Association of Thoracic Skeletal Muscle Index with Clinical Outcome and Response to Nutritional Interventions in Patients at Risk of Malnutrition—Secondary Analysis of a Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Population
2.3. Nutritional Procedures during the Trial
2.4. Image Review and Evaluation
2.5. Quantification of Muscle Mass
2.6. Clinical Outcomes
2.7. Statistical Analyses
3. Results
3.1. Patient Population
3.2. Association of Low SMI and Clinical Markers
3.3. Association of Low SMI and Clinical Outcomes
3.4. Association of Low SMI and Response to Nutritional Support
4. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cao, L.; Cao, T.; Yang, J.; Gong, J.; Zhu, W.; Li, N.; Li, J. Prevalence of Sarcopenia and Its Impact on Postoperative Outcome in Patients With Crohn’s Disease Undergoing Bowel Resection. J. Parenter. Enter. Nutr. 2017, 41, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Kim, T.M.; Lee, M.; Kim, H.S.; Chung, H.H.; Cho, J.Y.; Song, Y.S. Impact of CT-Determined Sarcopenia and Body Composition on Survival Outcome in Patients with Advanced-Stage High-Grade Serous Ovarian Carcinoma. Cancers 2020, 12, 559. [Google Scholar] [CrossRef]
- Montano-Loza, A.J. Clinical relevance of sarcopenia in patients with cirrhosis. World J. Gastroenterol. 2014, 20, 8061–8071. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Nemec, U.; Heidinger, B.; Sokas, C.; Chu, L.; Eisenberg, R.L. Diagnosing Sarcopenia on Thoracic Computed Tomography: Quantitative Assessment of Skeletal Muscle Mass in Patients Undergoing Transcatheter Aortic Valve Replacement. Acad. Radiol. 2017, 24, 1154–1161. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Wang, S.-L.; Zhuang, C.-L.; Huang, D.-D.; Pang, W.-Y.; Lou, N.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia Adversely Impacts Postoperative Clinical Outcomes Following Gastrectomy in Patients with Gastric Cancer: A Prospective Study. Ann. Surg. Oncol. 2016, 23, 556–564. [Google Scholar] [CrossRef]
- Shachar, S.S.; Deal, A.M.; Weinberg, M.; Nyrop, K.A.; Williams, G.R.; Nishijima, T.F.; Benbow, J.M.; Muss, H.B. Skeletal Muscle Measures as Predictors of Toxicity, Hospitalization, and Survival in Patients with Metastatic Breast Cancer Receiving Taxane-Based Chemotherapy. Clin. Cancer Res. 2017, 23, 658–665. [Google Scholar] [CrossRef]
- Ryan, A.M.; Prado, C.M.; Sullivan, E.S.; Power, D.G.; Daly, L.E. Effects of weight loss and sarcopenia on response to chemotherapy, quality of life, and survival. Nutrition 2019, 67–68, 110539. [Google Scholar] [CrossRef]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef]
- Olson, S.L.; Panthofer, A.M.; Harris, D.J.; Jordan, W.D.; Farber, M.A.; Cambria, R.P.; Matsumura, J.S. CT-Derived Pretreatment Thoracic Sarcopenia Is Associated with Late Mortality after Thoracic Endovascular Aortic Repair. Ann. Vasc. Surg. 2020, 66, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Panthofer, A.; Olson, S.L.; Harris, D.G.; Matsumura, J.S. Derivation and validation of thoracic sarcopenia assessment in patients undergoing thoracic endovascular aortic repair. J. Vasc. Surg. 2019, 69, 1379–1386. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Hersberger, L.; Bargetzi, L.; Bargetzi, A.; Tribolet, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; et al. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: Secondary analysis of a prospective randomised trial. Clin. Nutr. 2020, 39, 2720–2729. [Google Scholar] [CrossRef] [PubMed]
- Bounoure, L.; Gomes, F.; Stanga, Z.; Keller, U.; Meier, R.; Ballmer, P.; Fehr, R.; Mueller, B.; Genton, L.; Bertrand, P.C.; et al. Detection and treatment of medical inpatients with or at-risk of malnutrition: Suggested procedures based on validated guidelines. Nutrition 2016, 32, 790–798. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Hildebrandt, L. Comparison of formulaic equations to determine energy expenditure in the critically ill patient. Nutrition 2003, 19, 233–239. [Google Scholar] [CrossRef]
- Genton, L.; Pichard, C. Protein catabolism and requirements in severe illness. Int. J. Vitam. Nutr. Res. 2011, 81, 143–152. [Google Scholar] [CrossRef]
- Milne, A.C.; Potter, J.; Vivanti, A.; Avenell, A. Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst. Rev. 2009, 2009, CD003288. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.M.; Roberts, M.A.; McColl, J.H.; Reilly, J.J. Protein energy supplements in unwell elderly patients—A randomized controlled trial. J. Parenter. Enter. Nutr. 2001, 25, 323–329. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef]
- Jensen, G.L.; Cederholm, T.; Correia, M.I.T.; Fukushima, R.; Higashiguchi, T.; Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.; Crivelli, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. J. Parenter. Enter. Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef]
- Hiura, G.; Lebwohl, B.; Seres, D.S. Malnutrition Diagnosis in Critically Ill Patients Using 2012 Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition Standardized Diagnostic Characteristics Is Associated With Longer Hospital and Intensive Care Unit Length of Stay and Increased In-Hospital Mortality. J. Parenter. Enter. Nutr. 2020, 44, 256–264. [Google Scholar]
- Kaegi-Braun, N.; Boesiger, F.; Tribolet, P.; Gomes, F.; Kutz, A.; Hoess, C.; Pavlicek, V.; Bilz, S.; Sigrist, S.; Brändle, M.; et al. Validation of modified GLIM criteria to predict adverse clinical outcome and response to nutritional treatment: A secondary analysis of a randomized clinical trial. Clin. Nutr. 2022, 41, 795–804. [Google Scholar] [CrossRef]
- Kaegi-Braun, N.; Tribolet, P.; Baumgartner, A.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Hoess, C.; et al. Value of handgrip strength to predict clinical outcomes and therapeutic response in malnourished medical inpatients: Secondary analysis of a randomized controlled trial. Am. J. Clin. Nutr. 2021, 114, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Harris, K.; Roche, C.; Dhillon, S.; Battoo, A.; Demmy, T.; Nwogu, C.E.; Dexter, E.U.; Hennon, M.; Picone, A.; et al. Sarcopenia is a predictor of outcomes after lobectomy. J. Thorac. Dis. 2018, 10, 432–440. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Fuseya, Y.; Hasegawa, K.; Uemasu, K.; Sato, A.; Oguma, T.; Hirai, T.; Mishima, M.; Muro, S. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis. Ann. Am. Thorac. Soc. 2016, 13, 334–341. [Google Scholar] [CrossRef]
- Baumgartner, A.; Olpe, T.; Griot, S.; Mentil, N.; Staub, N.; Burn, F.; Schindera, S.; Kaegi-Braun, N.; Tribolet, P.; Hoess, C.; et al. Association of CT-based diagnosis of sarcopenia with prognosis and treatment response in patients at risk of malnutrition—A secondary analysis of the Effect of early nutritional support on Frailty, Functional Outcomes, and Recovery of malnourished medical inpatients Trial (EFFORT) trial. Clin Nutr. 2023, 42, 199–207. [Google Scholar]
Characteristic | Overall | High SMI | Low SMI | p Value |
---|---|---|---|---|
(n = 663) | (n = 496) | (n = 167) | ||
Socio-demographics | ||||
Age, mean (SD) | 70.5 (13.3) | 70.4 (13.3) | 70.9 (13.6) | 0.70 |
Biological sex—Male | 369 (55.7%) | 276 (55.6%) | 93 (55.7%) | 0.99 |
Nutritional history | ||||
BMI (kg/m2), mean (SD) | 25.2 (5.0) | 26.3 (4.9) | 21.7 (3.4) | <0.001 |
Body weight (kg), mean (SD) | 72.3 (16.3) | 75.8 (16.3) | 62.3 (11.2) | <0.001 |
NRS, mean (SD) | 4.08 (0.89) | 4.02 (0.88) | 4.25 (0.90) | 0.003 |
NRS 2002 score = 3 | 203 (30.6%) | 162 (32.7%) | 41 (24.6%) | 0.012 |
NRS 2002 score = 4 | 242 (36.5%) | 188 (37.9%) | 54 (32.3%) | |
NRS 2002 score = 5 | 182 (27.5%) | 121 (24.4%) | 61 (36.5%) | |
NRS 2002 score = 6 | 36 (5.4%) | 25 (5.0%) | 11 (6.6%) | |
Weight loss | 0.39 | |||
≤5% in 3 months | 321 (48.4%) | 241 (48.6%) | 80 (47.9%) | |
>5% in 3 months | 88 (13.3%) | 63 (12.7%) | 25 (15.0%) | |
>5% in 2 months | 95 (14.3%) | 77 (15.5%) | 18 (10.8%) | |
>5% in 1 month | 159 (24.0%) | 115 (23.2%) | 44 (26.3%) | |
Loss of appetite within the last 30 days | 0.71 | |||
No | 78 (11.8%) | 57 (11.5%) | 21 (12.6%) | |
Yes | 585 (88.2%) | 439 (88.5%) | 146 (87.4%) | |
Food intake of normal requirement preceding week—no (%) | 0.10 | |||
>75% | 64 (9.7%) | 48 (9.7%) | 16 (9.6%) | |
50–75% | 212 (32.0%) | 163 (32.9%) | 49 (29.3%) | |
25–50% | 277 (41.8%) | 213 (42.9%) | 64 (38.3%) | |
<25% | 110 (16.6%) | 72 (14.5%) | 38 (22.8%) | |
Severity of illness—no (%) | 0.71 | |||
very mild | 12 (1.8%) | 10 (2.0%) | 2 (1.2%) | |
mild | 386 (58.2%) | 286 (57.7%) | 100 (59.9%) | |
moderate | 257 (38.8%) | 195 (39.3%) | 62 (37.1%) | |
severe | 8 (1.2%) | 5 (1.0%) | 3 (1.8%) | |
CRP mean (SD) | 8.24 (9.12) | 8.14 (8.93) | 8.54 (9.68) | 0.63 |
Albumin mean (SD) | 29.61 (6.63) | 29.78 (6.37) | 29.16 (7.32) | 0.36 |
Muscle mass | ||||
T12 Skeletal Muscle Index in males in cm2/m2; mean (SD) | 22.44 (5.79) | 24.70 (4.85) | 15.73 (1.72) | <0.001 |
T12 Skeletal Muscle Index in females cm2/m2; mean (SD) | 19.61 (5.51) | 21.65 (4.82) | 13.53 (1.45) | <0.001 |
Handgrip strength mean (SD) | 25.2 (11.8) | 26.1 (12.4) | 22.6 (9.6) | 0.002 |
Main admission diagnosis, n (%) | ||||
Infection | 192 (29.0%) | 146 (29.4%) | 46 (27.5%) | 0.64 |
Oncologic disease | 215 (32.4%) | 156 (31.5%) | 59 (35.3%) | 0.35 |
Cardiovascular disease | 38 (5.7%) | 30 (6.0%) | 8 (4.8%) | 0.55 |
Frailty | 59 (8.9%) | 42 (8.5%) | 17 (10.2%) | 0.50 |
Lung disease | 40 (6.0%) | 27 (5.4%) | 13 (7.8%) | 0.27 |
Gastrointestinal disease | 50 (7.5%) | 39 (7.9%) | 11 (6.6%) | 0.59 |
Neurological/psychiatric disease | 14 (2.1%) | 11 (2.2%) | 3 (1.8%) | 0.74 |
Renal disease | 14 (2.1%) | 11 (2.2%) | 3 (1.8%) | 0.74 |
Metabolic disease | 13 (2.0%) | 12 (2.4%) | 1 (0.6%) | 0.14 |
Other | 14 (2.1%) | 12 (2.4%) | 2 (1.2%) | 0.34 |
Comorbidities, n (%) | ||||
Hypertension | 353 (53.2%) | 272 (54.8%) | 81 (48.5%) | 0.16 |
Tumor | 326 (49.2%) | 239 (48.2%) | 87 (52.1%) | 0.38 |
Renal failure | 175 (26.4%) | 135 (27.2%) | 40 (24.0%) | 0.41 |
Coronary heart disease | 163 (24.6%) | 125 (25.2%) | 38 (22.8%) | 0.53 |
Diabetes mellitus | 120 (18.1%) | 98 (19.8%) | 22 (13.2%) | 0.056 |
Chronic heart failure | 82 (12.4%) | 62 (12.5%) | 20 (12.0%) | 0.86 |
COPD | 96 (14.5%) | 74 (14.9%) | 22 (13.2%) | 0.58 |
Peripheral artery disease | 39 (5.9%) | 27 (5.4%) | 12 (7.2%) | 0.41 |
Stroke | 42 (6.3%) | 34 (6.9%) | 8 (4.8%) | 0.34 |
Dementia | 12 (1.8%) | 9 (1.8%) | 3 (1.8%) | 0.99 |
Parameter | Univariate Regression | ROC Area | Female | Male | p Interaction | Multivariate Regression Adjusted for Albumin, C-Reactive Protein (CRP), Handgrip Strength |
---|---|---|---|---|---|---|
Coefficient (95%CI) p value | Coefficient (95%CI) p value | Coefficient (95%CI) p value | Coefficient (95%CI) p value | |||
Nutritional marker | ||||||
NRS, per point increase | −0.82 (−1.32 to −0.33), p = 0.001 | 0.57 | −0.32 (−1.03 to 0.39), p = 0.373 | −1.25 (−1.9 to −0.59), p < 0.001 | 0.381 | −0.63 (−1.25 to −0.01), p = 0.047 |
Weight, per kg | 0.22 (0.2 to 0.24), p < 0.001 | 0.25 | 0.2 (0.16 to 0.24), p < 0.001 | 0.23 (0.2 to 0.26), p = 0.00 | <0.001 | 0.23 (0.2 to 0.25), p < 0.001 |
Weight loss (refers to 4 categories: (≤5% in 3 month, >5% in 3 month, <5% in 2 month, <5% in 1 month) | −0.32 (−0.67 to 0.04), p = 0.081 | 0.50 | −0.2 (−0.7 to 0.3), p = 0.434 | −0.59 (−1.06 to −0.11), p = 0.015 | 0.445 | −0.39 (−0.82 to 0.04), p = 0.076 |
BMI, per 1 unit increase | 0.71 (0.64 to 0.78), p < 0.001 | 0.20 | 0.58 (0.49 to 0.67), p < 0.001 | 0.84 (0.75 to 0.94), p < 0.001 | 0.000 | 0.74 (0.66 to 0.82), p < 0.001 |
Clinical marker | ||||||
Handgrip strength | 0.13 (0.1 to 0.17), p < 0.001 | 0.43 | 0.04 (−0.06 to 0.14), p = 0.43 | 0.11 (0.06 to 0.16), p < 0.001 | 0.433 | 0.15 (0.11 to 0.2), p < 0.001 |
Loss of appetite | 0.98 (−0.4 to 2.36), p = 0.165 | 0.49 | 1.1 (−0.99 to 3.19), p = 0.302 | 1.21 (−0.55 to 2.97), p = 0.176 | 0.315 | 1.62 (−0.07 to 3.31), p = 0.061 |
Food intake (>75%, 50–75%, 25–50%, <25% of normal requirement preceding week) | −0.17 (−0.68 to 0.35), p = 0.523 | 0.54 | −0.33 (−1.1 to 0.44), p = 0.396 | 0.03 (−0.63 to 0.69), p = 0.933 | 0.409 | −0.01 (−0.65 to 0.63), p = 0.978 |
Disease severity (very mild, mild, moderate, severe) | 0.23 (−0.58 to 1.05), p = 0.577 | 0.50 | 0.08 (−1.03 to 1.2), p = 0.882 | 0.18 (−0.94 to 1.3), p = 0.75 | 0.885 | 0.16 (−0.9 to 1.22), p = 0.763 |
Blood marker | ||||||
Albumin, per 1 g/dL | 0.05 (−0.03 to 0.13), p = 0.232 | 0.48 | −0.03 (−0.13 to 0.08), p = 0.603 | 0.12 (0.01 to 0.23), p = 0.026 | 0.617 | 0.03 (−0.06 to 0.12), p = 0.541 |
CRP (mg/L, per 10 unit increase) | 0 (0 to 0.01), p = 0.836 | 0.50 | 0.05 (−0.02 to 0.12), p = 0.13 | −0.05 (−0.11 to 0.02), p = 0.173 | 0.138 | 0.00 (−0.01 to 0.01), p = 0.975 |
High SMI | Low SMI | AUC | SMI at Level T12, Continuous | AUC | ||
---|---|---|---|---|---|---|
n (%) of Patients with high SMI | n (%) of Patients with low SMI | OR or Coefficient (95%CI), | OR or Coefficient (95%CI) | |||
p value, adjusted for age, BMI, nutritional support intervention, contributing center, presence of stroke, COPD, hypertension, diabetes, chronic heart failure | p value, adjusted for age, BMI, nutritional support intervention, contributing center, presence of stroke, COPD, hypertension, diabetes, chronic heart failure | |||||
n = 496 | n = 167 | n = 663 | ||||
Primary endpoint | ||||||
Adverse clinical outcome within 30 days | 135 (27.2%) | 52 (31.1%) | 1.37 (0.89, 2.11), p = 0.157 | 0.52 | −0.1 (−0.18, −0.02), p = 0.12 | 0.46 |
Short-term endpoints | ||||||
30-day all-cause mortality | 45 (9.1%) | 19 (11.4%) | 1.65 (0.86, 3.18), p = 0.132 | 0.52 | −0.004 (−0.009, 0.005), p = 0.08 | 0.48 |
Rehospitalization within 30 days | 53 (10.7%) | 19 (11.4%) | 1.06 (0.57, 1.96), p = 0.864 | 0.51 | −0.002 (−0.008, 0.002), p = 0.32 | 0.48 |
Mean length of stay, days (SD) | 10.0 (6.9) | 10.1 (7.5) | 0.42 (−0.94, 1.78), p = 0.548 | - | −0.008 (−0.13, 0.11), p = 0.89 | - |
Decline Barthel index score (points) after 30 days | 68 (13.7%) | 29 (17.4%) | 1.75 (1.01, 3.05), p = 0.048 | 0.53 | 0.05 (−0.008, 0.1), p = 0.09 | 0.48 |
Long-term endpoints | ||||||
180-day all-cause mortality | 147 (29.6%) | 47 (28.1%) | 1.08 (0.69, 1.7) p = 0.732 | 0.49 | −0.002 (−0.01, 0.005) p = 0.53 | 0.52 |
High SMI | Low SMI | ||||||
---|---|---|---|---|---|---|---|
Control Group (n = 243) | Intervention Group (n = 253) | OR or Coefficient (95%CI), p Value Adjusted | Control Group (n = 79) | Intervention Group (n = 88) | OR or Coefficient (95%CI), p Value Adjusted | p for Interaction | |
Primary endpoint | |||||||
Adverse clinical outcome within 30 days | 71 (29.2%) | 64 (25.3%) | 0.48 (0.23, 0.99), p = 0.048 | 29 (37%) | 23 (26%) | 0.84 (0.56, 1.26), p = 0.4 | 0.248 |
Short-term endpoints | |||||||
30-day all-cause mortality | 25 (10.3%) | 20 (7.9%) | 0.4 (0.12, 1.29), p = 0.124 | 12 (15%) | 7 (8%) | 0.77 (0.41, 1.45), p = 0.424 | 0.362 |
Rehospitalization within 30 days | 26 (10.7%) | 27 (10.7%) | 0.84 (0.29, 2.38), p = 0.737 | 9 (11%) | 10 (11%) | 1.01 (0.57, 1.8), p = 0.976 | 0.889 |
Length of hospital stay | 10.0 (6.4) | 10.1 (7.4) | −2.65 (−5.03, −0.28), p = 0.029 | 11.4 (7.6) | 9.0 (7.1) | −2.65 (−5.03, −0.28), p = 0.029 | |
Decline Barthel index score | 42 (17.3%) | 26 (10.3%) | 0.28 (0.1, 0.76), p = 0.013 | 18 (21%) | 9 (11%) | 0.58 (0.34, 0.99), p = 0.045 | 0.203 |
Long-term endpoints | |||||||
180-day all-cause mortality | 75 (30.9%) | 72 (28.5%) | 0.63 (0.3, 1.32), p = 0.221 | 25 (32%) | 22 (25%) | 0.91 (0.6, 1.37), p = 0.648 | 0.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, L.; Mentil, N.; Staub, N.; Griot, S.; Olpe, T.; Burn, F.; Schindera, S.; Mueller, B.; Schuetz, P.; Stanga, Z.; et al. Association of Thoracic Skeletal Muscle Index with Clinical Outcome and Response to Nutritional Interventions in Patients at Risk of Malnutrition—Secondary Analysis of a Randomized Trial. Nutrients 2023, 15, 817. https://doi.org/10.3390/nu15040817
Mueller L, Mentil N, Staub N, Griot S, Olpe T, Burn F, Schindera S, Mueller B, Schuetz P, Stanga Z, et al. Association of Thoracic Skeletal Muscle Index with Clinical Outcome and Response to Nutritional Interventions in Patients at Risk of Malnutrition—Secondary Analysis of a Randomized Trial. Nutrients. 2023; 15(4):817. https://doi.org/10.3390/nu15040817
Chicago/Turabian StyleMueller, Leonie, Nicole Mentil, Nathalie Staub, Stephanie Griot, Tobias Olpe, Felice Burn, Sebastian Schindera, Beat Mueller, Philipp Schuetz, Zeno Stanga, and et al. 2023. "Association of Thoracic Skeletal Muscle Index with Clinical Outcome and Response to Nutritional Interventions in Patients at Risk of Malnutrition—Secondary Analysis of a Randomized Trial" Nutrients 15, no. 4: 817. https://doi.org/10.3390/nu15040817
APA StyleMueller, L., Mentil, N., Staub, N., Griot, S., Olpe, T., Burn, F., Schindera, S., Mueller, B., Schuetz, P., Stanga, Z., & Baumgartner, A. (2023). Association of Thoracic Skeletal Muscle Index with Clinical Outcome and Response to Nutritional Interventions in Patients at Risk of Malnutrition—Secondary Analysis of a Randomized Trial. Nutrients, 15(4), 817. https://doi.org/10.3390/nu15040817