Gut-on-a-Chip for the Analysis of Bacteria–Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet–Microbiota Relationship?
Abstract
:1. Introduction
2. Classification of the Methods for the Singular and Mixed Culture of the Model Strains of Gut Microbiota
3. Recent Advances in Singular and Mixed Culture Studies Using Model Strains of Gut Microbiota
3.1. Modulation of Gut Microbiota Composition
3.2. Induction of the Desirable Metabolic Pathways from Commensal Bacteria
3.3. Control of Pathogens
3.3.1. Co-Culture of Pathogenic and Protective Bacterial Strains
3.3.2. Design of Protective Bacterial Consortia
4. Current Status and Future Perspectives on the Research Regarding the Interaction of Model Bacterial Strains in Gut-on-a-Chip
4.1. Overview of the Bacterial Culture in Gut-on-a-Chip
4.1.1. Establishment of the Experimental Platform Mimicking the Gut Environments for Host and Bacterial Cells
4.1.2. Probiotic Bacteria in Gut-on-a-Chip
4.1.3. Pathogenic Bacteria in Gut-on-a-Chip
4.1.4. Co-Culture of Multiple Microbial Strains in Gut-on-a-Chip
4.2. Strategies to Integrate the Study Design of Bacterial Co-Culture into Gut-on-a-Chip
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.A.; Kamal, M.M.; Rahman, M.H.; Siddiqui, M.N.; Haque, M.A.; Saha, K.K.; Rahman, M.A. Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospectives. J. Food Sci. Technol. 2022, 59, 1263–1279. [Google Scholar] [CrossRef] [PubMed]
- Lelia, P.O.; Suharoschi, R. Emerging food processing technologies: Probiotics and prebiotics. In Nutraceutical and Functional Food Components, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Ong, J.S.; Lew, L.C.; Hor, Y.Y.; Liong, M.T. Probiotics: The next dietary strategy against brain aging. Prev. Nutr. Food Sci. 2022, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, Y.; Li, X.; Sun, B. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends Food Sci. Technol. 2020, 100, 118–130. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Yang, S.; Lu, J.; Jin, X.; Wu, M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed. Pharmacother. 2022, 153, 113290. [Google Scholar] [CrossRef] [PubMed]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; Filippis, A.D.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Tan, H.; Nie, S. Functional hydrocolloids, gut microbiota and health: Picking food additives for personalized nutrition. FEMS Microbiol. Rev. 2021, 45, fuaa065. [Google Scholar] [CrossRef]
- Yeşilyurt, N.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Microbiome-based personalized nutrition as a result of the 4.0 technological revolution: A mini literature review. Process Biochem. 2022, 121, 257–262. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Students, P.M.C.; et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019, 25, 789–802.e5. [Google Scholar] [CrossRef]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
- Faith, J.J.; McNulty, N.P.; Rey, F.E.; Gordon, J.I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 2011, 333, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, N.; Wagner, V.E.; Blanton, L.V.; Cheng, J.; Fontana, L.; Haque, R.; Ahmed, T.; Gordon, J.I. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 2015, 163, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, S.M.; Gurry, T.; Lampe, J.W.; Chakrabarti, A.; Dam, V.; Everard, A.; Goas, A.; Gross, G.; Kleerebezem, M.; Lane, J. Perspective: Leveraging the gut microbiota to predict personalized pesponses to dietary, prebiotic, and probiotic interventions. Adv. Nutr. 2022, 13, 1450–1461. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.A.; Kostopoulos, I.; Geerlings, S.Y.; Smidt, H.; de Vos, W.M.; Belzer, C. Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME J. 2022, 16, 2144–2159. [Google Scholar] [CrossRef]
- Kern, L.; Abdeen, S.K.; Kolodziejczyk, A.A.; Elinav, E. Commensal inter-bacterial interactions shaping the microbiota. Curr. Opin. Microbiol. 2021, 63, 158–171. [Google Scholar] [CrossRef]
- Beterams, A.; Arroyo, M.C.; Paepe, K.D.; Craemer, A.S.D.; Elewaut, D.; Venken, K.; Wiele, T.V.d. In vitro triple coculture with gut microbiota from spondyloarthritis patients is characterized by inter-individual differences in inflammatory responses. Sci. Rep. 2022, 12, 10475. [Google Scholar] [CrossRef]
- Perdijk, O.; Baarlen, P.V.; Fernandez-Gutierrez, M.M.; Brink, E.; Schuren, F.H.J.; Brugman, S.; Savelkoul, H.F.J.; Kleerebezem, M.; Neerven, R.J.J.v. Sialyllactose and galactooligosaccharides promote epithelial barrier functioning and distinctly modulate microbiota composition and short chain fatty acid production in vitro. Front. Immunol. 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, A.J.H.; Heuvel, E.G.v.d.; Schoterman, M.H.C.; Venema, K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutr. 2012, 142, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Vrancken, G.; Gregory, A.C.; Huys, G.R.; Faust, K.; Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 2019, 17, 754–763. [Google Scholar] [CrossRef]
- McDonald, J.A.K.; Fuentes, S.; Schroeter, K.; Heikamp-deJong, I.; Khursigara, C.M.; Vos, W.M.; Allen-Vercoe, E. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J. Microbiol. Methods 2015, 108, 36–44. [Google Scholar] [CrossRef]
- Pham, V.; Mohajeri, M. The application of in vitro human intestinal models on the screening and development of pre-and probiotics. Benef. Microbes 2018, 9, 725–742. [Google Scholar] [CrossRef]
- Vázquez-Castellanos, J.F.; Biclot, A.; Vrancken, G.; Huys, G.R.; Raes, J. Design of synthetic microbial consortia for gut microbiota modulation. Curr. Opin. Pharmacol. 2019, 49, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Elzinga, J.; van der Oost, J.; de Vos, W.M.; Smidt, H. The use of defined microbial communities to model host-microbe interactions in the human gut. Microbiol. Mol. Biol. Rev. 2019, 83, e00054-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaqat, I.; Naseem, S.; Eijaz, S.; Hanif, U.; Rubab, S.; Aftab, N.; Iqbal, R. Impact of interplay between obese gut microbiota and diet in developing obesity in synthetic community mice. J. Oleo Sci. 2021, 70, 1285–1293. [Google Scholar] [CrossRef]
- Venturelli, O.S.; Carr, A.V.; Fisher, G.; Hsu, R.H.; Lau, R.; Bowen, B.P.; Hromada, S.; Northen, T.; Arkin, A.P. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 2018, 14, e8157. [Google Scholar] [CrossRef]
- Rinaldi, E.; Consonni, A.; Guidesi, E.; Elli, M.; Mantegazza, R.; Baggi, F. Gut microbiota and probiotics: Novel immune system modulators in myasthenia gravis? Ann. N. Y. Acad. Sci. 2018, 1413, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int. 2018, 2018, 9478630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Du, Y.; Song, J.; Wang, W.; Yang, C. Imaging commensal microbiota and pathogenic bacteria in the gut. Acc. Chem. Res. 2021, 54, 2076–2087. [Google Scholar] [CrossRef]
- Sieow, B.F.L.; Nurminen, T.J.; Ling, H.; Chang, M.W. Meta-omics-and metabolic modeling-assisted deciphering of human microbiota metabolism. Biotechnol. J. 2019, 14, 1800445. [Google Scholar] [CrossRef]
- Wang, L.; Pang, X.; Zhao, J.; Jin, H.; Yang, X.; Fu, S.; Cheng, S.; Li, H.; Miao, C.; Man, C.; et al. Isolation and characteristics of new phage JK004 and application to control Cronobacter sakazakii on material surfaces and powdered infant formula. LWT 2022, 153, 112571. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, E.; Cotter, P.D. Relevance of organ (s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit. Rev. Microbiol. 2021, 48, 463–488. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Charbonneau, M.R.; Coia, H.G.; Castillo, M.J.; Holt, C.; Greenwood, E.S.; Robinson, P.J.; Merrill, E.A.; Lubkowicz, D.; Mauzy, C.A. Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat. Commun. 2021, 12, 2805. [Google Scholar] [CrossRef] [PubMed]
- Grassart, A.; Malardé, V.; Gobaa, S.; Sartori-Rupp, A.; Kerns, J.; Karalis, K.; Marteyn, B.; Sansonetti, P.; Sauvonnet, N. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 2019, 26, 435–444.e4. [Google Scholar] [CrossRef] [PubMed]
- Tovaglieri, A.; Sontheimer-Phelps, A.; Geirnaert, A.; Prantil-Baun, R.; Camacho, D.M.; Chou, D.B.; Jalili-Firoozinezhad, S.; de Wouters, T.; Kasendra, M.; Super, M.; et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 2019, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzorati, M.; Vanhoecke, B.; Ryck, T.D.; Sadabad, M.S.; Pinheiro, I.; Possemiers, S.; Abbeele, P.V.d.; Derycke, L.; Bracke, M.; Pieters, J.; et al. The HMI™ module: A new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 2014, 14, 133. [Google Scholar] [CrossRef] [Green Version]
- Jalili-Firoozinezhad, S.; Gazzaniga, F.S.; Calamari, E.L.; Camacho, D.M.; Fadel, C.W.; Bein, A.; Swenor, B.; Nestor, B.; Cronce, M.J.; Tovaglieri, A.; et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 2019, 3, 520–531. [Google Scholar] [CrossRef]
- Mary, P.R.; Kapoor, M. Co-culture fermentations suggest cross-feeding among Bacteroides ovatus DSMZ 1896, Lactiplantibacillus plantarum WCFS1 and Bifidobacterium adolescentis DSMZ 20083 for utilizing dietary galactomannans. Food Res. Int. 2022, 162, 111942. [Google Scholar] [CrossRef]
- Thomson, P.; Medina, D.A.; Ortúzar, V.; Gotteland, M.; Garrido, D. Anti-inflammatory effect of microbial consortia during the utilization of dietary polysaccharides. Food Res. Int. 2018, 109, 14–23. [Google Scholar] [CrossRef]
- Egan, M.; Motherway, M.O.C.; Kilcoyne, M.; Kane, M.; Joshi, L.; Ventura, M.; Sinderen, D.V. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014, 14, 282. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.S.; Burrichter, A.G.; Durai Raj, A.C.; von Strempel, A.; Meng, C.; Kleigrewe, K.; Münch, P.C.; Rössler, L.; Huber, C.; Eisenreich, W.; et al. In vitro interaction network of a synthetic gut bacterial community. ISME J. 2022, 16, 1095–1109. [Google Scholar] [CrossRef]
- Hirmas, B.; Gasaly, N.; Orellana, G.; Vega-Sagardía, M.; Saa, P.; Gotteland, M.; Garrido, D. Metabolic modeling and bidirectional culturing of two gut microbes reveal cross-feeding interactions and protective effects on intestinal cells. mSystems 2022, 7, e00646-22. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Heath, A.L.; Galland, B.; Rehrer, N.; Drummond, L.; Wu, X.Y.; Bell, T.J.; Lawley, B.; Sims, I.M.; Tannock, G.W. Substrate use prioritization by a coculture of five species of gut bacteria fed mixtures of arabinoxylan, xyloglucan, β-glucan, and pectin. Appl. Environ. Microbiol. 2020, 86, e01905-19. [Google Scholar] [CrossRef] [PubMed]
- Rivière, A.; Gagnon, M.; Weckx, S.; Roy, D.; De Vuyst, L.J.A.; microbiology, e. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl. Environ. Microbiol. 2015, 81, 7767–7781. [Google Scholar] [PubMed] [Green Version]
- Gutiérrez, N.; Garrido, D. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes. mSystems 2019, 4, e00185-19. [Google Scholar] [CrossRef] [Green Version]
- Petruschke, H.; Schori, C.; Canzler, S.; Riesbeck, S.; Poehlein, A.; Daniel, R.; Frei, D.; Segessemann, T.; Zimmerman, J.; Marinos, G.; et al. Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome. Microbiome 2021, 9, 55. [Google Scholar] [CrossRef]
- Soto-Martin, E.C.; Warnke, I.; Farquharson, F.M.; Christodoulou, M.; Horgan, G.; Derrien, M.; Faurie, J.M.; Flint, H.J.; Duncan, S.H.; Louis, P. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 2020, 11, e00886-20. [Google Scholar] [CrossRef]
- Rios-Covian, D.; Gueimonde, M.; Duncan, S.H.; Flint, H.J.; de Los Reyes-Gavilan, C.G. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett. 2015, 362, fnv176. [Google Scholar] [CrossRef] [Green Version]
- Chiu, L.; Bazin, T.; Truchetet, M.E.; Schaeverbeke, T.; Delhaes, L.; Pradeu, T. Protective microbiota: From localized to long-reaching co-immunity. Front. Immunol. 2017, 8, 1678. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jäger, C.; Baginska, J.; Wilmes, P. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 2017, 35, 81–89. [Google Scholar] [CrossRef] [Green Version]
- LaSarre, B.; McCully, A.L.; Lennon, J.T.; McKinlay, J.B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 2017, 11, 337–348. [Google Scholar] [CrossRef]
- Mee, M.T.; Collins, J.J.; Church, G.M.; Wang, H.H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 2014, 111, E2149–E2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillen, M.N.; Rosener, B.; Sayin, S.; Mitchell, A. Assembling stable syntrophic Escherichia coli communities by comprehensively identifying beneficiaries of secreted goods. Cell Syst. 2021, 12, 1064–1078.e7. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Meldgin, D.R.; Collins, J.J.; Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 2018, 14, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Wang, T.; Zhao, Q.; Paschalidis, I.C.; Segrè, D. Designing metabolic division of labor in microbial communities. mSystems 2019, 4, e00263-18. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Factories 2017, 16, 79. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell. Mol. Immunol. 2021, 18, 1161–1171. [Google Scholar] [CrossRef]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Thiele, I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 2018, 51, 90–96. [Google Scholar] [CrossRef]
- Lin, W.; Djukovic, A.; Mathur, D.; Xavier, J.B. Listening in on the conversation between the human gut microbiome and its host. Curr. Opin. Microbiol. 2021, 63, 150–157. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Lynch, S.V. Community ecology as a framework for human microbiome research. Nat. Med. 2019, 25, 884–889. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, G.Y.; Kim, I.Y.; Seo, D.H.; Nam, Y.D.; Kang, H.; Song, Y.; Park, C.S. Bifidobacterium adolescentis P2P3, a human gut bacterium having strong non-gelatinized resistant starch-degrading activity. J. Microbiol. Biotechnol. 2019, 29, 1904–1915. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.A.; Kuipers, B.; Atashgahi, S.; Aalvink, S.; Smidt, H.; de Vos, W.M. Inter-species metabolic interactions in an in-vitro minimal human gut microbiome of core bacteria. NPJ Biofilms Microbiomes 2022, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Bae, J.H.; Cheon, S.; Lee, D.H.; Kim, D.H.; Lee, D.; Park, S.H.; Shim, S.; Seo, J.H.; Han, N.S. Prebiotic activities of dextran from Leuconostoc mesenteroides SPCL742 analyzed in the aspect of the human gut microbial ecosystem. Food Funct. 2022, 13, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Osbelt, L.; Wende, M.; Almási, É.; Derksen, E.; Muthukumarasamy, U.; Lesker, T.R.; Galvez, E.J.C.; Pils, M.C.; Schalk, E.; Chhatwal, P.; et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 2021, 29, 1663–1679.e7. [Google Scholar] [CrossRef]
- Sudan, S.; Flick, R.; Nong, L.; Li, J. Potential probiotic Bacillus subtilis Isolated from a novel niche exhibits broad range antibacterial activity and causes virulence and metabolic dysregulation in enterotoxic E. coli. Microorganisms 2021, 9, 1483. [Google Scholar] [CrossRef]
- Chen, C.C.; Lai, C.C.; Huang, H.L.; Su, Y.T.; Chiu, Y.H.; Toh, H.S.; Chiang, S.R.; Chuang, Y.C.; Lu, Y.C.; Tang, H.J. Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae. J. Microbiol. Immunol. Infect. 2021, 54, 447–456. [Google Scholar] [CrossRef]
- Kathayat, D.; Closs, G.; Helmy, Y.A.; Deblais, L.; Srivastava, V.; Rajashekara, G. In vitro and in vivo evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 against avian pathogenic Escherichia coli and identification of novel probiotic-derived bioactive peptides. Probiotics Antimicrob. Proteins 2022, 14, 1012–1028. [Google Scholar] [CrossRef]
- Chen, J.; Byun, H.; Liu, R.; Jung, I.J.; Pu, Q.; Zhu, C.Y.; Tanchoco, E.; Alavi, S.; Degnan, P.H.; Ma, A.T. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc. Natl. Acad. Sci. USA 2022, 119, e2121180119. [Google Scholar] [CrossRef]
- Huedo, P.; Altadill, T.; Aguiló García, M.; Sticco, M.; Perez, M.; Espadaler-Mazo, J. Probiotic properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 show potential to counteract functional gastrointestinal disorders in an observational pilot trial in infants. Front. Microbiol. 2022, 12, 4321. [Google Scholar]
- Piazentin, A.C.M.; Mendonça, C.M.N.; Vallejo, M.; Mussatto, S.I.; de Souza Oliveira, R.P. Bacteriocin-like inhibitory substances production by Enterococcus faecium 135 in co-culture with Ligilactobacillus salivarius and Limosilactobacillus reuteri. Braz. J. Microbiol. 2022, 53, 131–141. [Google Scholar] [CrossRef]
- Boopathi, S.; Vashisth, R.; Mohanty, A.K.; Jia, A.Q.; Sivakumar, N.; Alharbi, N.S.; Khaled, J.M.; Juliet, A.; Arockiaraj, J. Investigation of interspecies crosstalk between probiotic Bacillus subtilis BR4 and Pseudomonas aeruginosa using metabolomics analysis. Microb. Pathog. 2022, 166, 105542. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Jin, X.; Hong, S.H. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 2018, 8, 4939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, M.; Tabashsum, Z.; Patel, P.; Bernhardt, C.; Biswas, D. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella Typhimurium and enterohaemorrhagic Escherichia coli. Front. Microbiol. 2018, 9, 2663. [Google Scholar] [CrossRef] [Green Version]
- Divyashree, S.; Anjali, P.G.; Somashekaraiah, R.; Sreenivasa, M.Y. Probiotic properties of Lactobacillus casei–MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnol. Rep. 2021, 32, e00672. [Google Scholar] [CrossRef] [PubMed]
- Hage, R.E.; Hage, J.E.; Snini, S.P.; Ammoun, I.; Touma, J.; Rachid, R.; Mathieu, F.; Sabatier, J.-M.; Khattar, Z.A.; Rayess, Y.E. The Detection of potential native probiotics Lactobacillus spp. against Salmonella enteritidis, Salmonella infantis and Salmonella kentucky ST198 of Lebanese chicken origin. Antibiotics 2022, 11, 1147. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Ma, J.; Jiao, C.; Tang, N.; Zhao, X.; Wang, D.; Zhang, Y.; Ye, Z.; Xu, C.; Jiang, J.; et al. Faecalibacterium prausnitzii attenuates DSS-Induced colitis by inhibiting the colonization and pathogenicity of Candida albicans. Mol. Nutr. Food Res. 2021, 65, 2100433. [Google Scholar] [CrossRef] [PubMed]
- Hromada, S.; Qian, Y.; Jacobson, T.B.; Clark, R.L.; Watson, L.; Safdar, N.; Amador-Noguez, D.; Venturelli, O.S. Negative interactions determine Clostridioides difficile growth in synthetic human gut communities. Mol. Syst. Biol. 2021, 17, e10355. [Google Scholar] [CrossRef]
- Ghimire, S.; Roy, C.; Wongkuna, S.; Antony, L.; Maji, A.; Keena, M.C.; Foley, A.; Scaria, J. Identification of Clostridioides difficile-inhibiting gut commensals using culturomics, phenotyping, and combinatorial community assembly. mSystems 2020, 5, e00620-19. [Google Scholar] [CrossRef] [Green Version]
- Fredua-Agyeman, M.; Gaisford, S. Assessing inhibitory activity of probiotic culture supernatants against Pseudomonas aeruginosa: A comparative methodology between agar diffusion, broth culture and microcalorimetry. World J. Microbiol. Biotechnol. 2019, 35, 49. [Google Scholar] [CrossRef] [Green Version]
- Khaneghah, A.M.; Abhari, K.; Eş, I.; Soares, M.B.; Oliveira, R.B.A.; Hosseini, H.; Rezaei, M.; Balthazar, C.F.; Silva, R.; Cruz, A.G.; et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci. Technol. 2020, 95, 205–218. [Google Scholar] [CrossRef]
- Das, S.; Vishakha, K.; Banerjee, S.; Bera, T.; Mondal, S.; Ganguli, A. A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer showing both in vitro antibacterial and antibiofilm properties upon two multi resistant uro-pathogen strains. Curr. Res. Microb. Sci. 2022, 3, 100150. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.; Peng, M.; Tabashsum, Z.; Salaheen, S.; Padilla, J.; Biswas, D. Antimicrobial effect and probiotic potential of phage resistant Lactobacillus plantarum and its interactions with zoonotic bacterial pathogens. Foods 2019, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palkovicsné Pézsa, N.; Kovács, D.; Rácz, B.; Farkas, O. Effects of Bacillus licheniformis and Bacillus subtilis on Gut Barrier Function, Proinflammatory Response, ROS Production and Pathogen Inhibition Properties in IPEC-J2—Escherichia coli/Salmonella Typhimurium Co-Culture. Microorganisms 2022, 10, 936. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Kim, H.J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. USA 2018, 115, E10539–E10547. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Fritz, J.V.; Glaab, E.; Desai, M.S.; Greenhalgh, K.; Frachet, A.; Niegowska, M.; Estes, M.; Jäger, C.; Seguin-Devaux, C.; et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 2016, 7, 11535. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.T.; Coia, H.G.; Holt, C.; Greenwood, E.S.; Narayanan, L.; Robinson, P.J.; Merrill, E.A.; Litteral, V.; Goodson, M.S.; Saldanha, R.J.; et al. Evaluation of human performance aiding live synthetically engineered bacteria in a gut-on-a-chip. ACS Biomater. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Shin, W.; Wu, A.; Massidda, M.W.; Foster, C.; Thomas, N.; Lee, D.W.; Koh, H.; Ju, Y.; Kim, J.; Kim, H.J. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 2019, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Li, H.; Collins, J.J.; Ingber, D.E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. USA 2016, 113, E7–E15. [Google Scholar] [CrossRef] [Green Version]
- Maurer, M.; Gresnigt, M.S.; Last, A.; Wollny, T.; Berlinghof, F.; Pospich, R.; Cseresnyes, Z.; Medyukhina, A.; Graf, K.; Groeger, M.; et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 2019, 220, 119396. [Google Scholar] [CrossRef]
- Gazzaniga, F.S.; Camacho, D.M.; Wu, M.; Palazzo, M.F.S.; Dinis, A.L.M.; Grafton, F.N.; Cartwright, M.J.; Super, M.; Kasper, D.L.; Ingber, D.E. Harnessing colon chip technology to identify commensal bacteria that promote host tolerance to infection. Front. Cell. Infect. Microbiol. 2021, 11, 638014. [Google Scholar] [CrossRef]
- Moossavi, S.; Arrieta, M.C.; Sanati-Nezhad, A.; Bishehsari, F. Gut-on-chip for ecological and causal human gut microbiome research. Trends Microbiol. 2022, 30, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Luna, E.; Parkar, S.G.; Kirmiz, N.; Hartel, S.; Hearn, E.; Hossine, M.; Kurdian, A.; Flores, G.E. Utilization efficiency of human milk oligosaccharides by human-associated Akkermansia is strain dependent. Appl. Environ. Microbiol. 2022, 88, e01487-21. [Google Scholar] [CrossRef] [PubMed]
- Prete, R.; Long, S.L.; Gallardo, A.L.; Gahan, C.G.; Corsetti, A.; Joyce, S.A. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci. Rep. 2020, 10, 1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Cunha, M.V. An effective culturomics approach to study the gut microbiota of mammals. Res. Microbiol. 2020, 171, 290–300. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Failla, M.L. Intestinal cell models for investigating the uptake, metabolism and absorption of dietary nutrients and bioactive compounds. Curr. Opin. Food Sci. 2021, 41, 169–179. [Google Scholar] [CrossRef]
- Liang, D.; Su, W.; Tan, M. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Crit. Rev. Food Sci. Nutr. 2022, 62, 4418–4434. [Google Scholar] [CrossRef]
- Ramadan, Q.; Jing, L. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier. Biomed. Microdevices 2016, 18, 11. [Google Scholar] [CrossRef]
- Ramadan, Q.; Jafarpoorchekab, H.; Huang, C.; Silacci, P.; Carrara, S.; Koklü, G.; Ghaye, J.; Ramsden, J.; Ruffert, C.; Vergeres, G.; et al. NutriChip: Nutrition analysis meets microfluidics. Lab Chip 2013, 13, 196–203. [Google Scholar] [CrossRef] [Green Version]
Key Nutritional Source | Composition of Microbial Community a | Major Implications | Reference |
---|---|---|---|
Mucin | Bifidobacterium bifidum, Bifidobacterium breve | Cross-feeding of mucin-degrading B. bifidum to enable the growth of B. breve in a mucin-based medium | [40] |
Mixture of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, pectin) | Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, Veillonella parvula | Diversification of the priority for the use of dietary fiber to produce short-chain fatty acids according to the different combinations of both the polysaccharides and polysaccharide-degrading bacteria | [43] |
Inulin | Bacteroides cellulosilyticus, Bacteroides dorei, Bacteroides finegoldii, Bacteroides fragilis, B. ovatus, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bifidobacterium adolescentis, Escherichia coli, Flavonifractor plautii, Lachnoclostridium clostridioforme, Lachnoclostridium symbiosum, Lactobacillus plantarum, R. gnavus, | Modelling the impact of species deletion from the gut commensal consortia during the community co-culture to the relative growth of dominant species and the production of metabolites | [45] |
Vitamin | Anaerobutyricum hallii, Anaerostipes caccae, Anaerostipes hadrus, Clostridium sp., Coprococcus cactus, Coprococcus sp., Eubacterium rectale, Faecalibacterium prausnitzii, Roseburia faecis, Roseburia intestinalis, Roseburia inulinivorans, Subdoligranulum variabile | Categorization of butyrate-producing bacterial species into prototrophic or auxotrophic strains according to the supplementation of the vitamins and the designation of the bacterial community of auxotrophs which can be cross-fed by added prototrophs | [47] |
Complex intestinal medium | A. caccae, B. thetaiotaomicron, B. longum, Blautia producta, Clostridium butyricum, Clostridium ramosum, E. coli, L. plantarum | Identification of novel proteins produced during only the co-culture of SIHUMIx community (i.e., not produced by single culture) and the evaluation of the role of those proteins to organize the bacterial communities | [46] |
AF medium b | Acutalibacter muris, Akkermansia muciniphila, Bacteroides caecimuris, Bifidobacterium animalis, Blautia coccoides, Clostridium innocuum, F. plautii, Enterocloster clostridioformis, Enterococcus faecalis, Limosilactobacillus reuteri, Muribaculum intestinale, Turicimonas muris | Generation of the metabolic models of synthetic bacterial consortia (Oligo-Mouse-Microbiota, OMM12) from the experiments of directional bacterial interaction using spent media and the comparative analysis on mono-culture with pairwise co-culture to identify key driver of the community structure and function | [41] |
Medium composed in this study c | A. muciniphila, Agathobacter rectalis, Anaerobutyricum soehngenii, B. ovatus, Bacteroides xylanisolvens, B. adolescentis, Blautia hydrogenotrophica, Blautia obeum, Collinsella aerofaciens, Coprococcus catus, Eubacterium sireaum, F. prausnitzii, F. plautii, Roseburia intestinalis, Ruminococcus bromii, S. variabile | Evaluation of the synthetic minimal microbiome (Mucin- and Diet-based Minimal Microbiome; MDb-MM) regarding the exhibition of the ecological and metabolic features of natural gut microflora through the compositional, transcriptional, and metabolic analysis using community co-culture under the environment simulating diet intake and perturbation | [15] |
DMEM 6429 supplemented with vitamin K and hemin (with or without arabinogalactan) | Bacteroides caccae, Lactobacillus rhamnosus | Validation of the predictive function of in silico metabolic models based on the genome-scale metabolic reconstructions for human gut microbes (assembly of gut organisms through reconstruction and analysis, AGORA) by using experimental results of cross-feeding from bacterial co-culture | [50] |
Key Nutritional Source | Composition of Microbial Community a | Major Implications | Reference |
---|---|---|---|
Glucose, starch, inulin, fructooligosaccharides | Bifidobacterium adolescentis, Faecalibacterium prausnitzii | Suggestion of the combination of the butyrate-producing bacterial strain with the cross-feeder and supportive substrate (carbon source) to enhance the formation of beneficial short-chain fatty acids | [48] |
Inulin, xylan | Bacteroides dorei, B. adolescentis, Clostridium symbiosum, Escherichia coli, Lactobacillus plantarum | Comparative analysis of carbon source utilization and growth pattern (synergistic or negative interaction) according to the paired combination (i.e., dual culture) or microbial consortia organized with gut commensals | [39] |
Galactomannan substrates (guar gum, fenugreek gum, locust bean gum, copra meal, PHGG), β-mannooligosaccharide mixture (from guar gum and copra meal) | Bacteroides ovatus, B. adolescentis, Lactiplantibacillus plantarum | Demonstration of the resource sharing of galactomannan during the bacterial co-culture (dual and triple) by the cross-feeding from B. ovatus breaking down the polysaccharides to L. plantarum and B. adolescentis producing short-chain fatty acids and organic acids | [38] |
Arabinoxylan oligosaccharides (AXOS) | Bifidobacterium longum, Eubacterium rectale | Demonstration of the mutual cross-feeding during the co-culture of bacteria for the utilization of AXOS showing butyrogenic and bifidogenic effects by the provision of concomitant metabolite production of acetate-to-butyrate producer (B. longum) and xylose from the AXOS substrate to bifidobacterial strain (E. rectale), respectively | [44] |
Resistant starch (RS) | Bacteroides thetaiotaomicron, Bifidobacterium aderceptis | Characterization of the degradation of RS by the probiotic strain (B. aderceptis) which can cross-feed other gut bacterium (B. thetaiotaomicron) by sharing the reducing sugars generated from RS | [62] |
Inulin, xylan | Lachnoclostridium symbiosum, Phocaeicola dorei | Validation of the synergistic growth according to the cross-feeding as the commensalism interaction observed from the bidirectional culture between L. Symbiosum and P. dorei | [42] |
mixture of dietary fibres (pectin, inulin, xylan, cellobiose, starch) | Agathobacter rectalis, Akkermansia muciniphila, Anaerobutyricum soehngenii, B. ovatus, Bacteroides xylanisolvens, B. adolescentis, Blautia hydrogenotrophica, Blautia obeum, Collinsella aerofaciens, Coprococcus catus, Eubacterium siraeum, Faecalibacterium prausnitzii, Flavonifractor plautii, Roseburia intestinalis, Ruminococcus bromii, Subdoligranulum variabile, | Assembly of Diet-based Minimal Microbiome (Db-MM) to predict the interspecies correlation among the members of Db-MM with the perspectives to the metabolic niches and trophic roles in gut | [63] |
Composition of Microbial Community a | Major Implications | Reference | |
---|---|---|---|
Target Pathogen | Co-Culturing Bacteria | ||
Klebsiella pneumoniae | Klebsiella oxytoca | Demonstration of the nutrient competition in minimally defined media (M9) supplemented with carbon source shared by both pathogen and co-cultured bacteria | [65] |
Enterotoxic Escherichia coli, Salmonella typhimurium, methicillin-resistant Staphylococcus aureus | Bacillus subtilis | Demonstration of the nutrient competition (based on the production of downstream along with the depletion of tryptophan shared by both pathogen and co-cultured bacteria) and the bacteria-mediated inhibition of host cell adhesion of pathogens | [66] |
Carbapenemase-producing Enterobacteriaceae | Lactobacillus piracies, Lactobacillus plantarum, Lactobacillus rhamnosus | Construction of disadvantageous environment for pathogens by the decrease in pH level due to the production of acidic metabolites by probiotics | [67] |
Avian pathogenic E. coli | Bifidobacterium lactis, Lacticaseibacillus rhamnosus | Validation on the production of antimicrobial substance by the isolation of active substances (small peptides) and the inhibition of pathogen adhesion to epithelial cells as the mechanism of protective bacteria | [68] |
Vibrio cholerae, Vibrio fischeri, Vibrio fluvialis, Vibrio harveyi | E. coli (isolated from mouse small intestine) | Validation of the production of colibactin as an antimicrobial substance of co-cultured bacteria with anti-Vibrio activity through both the phenotypic and genetic analysis | [69] |
Enteropathogenic E. coli, K. pneumoniae, S. typhimurium, S. aureus, Staphylococcus epidermidis | Bifidobacterium longum, Pediococcus pentosaceus | Suggestion of the combination of probiotic strains (B. longum and P. pentosaceus) to achieve the synergistic effect for the production of antimicrobial substances | [70] |
Listeria monocytogenes, Salmonella enterica | Enterococcus faecium | Co-culture-based assessment of the antibacterial spectrum against pathogens after the identification of Enterococcus faecium available for the production of bacteriocin-like inhibitory substance (BLIS) | [71] |
Pseudomonas aeruginosa | B. subtilis | Demonstration of anti-biofilm formation effects from antimicrobial substance produced by the culture of high density of B. subtilis | [72] |
Enterohemorrhagic E. coli (EHEC), P. aeruginosa, S. aureus, S. epidermidis | E. coli Nissle (EcN) | Demonstration of species-specific anti-biofilm effects (effective for EHEC, S. aureus, and S. epidermidis but not effective for P. aeruginosa) of protein DegP secreted from EcN | [73] |
EHEC, S. enterica serovar Typhimurium | Lactobacillus casei, L. rhamnosus | Analysis of the various pathogen control mechanisms of probiotics including the production of antimicrobial substance, the inhibition of host cell adhesion and invasion of pathogens, and the decrease in pathogen cytotoxicity | [74] |
Salmonella paratyphi | L. casei, L. plantarum | Demonstration of the production of antimicrobial substance to inhibit pathogen biofilm formation | [75] |
Salmonella enteritidis, Salmonella infantis, Slamonella kentucky | Ligilactobacillus salivarius | Assessment of the inhibitory effects against the adhesion of pathogens to cell by the co-culture with L. salivarius | [76] |
Candida albicans | Faecalibacterium prausnitzii | Suggestion of the host protection mechanism of F. prausnitzii by reducing the activity of virulence factors of C. albicans through the production of NLRP6 inflammasome, cytokines, and antimicrobial peptides | [77] |
Clostridioides difficile | Bacteroides ovatus, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Blautia hydrogenotrophica, Clostridium hiranonis, Clostridium scindens, Collinsella aerofaciens, Desulfovibrio piger, Eggerthella lenta, Euvacterium rectale, F. prausnitzii, Prevotella copri | Demonstration of the principles for the diverse capability of the pathogen control among the synthetic gut consortia according to the various compositions | [78] |
Clostridiodies difficile | Bifidobacterium bifidum, Bacillus licheniformis, Bacteroides eggerthii, Bacteroides finegoldii, B. vulgatus, Blautia wexlerae, Clostridium nexile, Clostridium sp., Drancourtella massiliensis, Eubacterium eligens, Lactobacillus rogosae, Megasphaera indica, Parabacteroides merdae, Prevotella copri, Sellimonas intestinalis | Suggestion of optimized mixture of protective bacterial members selected by the phenotypic characterization of bacterial strains isolated from human feces to assess the inhibitory effects against C. difficile (direct inhibition and auxotrophical correlationship) | [79] |
Category | Microorganism | Cell | Methods | Major Implications | Reference |
---|---|---|---|---|---|
Host Microbiota Interaction (HMI) module | Lactobacillus rhamnosus | Caco-2 cell | Circulation of bacterial culture through the upper mucus layer (1.5 h) |
| [36] |
fecal microbiota | Caco-2 cell | Introduction of complex microbial community from a SHIME reactor in the upper mucus layer |
| ||
| |||||
Gut-on-a-chip (Human emulation system) | SYN5183 (Engineered Escherichia coli Nissle) | Caco-2 cell + HT-29 cell (4:1 ratio) for gut compartment and human microvascular endothelial cells (HMVECs) for blood compartment | Introduction of SYN5183 diluted in experimental gut medium to the gut compartment followed by the 1 h static incubation for the settlement of bacteria (single dose) or the 12 h continuous dosing of SYN5183 (continuous administration) in the presence of perfusing medium with phenylalanine |
| [33] |
Gut inflammation-on-a-chip | Nonpathogenic Escherichia coli (GFP-labeled) | Caco-2 cell, peripheral blood mononuclear cells (PBMCs) | Introduction of E. coli flowed into luminal microchannel of gut-on-a-chip simulating the inflammatory response of cells treated with or without dextran sodium sulfate (DSS) |
| [85] |
Mixture of probiotics (Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus delbrueckii subspecies bulgaricus, Streptococcus salivarius subspecies thermophilus) | Introduction of probiotics mixture to the luminal microchannel followed by the static incubation 1–2 h for the settlement of bacteria prior to resuming the circulation of the culture medium in gut-on-a-chip simulating the inflammatory response of cells treated with or without DSS |
| |||
Modular microfluidics-based human–microbial co-culture model (HuMiX) | Bacteroides caccae, L. rhamnosus | Caco-2 cell, CCD-18Co cell, CD4+ T cell | Inoculation of bacteria (B. caccae and/or L. rhamnosus) in microbial microchamber separated from cell microchamber by nanoporous membrane and following exposure to the flow of the perfusing anoxic DMEM medium |
| [86] |
L. rhamnosus | Caco-2 cell |
| |||
Gut-on-a-chip (Human emulation system) | ECN and SYN (wild type and engineered E. coli Nissle, respectively) | Caco-2 cell + HT-29 cell (4:1 ratio) for gut compartment and human microvascular endothelial cells (HMVECs) for blood compartment | Introduction of bacteria (ECN or SYN) to the gut compartment followed by 30 min static incubation for the settlement of bacteria in the presence of perfusing medium with L-tryptophan and cortisol |
| [87] |
Gut-on-a-chip (Human emulation system) | Shigella flexneri | Caco-2 cell | Introduction of S. flexneri to the upper channel of the epithelial cells seeded on the central channel (stretchable porous membrane) by 30 min of microfluidic flow (400 μL/h) to expose bacteria over the full surface of the channel |
| [34] |
Human primary colon chip | Enterohemorrhagic E. coli (EHEC; serotype O157:H7) | Human intestinal microvascular endothelial cells (HIMECs) | Introduction of EHEC for the attachment on the apical lumen cell followed by 3 h static incubation for the settlement of bacteria prior to resuming the circulation of perfusing medium supplemented with human microbiome metabolites (Hmms) or mouse microbiome metabolites (Mmms) |
| [35] |
Anoxic-oxic interface (AOI) chip | Bifidobacterium adolescentis, Eubacterium hallii | Caco-2 cell | Introduction of bacteria (Bifidobacterium adolescentis or ubacterium hallii) to microbial microchannels (upper channels) for the attachment on the apical epithelial surface followed by the 1 h static incubation for the settlement of bacteria prior to resuming the circulation of anoxic medium in AOI chip |
| [88] |
Primary human intestine chip | Bacteroides fragilis | Caco-2 cell, HIMECs | Introduction of B. fragilis to the apical side of chips followed by 30 min static incubation for the settlement of bacteria |
| [37] |
fresh human stool specimens | primary human intestinal epithelium (epithelial cells isolated from organoids derived from human ileum) | Introduction of diluted microbiota stock to the apical side of chips followed by 30 min static incubation for the settlement of bacteria |
| ||
Gut-on-a-chip | VSL#3 (B. breve, B. infantis, B. longum, L. acidophilus, Lactobacillus paracasei, L. plantarum) | Caco-2 cell, PBMCs | Introduction of bacteria (VSL#3, GFP-EC, EIEC) to the upper microchannel followed by 1.5 h static incubation for the settlement of bacteria |
| [89] |
green fluorescent protein-labeled E. coli (GFP-EC),enteroinvasive E. coli (EIEC) |
| ||||
VSL#3 (B. breve, B. infantis, B. longum, L. acidophilus, L. paracasei, L. plantarum), EIEC |
| ||||
Intestine-on-chip model | Candida albicans, L. rhamnosus | HUVECs, Caco-2 cells, PBMCs, primary macrophages | Introduction of L. rhamnosus to epithelial cell layer (pre-colonization) followed by 1.5 h static incubation for the settlement of bacteria and subsequent introduction of C. albicans |
| [90] |
Mouse intestine chip | S. typhimurium | epithelial cells (isolated from duodenal, jejunal, ileal, or colon organoids) | Introduction of S. typhimurium to the apical channel followed by 30 min static incubation for the settlement of bacteria |
| [91] |
Human microbiome (Hmb), mouse microbiome (Mmb) | Introduction of Hmb or Mmb to the apical channel followed by 30 min static incubation for the settlement of bacteria |
| |||
E. faecium (isolated from Hmb stock), S. typhimurium | Perfusion of E. faecium through the apical channel for 16 h before the introduction of S. typhimurium |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.W.; Shin, J.S.; Lee, C.M.; Han, H.Y.; O, Y.; Kim, H.W.; Cho, T.J. Gut-on-a-Chip for the Analysis of Bacteria–Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet–Microbiota Relationship? Nutrients 2023, 15, 1131. https://doi.org/10.3390/nu15051131
Lee KW, Shin JS, Lee CM, Han HY, O Y, Kim HW, Cho TJ. Gut-on-a-Chip for the Analysis of Bacteria–Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet–Microbiota Relationship? Nutrients. 2023; 15(5):1131. https://doi.org/10.3390/nu15051131
Chicago/Turabian StyleLee, Ki Won, Jin Song Shin, Chan Min Lee, Hea Yeon Han, Yun O, Hye Won Kim, and Tae Jin Cho. 2023. "Gut-on-a-Chip for the Analysis of Bacteria–Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet–Microbiota Relationship?" Nutrients 15, no. 5: 1131. https://doi.org/10.3390/nu15051131
APA StyleLee, K. W., Shin, J. S., Lee, C. M., Han, H. Y., O, Y., Kim, H. W., & Cho, T. J. (2023). Gut-on-a-Chip for the Analysis of Bacteria–Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet–Microbiota Relationship? Nutrients, 15(5), 1131. https://doi.org/10.3390/nu15051131