Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometry
2.3. HM Sample Collection
2.4. HM Butyrate Analysis
2.5. HM Intake Volume
2.6. HM Microbiome Analysis
2.6.1. DNA Extraction from HM Samples
2.6.2. Nested-PCR Amplification of 16S rRNA Gene from HM DNA Samples
2.6.3. Library Preparation and 16S MiSeq Sequencing
2.7. Calculation and Statistical Analyses
3. Results
3.1. Associations between Maternal/Infant Factors and HM Butyrate Concentration
3.2. Characterisation of HM Microbiota and Associations with HM Butyrate Concentrations
3.3. Associations between HM Butyrate, HM Intake Volume, and Infant Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prentice, P.M.; Schoemaker, M.; Vervoort, J.; Hettinga, K.; Lambers, T.; van Tol, E.; Acerini, C.; Olga, L.; Petry, C.; Hughes, I.; et al. Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants. J. Nutr. 2019, 149, 716–722. [Google Scholar] [CrossRef]
- Stinson, L.F.; Gay, M.C.L.; Koleva, P.T.; Eggesbø, M.; Johnson, C.C.; Wegienka, G.; Toit, E.; Shimojo, N.; Munblit, D.; Campbell, D.E.; et al. Human Milk From Atopic Mothers Has Lower Levels of Short Chain Fatty Acids. Front. Immunol. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Paparo, L.; Nocerino, R.; Ciaglia, E.; Di Scala, C.; De Caro, C.; Russo, R.; Trinchese, G.; Aitoro, R.; Amoroso, A.; Bruno, C.; et al. Butyrate as a bioactive human milk protective component against food allergy. Allergy Eur. J. Allergy Clin. Immunol. 2021, 76, 1398–1415. [Google Scholar] [CrossRef] [PubMed]
- Brahe, L.K.; Astrup, A.; Larsen, L.H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 2013, 14, 950–959. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Festuccia, W.T.; Crisma, A.R.; Alves, V.S.; Martins, A.R.; Amaral, C.L.; Fiamoncini, J.; Hirabara, S.M.; Sato, F.T.; et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E272–E282. [Google Scholar] [CrossRef]
- Arnoldussen, I.A.C.; Wiesmann, M.; Pelgrim, C.E.; Wielemaker, E.M.; van Duyvenvoorde, W.; Amaral-Santos, P.L.; Verschuren, L.; Keijser, B.J.F.; Heerschap, A.; Kleemann, R.; et al. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. Int. J. Obes. 2017, 41, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.C.; Kien, C.L.; Bouthillier, L.; Levy, E. Short-chain fatty acids: Ready for prime time? Nutr. Clin. Pract. 2006, 21, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M.J.; Yamada, C.; Shuoker, B.; Alvarez-Silva, C.; Gotoh, A.; Leth, M.L.; Schoof, E.; Katoh, T.; Sakanaka, M.; Katayama, T.; et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 2020, 11, 3285. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; McGuire, M.A. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr. Opin. Biotechnol. 2017, 44, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Prentice, P.; Ong, K.K.; Schoemaker, M.H.; van Tol, E.A.F.; Vervoort, J.; Hughes, I.A.; Acerini, C.L.; Dunger, D.B. Breast milk nutrient content and infancy growth. Acta Paediatr. 2016, 105, 641–647. [Google Scholar] [CrossRef]
- Koletzko, B.; Demmelmair, H.; Grote, V.; Totzauer, M. Optimized protein intakes in term infants support physiological growth and promote long-term health. Semin. Perinatol. 2019, 43, 1–8. [Google Scholar] [CrossRef]
- Ziegler, E.E. Growth of Breast-Fed and Formula-Fed Infants. Nestlé Nutr. Work. Ser. Pediatr. Progr. 2006, 58, 51–63. [Google Scholar]
- Olga, L.; Petry, C.J.; van Diepen, J.A.; Prentice, P.M.; Hughes, I.A.; Vervoort, J.; Boekhorst, J.; Chichlowski, M.; Gross, G.; Dunger, D.B.; et al. Extensive study of breast milk and infant growth: Protocol of the Cambridge baby growth and breastfeeding study (CBGS-BF). Nutrients 2021, 13, 2879. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Body mass index—BMI; World Health Organization—Europe Regional Office, WHO/Europe: Copenhagen, Denmark, 2010; Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 8 February 2022).
- Cole, T.J.; Freeman, J.; Preece, M.A. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat. Med. 1998, 17, 407–429. [Google Scholar] [CrossRef]
- Freeman, J.V.; Cole, T.J.; Chinn, S.; Jones, P.R.M.; White, E.M.; Preece, M.A. Cross sectional stature and weight reference curves for the UK, 1990. Arch. Dis. Child. 1995, 73, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Diet, Anthropometry and Physical Activity (DAPA) Measurement Toolkit. 2019. Available online: https://dapa-toolkit.mrc.ac.uk/ (accessed on 10 October 2022).
- Haisma, H.; Coward, W.A.; Albernaz, E.; Visser, G.H.; Wells, J.C.K.; Wright, A.; Victora, C.G. Breast milk and energy intake in exclusively, predominantly, and partially breast-fed infants. Eur. J. Clin. Nutr. 2003, 57, 1633–1642. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.; Costello, E.; Fierer, N.; Peña, A.G.; Goodrich, J.; Gordon, J.; et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Publ. Gr. 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Green Genes, Green Genes. Available online: https://greengenes.lbl.gov/ (accessed on 1 November 2021).
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.; Goodrich, J.; Nawrocki, E.; DeSantis, T.; Probst, A.; Andersen, G.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Cole, T. LMSgrowth, a Microsoft Excel Add-in to access Growth References Based on the LMS Method. [Online]. 2012. Available online: http://www.healthforallchildren.co.uk/ (accessed on 20 March 2022).
- Braak, C.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power; Wageningen University & Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Gonzalez, E.; Brereton, N.; Li, C.; Leyva, L.L.; Solomons, N.; Agellon, L.; Scott, M.; Koski, K. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front. Microbiol. 2021, 12, 557180. [Google Scholar] [CrossRef] [PubMed]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.; Lix, L.; de Souza, R.; Becker, A.; Mandhane, P.; et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019, 25, 324–335.e4. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Tsukuda, N.; Yahagi, K.; Hara, T.; Watanabe, Y.; Matsumoto, H.; Mori, H.; Higashi, K.; Tsuji, H.; Matsumoto, S.; Kurokawa, K.; et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021, 15, 2574–2590. [Google Scholar] [CrossRef]
- Nilsen, M.; Saunders, C.M.; Angell, I.L.; Arntzen, M.; Carlsen, K.L.; Carlsen, K.-H.; Haugen, G.; Hagen, L.H.; Carlsen, M.; Hedlin, G.; et al. Butyrate levels in the transition from an infant-to an adult-like gut microbiota correlate with bacterial networks associated with eubacterium rectale and ruminococcus gnavus. Genes 2020, 11, 1245. [Google Scholar] [CrossRef]
- Liu, F.; Li, P.; Chen, M.; Luo, Y.; Prabhakar, M.; Zheng, H.; He, Y.; Qi, Q.; Long, H.; Zhang, Y.; et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Sci. Rep. 2017, 7, 11789. [Google Scholar] [CrossRef]
- Gophna, U.; Konikoff, T.; Nielsen, H.B. Oscillospira and related bacteria—From metagenomic species to metabolic features. Environ. Microbiol. 2017, 19, 835–841. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
- Kircher, B.; Woltemate, S.; Gutzki, F.; Schlüter, D.; Geffers, R.; Bähre, H.; Vital, M. Predicting butyrate- and propionate-forming bacteria of gut microbiota from sequencing data. Gut Microbes 2022, 14, e2149019. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Sakwinska, O.; Moine, D.; Delley, M.; Combremont, S.; Rezzonico, E.; Descombes, P.; Vinyes-Pares, G.; Zhang, Y.; Wang, P.; Thakkar, S.K. Microbiota in breast milk of Chinese lactating mothers. PLoS ONE 2016, 11, e0160856. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, Y.; Liu, L.; Li, Z. Association Between Breastmilk Microbiota and Food Allergy in Infants. Front. Cell. Infect. Microbiol. 2022, 11, 1396. [Google Scholar] [CrossRef]
- Lundgren, S.N.; Madan, J.C.; Karagas, M.R.; Morrison, H.G.; Hoen, A.G.; Christensen, B.C. Microbial Communities in Human Milk Relate to Measures of Maternal Weight. Front. Microbiol. 2019, 10, 2886. [Google Scholar] [CrossRef]
- Du, K.; Bereswill, S.; Heimesaat, M.M. A literature survey on antimicrobial and immune-modulatory effects of butyrate revealing non-antibiotic approaches to tackle bacterial infections. Eur. J. Microbiol. Immunol. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Avery, T.M.; Boone, R.; Lu, J.; Spicer, S.; Guevara, M.; Moore, R.; Chambers, S.; Manning, S.; Dent, L.; Marshall, D.; et al. Analysis of Antimicrobial and Antibiofilm Activity of Human Milk Lactoferrin Compared to Bovine Lactoferrin against Multidrug Resistant and Susceptible Acinetobacter baumannii Clinical Isolates. ACS Infect. Dis. 2021, 7, 2116–2126. [Google Scholar] [CrossRef]
- Spicer, S.K.; Moore, R.E.; Lu, J.; Guevara, M.A.; Marshall, D.R.; Manning, S.D.; Damo, S.M.; Townsend, S.D.; Gaddy, J.A. Antibiofilm Activity of Human Milk Oligosaccharides against Multidrug Resistant and Susceptible Isolates of Acinetobacter baumannii. ACS Infect. Dis. 2021, 7, 3254–3263. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik Jr, E.J.; Nawrocki, A.; Lu, M.; Kosinski, J.; Hubert, J.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Yan, H.; Ajuwon, K.M. Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells. PLoS ONE 2015, 10, e0145940. [Google Scholar] [CrossRef] [Green Version]
- Corfe, B.M.; Harden, C.J.; Bull, M.; Garaiova, I. The multifactorial interplay of diet, the microbiome and appetite control: Current knowledge and future challenges. Proc. Nutr. Soc. 2015, 74, 235–244. [Google Scholar] [CrossRef]
- Jin, C.J.; Sellmann, C.; Engstler, A.J.; Ziegenhardt, D.; Bergheim, I. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br. J. Nutr. 2015, 114, 1745–1755. [Google Scholar] [CrossRef]
- Yadav, H.; Lee, J.H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 2013, 288, 25088–25097. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.-X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.; Meijer, O.; Berbée, J.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kooijman, S.; Yi, C.; Chung, C.K.; Berbée, J.; van Dijk, K.W.; Groen, A.; Rensen, P.C.; Wang, Y. Butyrate via the gut-brain neuronal circuit reduces appetite and activates brown adipose tissue. Atherosclerosis 2017, 263, e85. [Google Scholar] [CrossRef]
All Subjects Included in Longitudinal Analyses between HM Butyrate and Growth (Total n = 71) | Subjects with HM Butyrate Concentration Measured at 6 Weeks (Total n = 59) | Subjects with HM Butyrate Intake Measured between 4–6 Weeks (Total n = 47) | |
---|---|---|---|
Gestational age (weeks) | 40.3 ± 1.1 | 40.3 ± 1.1 | 40.4 ± 1.2 |
Maternal age (years) | 33.2 ± 4.5 | 33.0 ± 4.7 | 33.3 ± 4.4 |
Maternal prepregnancy BMI (kg/m2) | 22.4 ± 2.5 | 22.3 ± 2.6 | 22.5 ± 2.8 |
Maternal height (cm) | 166.8 ± 6.9 | 167.2 ± 6.9 | 167.4 ± 7.1 |
Maternal parity (% primiparous) | 41% | 41% | 38% |
Maternal ethnicity (% European) | 92% | 92% | 94% |
Infant sex (% male) | 61% | 63% | 60% |
Infant birth weight SDS | 0.15 ± 0.76 | 0.16 ± 0.74 | 0.23 ± 0.78 |
Infant birth length SDS | −0.17 ± 0.74 | −0.17 ± 0.73 | −0.17 ± 0.79 |
Age | ||||
---|---|---|---|---|
2 Weeks | 6 Weeks | 3 Months | 6 Months | |
n = 31 | n = 49 | n = 32 | n = 25 | |
Butyrate (mg/100 mL) | 0.76 ± 0.45 | 0.85 ± 0.41 | 1.42 ± 0.91 | 1.27 ± 0.94 |
Growth Parameters | Butyrate | Butyrate*Age | ||
---|---|---|---|---|
B ± SE | p | B ± SE | p | |
Weight SDS | −0.58 ± 0.22 | 0.01 | 0.12 ± 0.05 | 0.02 |
Length SDS | −0.22 ± 23 | 0.34 | 0.04 ± 0.05 | 0.49 |
BMI SDS | −0.66 ± 0.29 | 0.02 | 0.14 ± 0.07 | 0.03 |
Mean SF SDS | −0.06 ± 0.3 | 0.84 | −0.01 ± 0.07 | 0.92 |
Growth Parameters | Predictors | |||
---|---|---|---|---|
Butyrate Concentration at 6 Weeks | Butyrate Intake at 4–6 Weeks | |||
B ± SE | p | B ± SE | p | |
0–6 weeks | ||||
Weight gain SDS | −0.40 ± 0.19 | 0.04 | −0.02 ± 0.04 | 0.67 |
Length gain SDS | −0.39 ± 0.18 | 0.04 | −0.03 ± 0.04 | 0.34 |
BMI gain SDS | −0.31 ± 0.27 | 0.25 | −0.003 ± 0.05 | 0.94 |
Mean SF gain SDS | −0.34 ± 0.27 | 0.22 | 0.004 ± 0.05 | 0.95 |
6 weeks–12 months | ||||
Weight gain SDS | 0.47 ± 0.21 | 0.03 | 0.07 ± 0.04 | 0.055 |
Length gain SDS | 0.04 ± 0.21 | 0.85 | −0.03 ± 0.04 | 0.47 |
BMI gain SDS | 0.5 ± 0.22 | 0.03 | 0.11 ± 0.04 | 0.005 |
Mean SF gain SDS | 0.49 ± 0.25 | 0.05 | 0.004 ± 0.05 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olga, L.; van Diepen, J.A.; Chichlowski, M.; Petry, C.J.; Vervoort, J.; Dunger, D.B.; Kortman, G.A.M.; Gross, G.; Ong, K.K. Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth. Nutrients 2023, 15, 916. https://doi.org/10.3390/nu15040916
Olga L, van Diepen JA, Chichlowski M, Petry CJ, Vervoort J, Dunger DB, Kortman GAM, Gross G, Ong KK. Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth. Nutrients. 2023; 15(4):916. https://doi.org/10.3390/nu15040916
Chicago/Turabian StyleOlga, Laurentya, Janna A. van Diepen, Maciej Chichlowski, Clive J. Petry, Jacques Vervoort, David B. Dunger, Guus A. M. Kortman, Gabriele Gross, and Ken K. Ong. 2023. "Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth" Nutrients 15, no. 4: 916. https://doi.org/10.3390/nu15040916
APA StyleOlga, L., van Diepen, J. A., Chichlowski, M., Petry, C. J., Vervoort, J., Dunger, D. B., Kortman, G. A. M., Gross, G., & Ong, K. K. (2023). Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth. Nutrients, 15(4), 916. https://doi.org/10.3390/nu15040916