Association of Chinese Visceral Adiposity Index and Carotid Atherosclerosis in Steelworkers: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Date Collection
2.3. Assessment of CAS
2.4. Assessment of CVAI
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Subjects
3.2. Analysis of Risk Factors for CAS among Steelworkers
3.3. The Relationship between CVAI and CAS among Steelworkers
3.4. Subgroup Analysis
3.5. Incremental Predictive Value of CVAI in Risk Assessment of CAS among Steelworkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Li, W.; Song, F.; Wang, L.; Fu, Q.; Cao, S.; Gan, Y.; Zhang, W.; Yue, W.; Yan, F.; et al. Carotid Atherosclerosis Detected by Ultrasonography: A National Cross-Sectional Study. J. Am. Heart Assoc. 2018, 7, e008701. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Du, Y.; Zhang, L.; Yu, H.; Jiao, X.; Lv, Q.; Li, F.; Wang, Y.; Sun, Q.; Hu, C.; et al. Increasing circulating ESM-1 and adhesion molecules are associated with earlystage atherosclerosis in OSA patients: A cross-sectional study. Sleep Med. 2022, 98, 114–120. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Martinez, E.; Martorell, J.; Riambau, V. Review of serum biomarkers in carotid atherosclerosis. J. Vasc. Surg. 2020, 71, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Rimmele, D.L.; Borof, K.; Jensen, M.; Behrendt, C.A.; Cheng, B.; Debus, E.S.; Gerloff, C.; Thomalla, G. Association Between Carotid Atherosclerosis and Atrial Fibrillation, Cardiac, and Renal Function. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 641–647. [Google Scholar] [CrossRef]
- Underhill, H.R.; Hatsukami, T.S.; Fayad, Z.A.; Fuster, V.; Yuan, C. MRI of carotid atherosclerosis: Clinical implications and future directions. Nat. Rev. Cardiol. 2010, 7, 165–173. [Google Scholar] [CrossRef]
- Hiuge-Shimizu, A.; Kishida, K.; Funahashi, T.; Ishizaka, Y.; Oka, R.; Okada, M.; Suzuki, S.; Takaya, N.; Nakagawa, T.; Fukui, T.; et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann. Med. 2010, 44, 82–92. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Shin, H.I.; Jung, S.H. Body Fat Distribution and Associated Risk of Cardiovascular Disease in Adults With Cerebral Palsy. Front. Neurol. 2021, 12, 733294. [Google Scholar] [CrossRef]
- Xia, M.F.; Chen, Y.; Lin, H.D.; Ma, H.; Li, X.-M.; Aleteng, Q.; Li, Q.; Wang, D.; Hu, Y.; Pan, B.-S.; et al. A indicator of visceral adipose dysfunction to evaluate metabolic health in adult Chinese. Sci. Rep. 2016, 6, 38214. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Zhou, X.; Liu, Y.; WanG, W.; Gao, Z.; Tang, X.; Yan, L.; Wan, Q.; Luo, Z.; et al. Chinese Visceral Adiposity Index Is More Closely Associated With Hypertension and Prehypertension Than Traditional Adiposity Indices in Chinese Population: Results From the REACTION Study. Front. Endocrinol. 2022, 13, 921997. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Qin, P.; Ping, Z.; Wang, C.; Peng, X.; Chen, H.; Zhao, D.; Xu, S.; Wang, L.; et al. The association between Chinese Visceral Adipose Index and coronary heart disease: A cohort study in China. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 550–559. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, L.; Cai, R.; Zhou, J.; Ding, W. Visceral adiposity index performed better than traditional adiposity indicators in predicting unhealthy metabolic phenotype among Chinese children and adolescents. Sci. Rep. 2021, 11, 23850. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Y.; Xiang, Q.; Fang, S.; Chen, Y.; Chen, C.; Zhang, W.; Zhang, H.; Xia, F.; Wang, N.; et al. Associations between abdominal obesity indices and diabetic complications: Chinese visceral adiposity index and neck circumference. Cardiovasc. Diabetol. 2020, 19, 118. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhang, L.; Wang, J.; Wang, H.D.; Li, X.M.; Yuan, J.X. Association between occupational stress and carotid atherosclerosis among the workers in a steel plant. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2020, 38, 262–268. [Google Scholar]
- Qin, Z.W.; Su, Y.J.; Wang, H.T.; Zhu, H.R.; Zhang, X.T.; Li, C.; Li, X.M.; Wang, Z.Y.; Yuan, J.X.; Fan, H.M.; et al. A case-control study on effect of occupational factor exposures on carotid atherosclerosis in steelworkers. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 1836–1842. [Google Scholar]
- Zhang, D.P.; Li, J.F.; Hu, C.L.; Huang, H. Prevalence and correlation factors of carotid atherosclerosis among the middle and old aged workers in an iron and steel corporation, Chongqing. Zhonghua Liu Xing Bing Xue Za Zhi 2009, 30, 322–325. [Google Scholar]
- Lee, T.L.; Hsuan, C.F.; Wu, C.C.; Hung, W.-C.; Tsai, I.-T.; Wei, C.-T.; Yu, T.-H.; Lu, I.-C.; Chung, F.-M.; Lee, Y.-J.; et al. Association between Triglyceride Glucose Index and Corrected QT Prolongation in Chinese Male Steelworkers. Int. J. Environ. Res. Public Health 2021, 18, 4020. [Google Scholar] [CrossRef]
- Zhou, H.D.; Wang, Y.J.; Zhang, M. Chinese consensus on diagnosis and treatment of head and neck Atherosclerosis. Chin. J. Neurol. 2017, 50, 572–578. [Google Scholar]
- Guidelines for Prevention and treatment of Hypertension in China (2018 revised Edition). Chin. J. Cardiovasc. 2019, 24, 24–56.
- Zhu, J.R.; Gao, R.L.; Zhao, L.; Wang, H. Guidelines for the prevention and treatment of dyslipidemia in Chinese adults (revised in 2016). Chin. J. Health Manag. 2017, 11, 7–28. [Google Scholar]
- Diabetic Branch of Chinese Medical Association. China guidelines for the Prevention and treatment of Type 2 Diabetes (2020 Edition). Int. J. Endocr. Metab. 2021, 41, 482–548. [Google Scholar]
- Lou, X.; He, Q. Validity and Reliability of the International Physical Activity Questionnaire in Chinese Hemodialysis Patients: A Multicenter Study in China. Med. Sci. Monit. 2019, 25, 9402–9408. [Google Scholar] [CrossRef]
- Fan, J.G.; Kim, S.U.; Wong, V.W. New trends on obesity and NAFLD in Asia. J. Hepatol. 2017, 67, 862–873. [Google Scholar] [CrossRef] [Green Version]
- Report on Nutrition and chronic Diseases of Chinese residents (2020). J. Nutr. 2020, 42, 521.
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Lemieux, I.; Després, J.P. Metabolic Syndrome: Past, Present and Future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef]
- Yan, B.; Yang, J.; Zhao, B.; Yanhua, W.; Ling, B.; Xiancang, M. Causal Effect of Visceral Adipose Tissue Accumulation on the Human Longevity: A Mendelian Randomization Study. Front. Endocrinol. 2021, 12, 722187. [Google Scholar] [CrossRef]
- Qiao, T.; Luo, T.; Pei, H.; Yimingniyazi, B.; Aili, D.; Aimudula, A.; Zhao, H.; Zhang, H.; Dai, J.; Wang, D. Association between abdominal obesity indices and risk of cardiovascular events in Chinese populations with type 2 diabetes: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 225. [Google Scholar] [CrossRef]
- Cai, X.; Li, N.; Hu, J.; Wen, W.; Yao, X.; Zhu, Q.; Heizhati, M.; Hong, J.; Sun, L.; Tuerxun, G.; et al. Nonlinear Relationship Between Chinese Visceral Adiposity Index and New-Onset Myocardial Infarction in Patients with Hypertension and Obstructive Sleep Apnoea: Insights from a Cohort Study. J. Inflamm. Res. 2022, 15, 687–700. [Google Scholar] [CrossRef]
- Shao, M.J.; Luo, J.Y.; Shi, J.; Liu, F.; Shan, C.-F.; Luo, F.; Yu, X.-L.; Zhao, Q.; Tian, T.; Li, X.-M.; et al. Association of Visceral Obesity-Related Indices With Coronary Collateralization in Patients With Chronic Total Occlusion. Front. Cardiovasc. Med. 2021, 8, 742855. [Google Scholar] [CrossRef]
- Rabanipour, N.; Roohafza, H.; Feizi, A.; Amani Tirani, S.; Sarrafzadegan, N. Association between shift work and obesity in a large sample of Iranian steel industry workers. Arch. Ind. Hyg. Toxicol. 2019, 70, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Akter, S.; Hu, H.; Kashino, I.; Kuwahara, K.; Okazaki, H.; Sasaki, N.; Ogasawara, T.; Eguchi, M.; Kochi, T.; et al. Five-year cumulative incidence of overweight and obesity, and longitudinal change in body mass index in Japanese workers: The Japan Epidemiology Collaboration on Occupational Health Study. J. Occup. Health 2020, 62, 12095. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.Y.; Wang, Z.Y.; Fan, H.M.; Che, C.L.; Lu, Y.; Cong, L.X.; Gao, X.J.; Liu, Y.J.; Yuan, J.X.; Li, X.M.; et al. Relationship between shift work and overweight/obesity in male steelworkers. Zhonghua Liu Xing Bing Xue Za Zhi 2016, 37, 1468–1472. [Google Scholar]
- Neeland, I.J.; Hughes, C.; Ayers, C.R.; Malloy, C.R.; Jin, E.S. Effects of visceral adiposity on glycerol pathways in gluconeogenesis. Metabolism 2017, 67, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Haberka, M.; Skilton, M.; Biedroń, M.; Szóstak-Janiak, K.; Partyka, M.; Matla, M.; Gąsior, Z. Obesity, visceral adiposity and carotid atherosclerosis. Diabetes Its Complicat. 2019, 33, 302–306. [Google Scholar]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Samargandy, S.; Matthews, K.A.; Brooks, M.M.; Barinas-Mitchel, E.; Magnani, J.W.; Janssen, I.; Kazlauskaite, R.; El Khoudary, S.R. Abdominal visceral adipose tissue over the menopause transition and carotid atherosclerosis: The SWAN heart study. Menopause 2021, 28, 626–633. [Google Scholar] [CrossRef]
- Li, B.; Lai, X.; Yan, C.; Jia 1, X.; Li, Y. The associations between neutrophil-to-lymphocyte ratio and the Chinese Visceral Adiposity Index, and carotid atherosclerosis and atherosclerotic cardiovascular disease risk. Exp. Gerontol. 2020, 139, 111019. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, Y.; Qin, P.; Wang, C.; Peng, X.; Chen, H.; Zhao, D.; Xu, S.; Wang, L.; Zhao, P.; et al. Association of Chinese Visceral Adiposity Index and Its Dynamic Change With Risk of Carotid Plaque in a Large Cohort in China. J. Am. Heart Assoc. 2022, 11, e022633. [Google Scholar] [CrossRef]
- Chaput, J.-P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P., Jr. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef]
- Cai, Y.; Zijlema, W.L.; Sørgjerd, E.P.; Doiron, D.; de Hoogh, K.; Hodgson, S.; Wolffenbuttel, B.; Gulliver, J.; Hansell, A.L.; Nieuwenhuijsen, M.; et al. Impact of road traffic noise on obesity measures: Observational study of three European cohorts. Environ. Res. 2020, 191, 110013. [Google Scholar] [CrossRef]
- Isasi, C.R.; Parrinello, C.M.; Jung, M.M.; Carnethon, M.R.; Birnbaum-Weitzman, O.; Espinoza, R.A.; Penedo, F.J.; Perreira, K.M.; Schneiderman, N.; Sotres-Alvarez, D.; et al. Psychosocial stress is associated with obesity and diet quality in Hispanic/Latino adults. Ann. Epidemiol. 2015, 25, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Zoto, E.; Cenko, F.; Doci, P.; Rizza, S. Effect of night shift work on risk of diabetes in healthy nurses in Albania. Acta Diabetol. 2019, 56, 811–813. [Google Scholar] [CrossRef]
- Bacci, S.; Prudente, S.; Copetti, M.; Spoto, B.; Rizza, S.; Baratta, R.; Di Pietro, N.; Morini, E.; Di Paola, R.; Testa, A.; et al. Joint effect of insulin signaling genes on cardiovascular events and on whole body and endothelial insulin resistance. Atherosclerosis 2013, 226, 140–145. [Google Scholar] [CrossRef] [Green Version]
Variables | CVAI | p Value | |||
---|---|---|---|---|---|
Quartile 1 (n = 1019) | Quartile 2 (n = 1019) | Quartile 3 (n = 1019) | Quartile 4 (n = 1018) | ||
CVAI range | <78.36 | 78.36~106.42 | 106.42~134.01 | >134.01 | |
Age (years)a | 47.9 ± 8.2 | 49.1 ± 8.0 | 49.7 ± 7.7 | 50.2 ± 7.8 | <0.001 |
Gender: Male (%) | 807 (79.2) | 934 (91.7) | 973 (95.5) | 1006 (98.8) | <0.001 |
Family history of CAS: yes (%) | 16 (1.6) | 25 (2.5) | 28 (2.7) | 37 (3.6) | <0.001 |
Education status (%) | 0.004 | ||||
Low | 199 (19.5) | 221 (22.7) | 243 (23.8) | 262 (25.7) | |
Medium | 559 (54.9) | 567 (55.6) | 530 (52.0) | 553 (54.3) | |
High | 261 (25.6) | 231 (22.7) | 246 (24.2) | 203 (20.0) | |
Marital status (%) | <0.001 | ||||
Unmarried | 60 (5.9) | 37 (3.6) | 25 (2.5) | 27 (2.7) | |
Married | 923 (90.6) | 955 (93.7) | 969 (95.1) | 962 (94.5) | |
Other | 36 (3.5) | 27 (2.6) | 25 (2.5) | 29 (2.8) | |
Income status (%) | 0.256 | ||||
<1000 yuan | 91 (8.9) | 102 (10.0) | 72 (7.1) | 98 (9.8) | |
1000 ~3000 yuan | 817 (80.2) | 811 (79.6) | 847 (83.1) | 822 (80.7) | |
≥3000 yuan | 111 (10.9) | 106 (10.4) | 100 (9.8) | 98 (9.6) | |
Smoking status (%) | <0.001 | ||||
Never | 544 (53.4) | 475 (46.6) | 378 (37.1) | 353 (34.7) | |
Once | 39 (3.8) | 58 (5.7) | 73 (7.2) | 76 (7.5) | |
Now | 436 (42.8) | 486 (47.7) | 568 (55.7) | 589 (57.9) | |
Drinking status (%) | <0.001 | ||||
Never | 687 (67.4) | 605 (59.4) | 553 (54.3) | 551 (54.1) | |
Once | 17 (1.7) | 25 (2.5) | 32 (3.1) | 40 (3.9) | |
Now | 315 (30.9) | 389 (38.2) | 434 (42.6) | 427 (41.9) | |
Physical exercise (%) | 0.065 | ||||
Mild | 38 (3.7) | 54 (5.3) | 63 (6.2) | 56 (5.5) | |
Moderate | 88 (8.6) | 89 (8.7) | 99 (9.7) | 113 (11.1) | |
Severe | 893 (87.6) | 876 (86.0) | 857 (84.1) | 849 (83.4) | |
Diet (%) | 0.001 | ||||
DASH score < 25 | 265 (26.0) | 313 (30.7) | 308 (30.2) | 348 (34.2) | |
DASH score ≥ 25 | 754 (74.0) | 706 (69.3) | 711 (69.8) | 670 (65.8) | |
High temperature Exposure: yes (%) | 415 (40.7) | 498 (48.9) | 501 (49.2) | 572 (56.2) | <0.001 |
Noise exposure: yes (%) | 454 (44.6) | 463 (45.4) | 471 (46.2) | 473 (46.5) | 0.821 |
Shift status (%) | 0.196 | ||||
Never | 203 (19.9) | 181 (17.8) | 193 (18.9) | 159 (15.6) | |
Once | 201 (19.7) | 191 (18.7) | 184 (18.1) | 194 (19.1) | |
Now | 615 (60.4) | 647 (63.5) | 642 (63.0) | 665 (65.3) | |
Hypertension: yes (%) | 161 (15.8) | 241 (23.7) | 335 (32.9) | 495 (48.6) | <0.001 |
Diabetes: Yes (%) | 39 (3.8) | 111 (10.9) | 163 (16.0) | 193 (19.0) | <0.001 |
Dyslipidemia: yes (%) | 176 (17.3) | 311 (30.5) | 428 (42.0) | 561 (55.1) | <0.001 |
CAS: yes (%) | 111 (10.9) | 189 (18.5) | 311 (30.5) | 446 (43.8) | <0.001 |
BMI (kg/m2)a | 22.8 ± 2.4 | 24.9 ± 2.3 | 26.4 ± 2.5 | 29.1 ± 3.6 | <0.010 |
WC (cm)a | 78.3 ± 5.4 | 86.6 ± 3.5 | 92.0 ± 3.3 | 101.2 ± 5.9 | <0.001 |
HDL-C (mmol/L)a | 1.50 ± 0.4 | 1.3 ± 0.3 | 1.2 ± 0.3 | 1.1 ± 0.2 | <0.001 |
TG (mmol/L)b | 0.88 (0.66–1.21) | 1.18 (0.89–1.67) | 1.52 (1.08–2.15) | 1.85 (1.29–2.75) | <0.001 |
LDL-C (mmol/L)a | 3.1 ± 0.8 | 3.3 ± 0.9 | 3.3 ± 0.9 | 3.3 ± 0.9 | 0.179 |
TC (mmol/L)a | 4.9 ± 0.9 | 5.1 ± 1.0 | 5.2 ± 1.0 | 5.3 ± 1.0 | 0.423 |
FPG (mmol/L)b | 5.6 (5.3–5.9) | 5.8 (5.4–6.2) | 5.9 (5.5–6.4) | 6.0 (5.6–6.6) | <0.001 |
SBP (mmHg)a | 124.62 ± 11.9 | 127.4 ± 12.5 | 129.3 ± 13.2 | 134.7 ± 14.9 | <0.001 |
DBP (mmHg)a | 80.4 ± 7.6 | 82.4 ± 7.8 | 83.5 ± 8.4 | 85.4 ± 9.3 | <0.001 |
UA (μmol/L)a | 346.4 ± 88.7 | 373.5 ± 87.7 | 397.1 ± 89.8 | 416.8 ± 92.2 | <0.001 |
Hcy (μmol/L)b | 11.5 (9.6–15.7) | 12.1 (10.2–16.9) | 12.4 (10.1–17.0) | 12.4 (10.5–17.1) | <0.001 |
hs-CRP (mg/L)b | 0.00 (0.00–0.02) | 0.01 (0.00–0.05) | 0.02 (0.00–0.07) | 0.04 (0.01–0.13) | <0.001 |
WBC (109/L)a | 6.3 ± 1.6 | 6.5 ± 1.6 | 6.9 ± 1.8 | 7.1 ± 1.7 | <0.001 |
Variables | β | SE | Wald χ2 | OR (95%CI) | p Value |
---|---|---|---|---|---|
Age | 0.100 | 0.006 | 295.063 | 1.105 (1.092–1.117) | <0.001 |
Gender | |||||
Female | 1 | ||||
Male | 1.147 | 0.176 | 42.648 | 3.147 (2.231–4.440) | <0.001 |
Family history of CAS | |||||
No | 1 | ||||
Yes | 1.268 | 0.220 | 33.339 | 3.555 (2.311–5.467) | <0.001 |
Education status | |||||
Low | 1 | ||||
Medium | −0.264 | 0.084 | 9.858 | 0.768 (0.651–0.906) | 0.002 |
High | −1.243 | 0.120 | 107.946 | 0.289 (0.228–0.365) | <0.001 |
Marital status | |||||
Unmarried | 1 | ||||
Married | 0.781 | 0.238 | 10.754 | 2.185 (1.369–3.485) | <0.001 |
Other | 0.787 | 0.315 | 6.239 | 2.197 (1.185–4.075) | 0.012 |
Income status | |||||
<1000 yuan | 1 | ||||
1000 ~3000 yuan | −0.210 | 0.121 | 3.024 | 0.810 (0.639–1.027) | 0.082 |
≥3000 yuan | −0.480 | 0.166 | 8.379 | 0.619 (0.447–0.857) | 0.004 |
Smoking status | |||||
Never | 1 | ||||
Once | 0.934 | 0.144 | 42.022 | 2.544 (1.918–3.373) | <0.001 |
Now | 0.530 | 0.077 | 47.533 | 1.698 (1.461–1.975) | <0.001 |
Drinking status | |||||
Never | 1 | ||||
Once | 1.125 | 0.194 | 33.599 | 3.018 (2.106–4.508) | <0.001 |
Now | 0.441 | 0.074 | 35.758 | 1.555 (1.345–1.797) | <0.001 |
Physical exercise | |||||
Mild | 1 | ||||
Moderate | 0.050 | 0.173 | 0.084 | 1.051 (0.749–1.476) | 0.772 |
Severe | −0.869 | 0.145 | 35.765 | 0.419 (0.315–0.558) | <0.001 |
Diet status | |||||
DASH score < 25 | 1 | ||||
DASH score ≥ 25 | −0.190 | 0.072 | 6.956 | 0.827 (0.719–0.952) | 0.008 |
Noise exposure | |||||
No | 1 | ||||
Yes | 0.150 | 0.072 | 4.411 | 1.162 (1.01–1.3370) | 0.036 |
High temperature exposure | |||||
No | 0.420 | 0.072 | 34.048 | 1 | |
Yes | 1.522 (1.322–1.753) | <0.001 | |||
Shift status | |||||
Never | 1 | ||||
Once | 0.266 | 0.121 | 4.846 | 1.304 (1.030–1.653) | 0.028 |
Now | 0.271 | 0.100 | 7.403 | 1.311 (1.079–1.594) | 0.007 |
Hypertension | |||||
No | 1 | ||||
Yes | 1.177 | 0.075 | 245.829 | 3.244 (2.8–3.758) | <0.001 |
Diabetes | |||||
No | 1 | ||||
Yes | 0.668 | 0.099 | 45.083 | 1.95 (1.604–2.369) | <0.001 |
Dyslipidemia | |||||
No | 1 | ||||
Yes | 0.588 | 0.073 | 65.061 | 1.800 (1.560–2.076) | <0.001 |
CVAI | 0.016 | 0.001 | 288.446 | 1.017 (1.015–1.019) | <0.001 |
BMI (kg/m2) | 0.099 | 0.010 | 95.261 | 1.104 (1.082–1.126) | <0.001 |
WC (cm) | 0.061 | 0.004 | 222.768 | 1.063 (1.054–1.071) | <0.001 |
UA (μ mol/L) | 0.001 | 0.001 | 7.214 | 1.001 (1.000–1.002) | <0.001 |
Hcy (μ mol/L) | 0.008 | 0.003 | 9.107 | 1.008 (1.003–1.008) | 0.003 |
hs-CRP (mg/L) | 0.132 | 0.08 | 2.694 | 1.141 (0.975–1.335) | 0.101 |
WBC (109/L) | 0.118 | 0.020 | 33.492 | 1.125 (1.018–1.171) | <0.001 |
Subgroup | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
---|---|---|---|---|---|---|---|
OR | OR (95%CI) | p Value | OR (95%CI) | p Value | OR (95%CI) | p Value | |
Age | |||||||
<50 | Ref. | 1.869 (1.162–3.006) | 0.010 | 2.360 (1.459–3.818) | <0.001 | 4.072 (2.520–6.580) | <0.001 |
≥50 | Ref. | 1.688 (1.213–2.294) | 0.002 | 2.808 (2.057–3.832) | <0.001 | 4.342 (3.163–5.962) | <0.001 |
Sex | |||||||
Male | Ref. | 1.615 (1.225–2.129) | 0.001 | 2.508 (1.916–3.283) | <0.001 | 3.938 (3.005–5.161) | <0.001 |
Female | Ref. | 2.377 (0.897–6.304) | 0.082 | 4.434 (1.487–13.226) | 0.008 | 5.173 (0.908–29.481) | 0.064 |
Hypertension | |||||||
Yes | Ref. | 1.715 (1.042–2.821) | 0.034 | 2.655 (1.648–4.278) | <0.001 | 3.716 (2.324–5.941) | <0.001 |
No | Ref. | 1.651 (1.204–2.265) | 0.002 | 2.482 (1.809–3.406) | <0.001 | 4.368 (3.156–6.044) | <0.001 |
Diabetes | |||||||
Yes | Ref. | 2.344 (0.920–5.974) | 0.074 | 2.779 (1.118–6.911) | 0.028 | 4.356 (1.746–10.867) | <0.001 |
No | Ref. | 1.641 (1.239–2.174) | 0.001 | 2.587 (1.961–3.414) | <0.001 | 4.183 (3.158–5.541) | <0.001 |
Dyslipidemia | |||||||
Yes | Ref. | 1.633 (0.972–2.745) | 0.064 | 2.523 (1.544–4.123) | <0.001 | 3.856 (2.375–6.262) | <0.001 |
No | Ref. | 1.742 (1.275–2.381) | 0.001 | 2.661 (1.939–3.650) | <0.001 | 4.203 (3.027–5.836) | <0.001 |
High temperature exposure | |||||||
Yes | Ref. | 1.813 (1.235–2.663) | 0.002 | 2.780 (1.896–4.076) | <0.001 | 4.657 (3.187–6.806) | <0.001 |
No | Ref. | 1.608 (1.112–2.326) | 0.040 | 2.495 (1.744–3.571) | <0.001 | 3.566 (2.453–5.184) | <0.001 |
Noise exposure | |||||||
Yes | Ref. | 1.846 (1.263–2.697) | 0.002 | 2.378 (1.631–3.466) | <0.001 | 3.626 (2.477–5.307) | <0.001 |
No | Ref. | 1.639 (1.128–2.381) | 0.010 | 2.921 (2.029–4.205) | <0.001 | 4.554 (3.140–6.603) | <0.001 |
Shift status | |||||||
Yes | Ref. | 1.527 (1.102–2.117) | 0.011 | 2.180 (1.577–3.013) | <0.001 | 3.673 (2.658–5.076) | <0.001 |
No | Ref. | 2.068 (1.307–3.272) | 0.002 | 3.611 (2.310–5.643) | <0.001 | 4.974 (3.125–7.916) | <0.001 |
Smoking | |||||||
Yes | Ref. | 1.868 (1.284–2.719) | 0.001 | 2.805 (1.953–4.031) | <0.001 | 4.607 (3.194–6.645) | <0.001 |
No | Ref. | 1.527 (1.049–2.222) | 0.027 | 2.479 (1.698–3.619) | <0.001 | 3.578 (2.432–5.263) | <0.001 |
Drinking | |||||||
Yes | Ref. | 1.947 (1.258–3.015) | 0.003 | 2.867 (1.873–4.387) | <0.001 | 5.880 (3.826–9.037) | <0.001 |
No | Ref. | 1.552 (1.109–2.171) | 0.010 | 2.476 (1.776–3.454) | <0.001 | 3.110 (2.213–4.371) | <0.001 |
Model | C-Statistic (95%CI) | p-Value | IDI (95%CI) | p-Value | NRI (95%CI) | p-Value |
---|---|---|---|---|---|---|
Basic model | 0.775 (0.759–0.791) | Ref. | Ref. | Ref. | ||
+CVAI | 0.804 (0.789–0.819) | <0.001 | 0.0313 (0.0251–0.0375) | <0.001 | 0.0714 (0.0366–0.1062) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Si, Z.; Wang, H.; Meng, R.; Lu, H.; Zhao, Z.; Hu, J.; Wang, H.; Chen, J.; Zheng, Y.; et al. Association of Chinese Visceral Adiposity Index and Carotid Atherosclerosis in Steelworkers: A Cross-Sectional Study. Nutrients 2023, 15, 1023. https://doi.org/10.3390/nu15041023
Wang X, Si Z, Wang H, Meng R, Lu H, Zhao Z, Hu J, Wang H, Chen J, Zheng Y, et al. Association of Chinese Visceral Adiposity Index and Carotid Atherosclerosis in Steelworkers: A Cross-Sectional Study. Nutrients. 2023; 15(4):1023. https://doi.org/10.3390/nu15041023
Chicago/Turabian StyleWang, Xuelin, Zhikang Si, Hui Wang, Rui Meng, Haipeng Lu, Zekun Zhao, Jiaqi Hu, Huan Wang, Jiaqi Chen, Yizhan Zheng, and et al. 2023. "Association of Chinese Visceral Adiposity Index and Carotid Atherosclerosis in Steelworkers: A Cross-Sectional Study" Nutrients 15, no. 4: 1023. https://doi.org/10.3390/nu15041023
APA StyleWang, X., Si, Z., Wang, H., Meng, R., Lu, H., Zhao, Z., Hu, J., Wang, H., Chen, J., Zheng, Y., Zheng, Z., Chen, Y., Yang, Y., Li, X., Xue, L., Sun, J., & Wu, J. (2023). Association of Chinese Visceral Adiposity Index and Carotid Atherosclerosis in Steelworkers: A Cross-Sectional Study. Nutrients, 15(4), 1023. https://doi.org/10.3390/nu15041023