USA, 2012; p. 306. ISBN 9780199754038. [Google Scholar]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean Diet Improves Cognition: The PREDIMED-NAVARRA Randomised Trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [Green Version]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de La Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, J.A.; Howe, P.R.C.; Buckley, J.D.; Bryan, J.; Coates, A.M. Cerebrovascular and Cognitive Benefits of High-Oleic Peanut Consumption in Healthy Overweight Middle-Aged Adults. Nutr. Neurosci. 2017, 20, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, J.; Tan, S.Y.; Mattes, R.D. Effects of Almond Consumption on the Post-Lunch Dip and Long-Term Cognitive Function in Energy-Restricted Overweight and Obese Adults. Br. J. Nutr. 2017, 117, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala-Vila, A.; Valls-Pedret, C.; Rajaram, S.; Coll-Padrós, N.; Cofán, M.; Serra-Mir, M.; Pérez-Heras, A.M.; Roth, I.; Freitas-Simoes, T.M.; Doménech, M.; et al. Effect of a 2-Year Diet Intervention with Walnuts on Cognitive Decline. The Walnuts and Healthy Aging (WAHA) Study: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2020, 111, 590–600. [Google Scholar] [CrossRef]
- Mustra Rakic, J.; Tanprasertsuk, J.; Scott, T.M.; Rasmussen, H.M.; Mohn, E.S.; Chen, C.Y.O.; Johnson, E.J. Effects of Daily Almond Consumption for Six Months on Cognitive Measures in Healthy Middle-Aged to Older Adults: A Randomized Control Trial. Nutr. Neurosci. 2022, 25, 1466–1476. [Google Scholar] [CrossRef]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef]
- Rosenberg, A.; Mangialasche, F.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multidomain Interventions to Prevent Cognitive Impairment, Alzheimer’s Disease, and Dementia: From FINGER to World-Wide FINGERS. J. Prev. Alzheimer’s Dis. 2020, 7, 29–36. [Google Scholar] [CrossRef]
- Blinkouskaya, Y.; Caçoilo, A.; Gollamudi, T.; Jalalian, S.; Weickenmeier, J. Brain Aging Mechanisms with Mechanical Manifestations. Mech. Ageing Dev. 2021, 200, 111575. [Google Scholar] [CrossRef]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a Risk Factor for Neurodegenerative Disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- NIH National Institute on Aging (NIA). Alzheimer´s Disease and Related Dementias: 11 Myths About Alzheimer’s Disease. Available online: https://www.nia.nih.gov/health/11-myths-about-alzheimers-disease (accessed on 11 January 2023).
- Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s Disease, a Multifactorial Disorder Seeking Multitherapies. Alzheimer’s Dement. 2010, 6, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Implementation Roadmap 2023–2030 for the Global Action Plan for the Prevention and Control of NCDs 2013–2030. Available online: https://www.who.int/teams/noncommunicable-diseases/governance/roadmap (accessed on 14 November 2022).
- Alzheimer´s Association. Alzheimer´s Association: FY23-FY25 Strategic Plan. Available online: https://www.alz.org/media/Documents/strategic-plan-fy2023-fy2025.pdf (accessed on 14 November 2022).
- Stefaniak, O.; Dobrzyńska, M.; Drzymała-Czyż, S.; Przysławski, J. Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements. Nutrients 2022, 14, 4564. [Google Scholar] [CrossRef] [PubMed]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, Hazelnut and Walnut, Three Nuts for Neuroprotection in Alzheimer’s Disease: A Neuropharmacological Review of Their Bioactive Constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef]
- Yassine, H.N.; Samieri, C.; Livingston, G.; Glass, K.; Wagner, M.; Tangney, C.; Plassman, B.L.; Ikram, M.A.; Voigt, R.M.; Gu, Y.; et al. Nutrition State of Science and Dementia Prevention: Recommendations of the Nutrition for Dementia Prevention Working Group. Lancet Healthy Longev. 2022, 3, e501–e512. [Google Scholar] [CrossRef]
- Hardy, D.; Higgins, G. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Levine, H. Alzheimer’s Disease and the Amyloid-β Peptide. J. Alzheimer’s Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; et al. Amyloid-β Protein Dimers Isolated Directly from Alzheimer’s Brains Impair Synaptic Plasticity and Memory. Nat. Med. 2008, 14, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Grothe, M.J.; Barthel, H.; Sepulcre, J.; Dyrba, M.; Sabri, O.; Teipel, S.J. In Vivo Staging of Regional Amyloid Deposition. Neurology 2017, 89, 2031–2038. [Google Scholar] [CrossRef] [Green Version]
- Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-Deposition in the Human Brain and Its Relevance for the Development of AD. Neurology 2002, 58, 1791–1800. [Google Scholar] [CrossRef]
- Díaz, G.; Lengele, L.; Sourdet, S.; Soriano, G.; de Souto Barreto, P. Nutrients and Amyloid β Status in the Brain: A Narrative Review. Ageing Res. Rev. 2022, 81, 101728. [Google Scholar] [CrossRef] [PubMed]
- Esselun, C.; Dieter, F.; Sus, N.; Frank, J.; Eckert, G.P. Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease. Nutrients 2022, 14, 1694. [Google Scholar] [CrossRef]
- Althobaiti, N.A.; Menaa, F.; Dalzell, J.J.; Albalawi, A.E.; Ismail, H.; Alghuthaymi, M.A.; Aldawsari, R.D.; Iqbal, H.; McAlinney, C.; Green, B.D. Ethnomedicinal Plants with Protective Effects against Beta-Amyloid Peptide (Aβ)1-42 Indicate Therapeutic Potential in a New In Vivo Model of Alzheimer’s Disease. Antioxidants 2022, 11, 1865. [Google Scholar] [CrossRef]
- Chauhan, N.; Wang, K.; Wegiel, J.; Malik, M. Walnut Extract Inhibits the Fibrillization of Amyloid Beta-Protein, and Also Defibrillizes Its Preformed Fibrils. Curr. Alzheimer Res. 2004, 1, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Amtul, Z.; Westaway, D.; Cechetto, D.F.; Rozmahel, R.F. Oleic Acid Ameliorates Amyloidosis in Cellular and Mouse Models of Alzheimer’s Disease. Brain Pathol. 2011, 21, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Yun, E.Y.; Lee, J.; Kim, J.Y.; Hwang, J.S.; Jeong, W.S.; Jun, M. Oleic Acid and Linoleic Acid from Tenebrio Molitor Larvae Inhibit BACE1 Activity in Vitro: Molecular Docking Studies. J. Med. Food 2014, 17, 284–289. [Google Scholar] [CrossRef]
- Ali, W.; Ikram, M.; Park, H.Y.; Jo, M.G.; Ullah, R.; Ahmad, S.; bin Abid, N.; Kim, M.O. Oral Administration of Alpha Linoleic Acid Rescues Aβ-Induced Glia-Mediated Neuroinflammation and Cognitive Dysfunction in C57BL/6N Mice. Cells 2020, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, F.; Shi, C. Substitution of Membrane Cholesterol with β-Sitosterol Promotes Nonamyloidogenic Cleavage of Endogenous Amyloid Precursor Protein. Neuroscience 2013, 247, 227–233. [Google Scholar] [CrossRef]
- Kim, E.J.; Yang, S.J. Nicotinamide Reduces Amyloid Precursor Protein and Presenilin 1 in Brain Tissues of Amyloid Beta-Tail Vein Injected Mice. Clin. Nutr. Res. 2017, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Yang, S.G.; Du, X.T.; Zhang, X.; Sun, X.X.; Zhao, M.; Sun, G.Y.; Liu, R.T. Ellagic Acid Promotes Aβ42 Fibrillization and Inhibits Aβ42-Induced Neurotoxicity. Biochem. Biophys. Res. Commun. 2009, 390, 1250–1254. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, H.; Zhang, W.; Liu, X.; Jiang, B.; Fei, H.; Sun, Z. Ellagic Acid Ameliorates Learning and Memory Impairment in APP/PS1 Transgenic Mice via Inhibition of β-Amyloid Production and Tau Hyperphosphorylation. Exp. Ther. Med. 2018, 16, 4951–4958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Dasmahapatra, A.K. Destabilization Potential of Phenolics on Aβ Fibrils: Mechanistic Insights from Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2020, 22, 19643–19658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Li, Y.B.; Zhao, R.P. Epigallocatechin Gallate Attenuates β-Amyloid Generation and Oxidative Stress Involvement of PPARγ in N2a/APP695 Cells. Neurochem. Res. 2017, 42, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Multifunction of Myricetin on Aβ: Neuroprotection via a Conformational Change of Aβ and Reduction of Aβ via the Interference of Secretases. J. Neurosci. Res. 2008, 86, 368–377. [Google Scholar] [CrossRef]
- Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent Anti-Amyloidogenic and Fibril-Destabilizing Effects of Polyphenols in Vitro: Implications for the Prevention and Therapeutics of Alzheimer’s Disease. J. Neurochem. 2003, 87, 172–181. [Google Scholar] [CrossRef]
- Chang, W.; Huang, D.; Lo, Y.M.; Tee, Q.; Kuo, P.; Wu, J.S.; Huang, W.; Shen, S. Protective Effect of Caffeic Acid against Alzheimer’s Disease Pathogenesis via Modulating Cerebral Insulin Signaling, β-Amyloid Accumulation, and Synaptic Plasticity in Hyperinsulinemic Rats. J. Agric. Food Chem. 2019, 67, 7684–7693. [Google Scholar] [CrossRef]
- Milà-Alomà, M.; Suárez-Calvet, M.; Molinuevo, J.L. Latest Advances in Cerebrospinal Fluid and Blood Biomarkers of Alzheimer’s Disease. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419888819. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Zetterberg, H. Fluid Biomarker-Based Molecular Phenotyping of Alzheimer’s Disease Patients in Research and Clinical Settings. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2019; Volume 168, pp. 3–23. ISBN 9780128178744. [Google Scholar]
- Lopes Alves, I.; Collij, L.E.; Altomare, D.; Frisoni, G.B.; Saint-Aubert, L.; Payoux, P.; Kivipelto, M.; Jessen, F.; Drzezga, A.; Leeuwis, A.; et al. Quantitative Amyloid PET in Alzheimer’s Disease: The AMYPAD Prognostic and Natural History Study. Alzheimer’s Dement. 2020, 16, 750–758. [Google Scholar] [CrossRef]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Neddens, J.; Temmel, M.; Flunkert, S.; Kerschbaumer, B.; Hoeller, C.; Loeffler, T.; Niederkofler, V.; Daum, G.; Attems, J.; Hutter-Paier, B. Phosphorylation of Different Tau Sites during Progression of Alzheimer’s Disease. Acta Neuropathol. Commun. 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mandelkow, E. Tau in Physiology and Pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Berron, D.; Vogel, J.W.; Insel, P.S.; Pereira, J.B.; Xie, L.; Wisse, L.E.M.; Yushkevich, P.A.; Palmqvist, S.; Mattsson-Carlgren, N.; Stomrud, E.; et al. Early Stages of Tau Pathology and Its Associations with Functional Connectivity, Atrophy and Memory. Brain 2021, 144, 2771–2783. [Google Scholar] [CrossRef]
- Desale, S.E.; Dubey, T.; Chinnathambi, S. α-Linolenic Acid Inhibits Tau Aggregation and Modulates Tau Conformation. Int. J. Biol/ Macromol. 2021, 166, 687–693. [Google Scholar] [CrossRef]
- Desale, S.E.; Chinnathambi, S. α-Linolenic Acid Induces Clearance of Tau Seeds via Actin-Remodeling in Microglia. Mol. Biomed. 2021, 2, 4. [Google Scholar] [CrossRef]
- Desale, S.E.; Chinnathambi, S. α–Linolenic Acid Modulates Phagocytosis and Endosomal Pathways of Extracellular Tau in Microglia. Cell Adhes. Migr. 2021, 15, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Sul, D.; Kim, H.S.; Lee, D.; Joo, S.S.; Hwang, K.W.; Park, S.Y. Protective Effect of Caffeic Acid against Beta-Amyloid-Induced Neurotoxicity by the Inhibition of Calcium Influx and Tau Phosphorylation. Life Sci. 2009, 84, 257–262. [Google Scholar] [CrossRef]
- Giraldo, E.; Lloret, A.; Fuchsberger, T.; Viña, J. Aβ and Tau Toxicities in Alzheimer’s Are Linked via Oxidative Stress-Induced P38 Activation: Protective Role of Vitamin E. Redox Biol. 2014, 2, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau Biomarkers in Alzheimer’s Disease: Towards Implementation in Clinical Practice and Trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef]
- Theodore, L.E.; Kellow, N.J.; Mcneil, E.A.; Close, E.O.; Coad, E.G.; Cardoso, B.R. Nut Consumption for Cognitive Performance: A Systematic Review. Adv. Nutr. 2021, 12, 777–792. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Qualified Health Claims: Letter of Enforcement Discretion–Nuts and Coronary Heart Disease; Docket No 02P-0505; FDA: Washington, DC, USA, 2003. Available online: Http://Wayback.Archive-It.Org/7993/20171114183724/Https://Www.Fda.Gov/Food/IngredientsPackagingLabeling/LabelingNutrition/Ucm072926.Htm (accessed on 11 February 2023).
- Food and Drug Administration (FDA). Qualified Health Claims: Letter of Enforcement Discretion Walnuts and Coronary Heart Disease; (Docket No. 02P-0292); FDA: Washington, DC, USA, 2004. Available online: http://Wayback.Archive-It.Org/7993/20171114183725/Https://Www.Fda.Gov/Food/IngredientsPackagingLabeling/LabelingNutrition/Ucm072910.Htm (accessed on 11 February 2023).
- Food and Drug Administration (FDA). Qualified Health Claims: Letter of Enforcement Discretion–Macadamia Nuts and Reduced Risk of Coronary Heart Disease; FDA: Washington, DC, USA, 2017. Available online: https://Www.Fda.Gov/Media/106201/Download (accessed on 11 February 2023).
Author, Year | Study Design (Source) | N | Age (Years) | Participant Characteristics | Neuro-Psychological Tests | Nut Dose/Day (Range) | FU (Years) | Outcome |
---|---|---|---|---|---|---|---|---|
Nurk, 2010 [38] | Cross-sectional (Hordaland Health Study) | 2031 | 70–74 | Men & women, general population | Complete battery | No consumption to high consumption | NA | No association |
Nooyens, 2011 [39] | Prospective (Doetinchem cohort) | 2613 | 43–70 | Men & women, general population | Tests of memory, information processing, cognitive flexibility—sum of test scores (global cognition) | Quintiles of consumption | 5 | Higher nut consumption associated with cognitive flexibility and global cognition at baseline and trend to delayed cognitive decline at follow-up. |
Valls-Pedret, 2012 [40] | Cross-sectional (PREDIMED study) | 447 | 55–80 | Men & women at high cardiovascular risk | Comprehensive battery | Total nuts (0–60) Walnuts 1 g (0–30) | NA | Walnuts, but not total nuts, associated with better working memory. |
Samieri, 2013 [41] | Prospective (Women’s Health Study) | 6174 | 65+ | Women | Comprehensive battery, including TICS | Quintiles of nut consumption within the Mediterranean diet | 4 | No association of nuts with cognitive changes |
O’Brien, 2014 [42] | Prospective (Nurses’ Health Study) | 15,467 | Mean 74 | Women from a selected cohort of nurses | TICS | From never/<1/month to ≥5 servings/week | 6 | Higher long-term total nut intake associated with better average cognitive status for all cognitive outcomes. |
Arab, 2015 [43] | Cross-sectional (NHANES) | 5562 and 2975 | 2 groups: 20–59 ≥60 | Men and women, general population | Various cognitive tests | Walnuts with high certainty/walnuts with other nuts | NA | Walnut consumption positively associated with cognitive function in the two groups. |
Dong, 2016 [44] | Cross-sectional | 894 | 50 to >80 | Men and women from a population cohort | MoCa test | Tertiles of consumption | NA | Higher nut consumption associated with delayed memory. Cognitively healthy adults consumed more nuts than those with MCI. |
De Amicis, 2018 [45] | Cross-sectional | 279 | >65 | Men and women attending Nutrition center | MMSE | Highest vs. lowest nut consumption within the Mediterranean diet | NA | OR = 0.30; 95% CI, 0.13–0.69 of low MMSE |
Li, 2019 [46] | Prospective | 4822 | >55 | China Health and Nutrition survey | TICS | Consumers of nuts (mainly peanuts) | 15 | Nuts >10 g/d: OR 0.60, 95% CI 0.43–0.84) of poor cognition |
Rabassa, 2020 [47] | Prospective | 119 | >65 | InChianti population study | MMSE | Consumers vs. non-consumers | 3 | OR: 0.78; 95% CI: 0.61–0.99 of low MMSE |
Tan, 2021 [48] | Cross-sectional (NHANES) | 1848 | 60+ | Men and women, general population | CERAD total, delayed recall, animal fluency and digit-symbol substitution test | 4 groups, from no consumers to consumers meeting recommendations (>30 g/d) | NA | Cognitive scores higher from moderate intake (15.1–30.0 g/d), same in high intake |
Jiang, 2021 [49] | Prospective | 16,737 | Mean 53,5 | Singapore Chinese Health Study | MMSE | Nuts <1 serv/mo, 1–3 serv/mo, 1 serv/wk, and =>2 serv/wk | 20 | 3 highest categories: 12% (CI 2–20%), 19% (CI 4–31%) and 21% (CI 2–36%) lower risk of cognitive impairment |
Bishop, 2021 [50] | Prospective | 3632 | 65+ | Health and Retirement & Health Care and Nutrition studies | TICS | None, low or moderate intake of walnuts | 4 | Any walnut consumption had greater scores at baseline. No association with cognitive changes. |
Chen, 2021 [51] | Cross-sectional | 819 | 70–90 | Sydney Memory and Ageing Study: | Comprehensive battery | Consumption of nuts and legumes | NA | Higher consumption related to global cognition (β = 0.117; CI: 0.052–0.181), visuospatial function (β = 0.105; CI: 0.047–0.163), and language (β = 0.113; CI: 0.038–0.189). |
Li, 2022 [52] | Prospective | 9028 | Mean 69 | Zhejiang Ageing and Health Cohort Study | MMSE (repeated) | None, <70 g/week, or =>70 g/week | 6 | Less cognitive impairment (RR = 0.83, 95% CI 0.75–0.91) for highest nut intake group |
Author, Year | Study Design (Source) | N | Age (Years) | Participant Characteristics | Neuro-Psychological Tests | Nut Dose/Day (Range) | FU | Outcome |
---|---|---|---|---|---|---|---|---|
Martinez- Lapiscina, 2013 [55] | Parallel (Sub-sample of PREDIMED study) | 522 | 55–80 | Men & women at high cardiovascular risk | MMSE and Clock Drawing Test (Administered once at the end of the study) | Mixed nuts, 30 g with MedDiet | 6.5 years | MedDiet + nuts: better global cognition compared to control diet. |
Valls-Pedret, 2015 [56] | Parallel (Sub-sample of PREDIMED study) | 334 | 55–80 | Men & women at high cardiovascular risk | Tests of memory, executive function, global cognition (Administered at baseline and end of study) | Mixed nuts, 30 g with MedDiet | 4.1 years | MedDiet + nuts: better memory and a tendency to improved executive function and global cognition compared to control diet. |
Barbour, 2017 [57] | Crossover | 61 | Mean 65 | Men and women with overweight/obesity | Tests of memory, executive function, and processing speed | High-oleic acid peanuts, 56–84 g | 12 weeks | Short-term memory and verbal fluency improved with the peanut diet compared to control diet. |
Dhillon, 2017 [58] | Parallel | 86 | Mean 31 | Men and women with overweight/obesity | Tests of memory and attention | Almonds, dry-roasted at 15% energy | 12 weeks | Cognition similarly improved with the almond and control diets. |
Sala-Vila, 2020 [59] | Parallel (WAHA study) | 708 | 63–79 | Cognitively healthy | Complete test battery | Walnuts at 15% energy | 2 years | No effect on cognitive scores in the whole cohort. |
Mustra Rakic, 2022 [60] | Parallel | 60 | 50–75 | Healthy adults | CANTAB | Almonds/day: 1.5 oz, 3 oz or 3.5 oz snacks | 6 months | No among-group changes in cognitive measures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, S.K.; Sala-Vila, A.; Julvez, J.; Sabaté, J.; Ros, E. Impact of Nut Consumption on Cognition across the Lifespan. Nutrients 2023, 15, 1000. https://doi.org/10.3390/nu15041000
Nishi SK, Sala-Vila A, Julvez J, Sabaté J, Ros E. Impact of Nut Consumption on Cognition across the Lifespan. Nutrients. 2023; 15(4):1000. https://doi.org/10.3390/nu15041000
Chicago/Turabian StyleNishi, Stephanie K., Aleix Sala-Vila, Jordi Julvez, Joan Sabaté, and Emilio Ros. 2023. "Impact of Nut Consumption on Cognition across the Lifespan" Nutrients 15, no. 4: 1000. https://doi.org/10.3390/nu15041000
APA StyleNishi, S. K., Sala-Vila, A., Julvez, J., Sabaté, J., & Ros, E. (2023). Impact of Nut Consumption on Cognition across the Lifespan. Nutrients, 15(4), 1000. https://doi.org/10.3390/nu15041000