The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proteins
2.2. In Vitro Simulation of Gastrointestinal Digestion
2.3. Cells
2.4. RNA Purification, Library Preparation, and Sequencing
2.5. Mapping of the Sequences to the Genome
2.6. Differential Expressed Genes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, D.; Kim, S. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef]
- Lönnerdal, B. Bioactive Proteins in Human Milk—Potential Benefits for Preterm Infants. Clin. Perinatol. 2017, 44, 179–191. [Google Scholar] [CrossRef]
- Layman, D.K.; Lönnerdal, B.; Fernstrom, J.D. Applications for α-Lactalbumin in Human Nutrition. Nutr. Rev. 2018, 76, 444–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiemsma, L.T.; Michels, K.B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef] [Green Version]
- Lok, Z.S.Y.; Lyle, A.N. Osteopontin in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Lönnerdal, B. Evaluation of Bioactivities of Bovine Milk Osteopontin Using a Knockout Mouse Model. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Schack, L.; Lange, A.; Kelsen, J.; Agnholt, J.; Christensen, B.; Petersen, T.E.; Sørensen, E.S. Considerable Variation in the Concentration of Osteopontin in Human Milk, Bovine Milk, and Infant Formulas. J. Dairy Sci. 2009, 92, 5378–5385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruun, S.; Jacobsen, L.N.; Ze, X.; Husby, S.; Ueno, H.M.; Nojiri, K.; Kobayashi, S.; Kwon, J.; Liu, X.; Yan, S.; et al. Osteopontin Levels in Human Milk Vary Across Countries and Within Lactation Period: Data From a Multicenter Study. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Chatterton, D.E.W.; Rasmussen, J.T.; Heegaard, C.W.; Sørensen, E.S.; Petersen, T.E. In Vitro Digestion of Novel Milk Protein Ingredients for Use in Infant Formulas: Research on Biological Functions. Trends Food Sci. Technol. 2004, 15, 373–383. [Google Scholar] [CrossRef]
- Christensen, B.; Karlsen, N.J.; Jørgensen, S.D.S.; Jacobsen, L.N.; Ostenfeld, M.S.; Petersen, S.V.; Müllertz, A.; Sørensen, E.S. Milk Osteopontin Retains Integrin-Binding Activity after in Vitro Gastrointestinal Transit. J. Dairy Sci. 2020, 103, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.; Sørensen, E.S. Structure, Function and Nutritional Potential of Milk Osteopontin. Int. Dairy J. 2016, 57, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, R.; Lönnerdal, B. Assessment of Bioactivities of the Human Milk Lactoferrin-Osteopontin Complex in Vitro. J. Nutr. Biochem. 2019, 69, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiang, R.; Liu, J.; Lönnerdal, B. The Bovine Lactoferrin-Osteopontin Complex Increases Proliferation of Human Intestinal Epithelial Cells by Activating the PI3K/Akt Signaling Pathway. Food Chem. 2020, 310, 125919. [Google Scholar] [CrossRef] [PubMed]
- Ashkar, S.; Weber, G.F.; Panoutsakopoulou, V.; Sanchirico, M.E.; Jansson, M.; Zawaideh, S.; Rittling, S.R.; Denhardt, D.T.; Glimcher, M.J.; Cantor, H. Eta-1 (Osteopontin): An Early Component of Type-1 (Cell-Mediated) Immunity. Science 2000, 287, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Shinzato, M.; Nagashima, S.; Rittling, S.R.; Denhardt, D.T.; Uede, T.; Taniguchi, K. Effect of Osteopontin on Diarrhea Duration and Innate Immunity in Suckling Mice Infected with a Murine Rotavirus. Viral Immunol. 2009, 22, 139–144. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.P.B.; Ellen, R.P.; Sørensen, E.S.; Goldberg, H.A.; Zohar, R.; Sodek, J. Osteopontin Attenuation of Dextran Sulfate Sodium-Induced Colitis in Mice. Lab. Investig. 2009, 89, 1169–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aasmul-Olsen, K.; Henriksen, N.L.; Nguyen, D.N.; Heckmann, A.B.; Thymann, T.; Sangild, P.T.; Bering, S.B. Milk Osteopontin for Gut, Immunity and Brain Development in Preterm Pigs. Nutrients 2021, 13, 2675. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y. Growth, Nutrition, and Cytokine Response of Breast-Fed Infants and Infants Fed Formula With Added Bovine Osteopontin. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.M.; Monaco, M.H.; Drnevich, J.; Kvistgaard, A.S.; Hernell, O.; Lönnerdal, B. Bovine Osteopontin Modifies the Intestinal Transcriptome of Formula-Fed Infant Rhesus Monkeys to Be More Similar to Those That Were Breastfed. J. Nutr. 2014, 144, 1910–1919. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Bovine Milk Osteopontin as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07137. [Google Scholar] [CrossRef]
- Christensen, B.; Schack, L.; Kläning, E.; Sørensen, E.S. Osteopontin Is Cleaved at Multiple Sites Close to Its Integrin-Binding Motifs in Milk and Is a Novel Substrate for Plasmin and Cathepsin D. J. Biol. Chem. 2010, 285, 7929–7937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picariello, G.; Ferranti, P.; Fierro, O.; Mamone, G.; Caira, S.; Di Luccia, A.; Monica, S.; Addeo, F. Peptides Surviving the Simulated Gastrointestinal Digestion of Milk Proteins: Biological and Toxicological Implications. J. Chromatogr. B 2010, 878, 295–308. [Google Scholar] [CrossRef]
- Dupont, D.; Mandalari, G.; Molle, D.; Jardin, J.; Léonil, J.; Faulks, R.M.; Wickham, M.S.J.; Mills, E.N.C.; Mackie, A.R. Comparative Resistance of Food Proteins to Adult and Infant in Vitro Digestion Models. Mol. Nutr. Food Res. 2010, 54, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Boutros, P.C. VennDiagram: A Package for the Generation of Highly-Customizable Venn and Euler Diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Kvistgaard, A.S.; Matulka, R.A.; Dolan, L.C.; Ramanujam, K.S. Pre-Clinical in Vitro and in Vivo Safety Evaluation of Bovine Whey Derived Osteopontin, Lacprodan® OPN-10. Food Chem. Toxicol. 2014, 73, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Artursson, P.; Palm, K.; Luthman, K. Caco-2 Monolayers in Experimental and Theoretical Predictions of Drug Transport. Adv. Drug Deliv. Rev. 2001, 46, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 Cell Line as a Model of the Intestinal Barrier: Influence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef]
- Christensen, B.; Toth, A.E.; Nielsen, S.S.E.; Scavenius, C.; Petersen, S.V.; Enghild, J.J.; Rasmussen, J.T.; Nielsen, M.S.; Sørensen, E.S. Transport of a Peptide from Bovine As1-Casein across Models of the Intestinal and Blood–Brain Barriers. Nutrients 2020, 12, 3157. [Google Scholar] [CrossRef]
- Peterson, R.J.; Koval, M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front. Cell Dev. Biol. 2021, 9, 699407. [Google Scholar] [CrossRef]
- Draheim, K.M.; Chen, H.-B.; Tao, Q.; Moore, N.; Roche, M.; Lyle, S. ARRDC3 Suppresses Breast Cancer Progression by Negatively Regulating Integrin Β4. Oncogene 2010, 29, 5032–5047. [Google Scholar] [CrossRef] [Green Version]
- Nabhan, J.F.; Pan, H.; Lu, Q. Arrestin Domain-containing Protein 3 Recruits the NEDD4 E3 Ligase to Mediate Ubiquitination of the Β2-adrenergic Receptor. EMBO Rep. 2010, 11, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, T.M.; Dagdeviren, S.; Carroll, S.H.; Cai, W.; Melnik, V.Y.; Noh, H.L.; Saengnipanthkul, S.; Kim, J.K.; Kahn, C.R.; Lee, R.T. Arrestin Domain-Containing 3 (Arrdc3) Modulates Insulin Action and Glucose Metabolism in Liver. Proc. Natl. Acad. Sci. USA 2020, 117, 6733–6740. [Google Scholar] [CrossRef]
- Jiang, R.; Lönnerdal, B. Transcriptomic Profiling of Intestinal Epithelial Cells in Response to Human, Bovine and Commercial Bovine Lactoferrins. BioMetals 2014, 27, 831–841. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, M.; Zhang, L.; Wang, P.; Song, G.; Liu, B.; Wu, H.; Yin, Z.; Gao, C. Intracellular Osteopontin Stabilizes TRAF3 to Positively Regulate Innate Antiviral Response. Sci. Rep. 2016, 6, 23771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Shi, L.; Qiu, D.; Hu, H.; Kao, P.N. NF45/ILF2 Tissue Expression, Promoter Analysis, and Interleukin-2 Transactivating Function. Exp. Cell Res. 2005, 305, 312–323. [Google Scholar] [CrossRef]
- Malek, T.R.; Castro, I. Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity. Immunity 2010, 33, 153–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Resource |
---|---|
No. of unique transcripts | 170,492 |
Maximum transcript length | 482,375 bp |
Minimum transcript length | 16 bp |
Median transcript length | 70 bp |
Average transcript length | 1010.8 bp |
No. unique genes | 19,443 |
Symbol | Fold Change | Molecular Function | |
---|---|---|---|
hOPN | bOPN | ||
STPG3-AS1 | 6.7 | - | Not available |
ARRDC3 | 5.1 | 2.7 | Beta-3 adrenergic receptor binding (GO:0031699) |
ZSCAN26 | 4.4 | - | DNA-binding transcription factor activity (GO:0000981) |
MUC19 | 4.1 | 2.9 | Gel-forming mucin protein family |
JADE1 | 4.1 | 2.8 | Transcription co-activator activity (GO:0003713) |
TMEM267 | 3.6 | 5.8 | Protein binding (GO:0005515) |
NDRG1 | 3.6 | 3.1 | Small GTPase binding (GO:0031267) |
INTS5 | 3.3 | 3.4 | Protein binding (GO:0005515) |
WDR70 | 3.3 | 4.1 | Enzyme binding (GO:0019899) |
WDR53 | 3.2 | 4.8 | Protein binding (GO:0005515) |
MTFMT | 3.1 | 3.0 | Methionyl-tRNA formyltransferase activity (GO:0004479) |
APOL6 | 3.1 | - | Lipid binding (GO:0008289) |
NOS2 | 2.95 | 2.6 | Nitric-oxide synthase activity (GO:0004517) |
DGKZ | 2.9 | 2.8 | ATP binding (GO:0005524) |
RBM14 | 2.86 | 2.92 | RNA binding (GO:0003723) |
ARHGEF11 | 2.85 | 2.70 | G protein-coupled receptor binding (GO:0001664) |
TYMS | 2.80 | 2.18 | Thymidylate synthase activity (GO:0004799) |
PRDM1 | 2.71 | - | DNA-binding transcription repressor activity (GO:0001227) |
GAL | 2.64 | 2.37 | Galanin receptor activity (GO:0004966) |
ZNF239 | 2.63 | 2.40 | DNA binding (GO:0003677) |
Symbol | Fold Change | Molecular Function | |
---|---|---|---|
hOPN | bOPN | ||
BMP2 | 0.16 | 0.22 | Protein serine/threonine kinase activator activity (GO:0043539) |
HSPB8 | 0.19 | 0.18 | Protein homodimerization activity (GO:0042803) |
IPO9 | 0.24 | 0.27 | Small GTPase binding (GO:0031267) |
AP5B1 | 0.24 | - | Protein binding (GO:0005515) |
PCF11 | 0.25 | 0.25 | RNA polymerase II complex binding (GO:0000993) |
MAPKBP1 | 0.27 | 0.32 | Protein binding (GO:0005515) |
PPP1R15A | 0.30 | 0.35 | Protein phosphatase regulator activity (GO:0019888) |
RASA4DP | 0.30 | 0.24 | GTPase activator activity (GO:0005096) |
DIDO1 | 0.30 | 0.22 | RNA binding (GO:0003723) |
SMURF1 | 0.30 | 0.37 | Ubiquitin-protein transferase activity (GO:0004842) |
SC5D | 0.30 | 0.40 | Sterol desaturase activity (GO:0000248) |
PINK1-AS | 0.31 | - | Not available |
CYCS | 0.31 | - | Electron transfer activity (GO:0009055) |
PCYOX1 | 0.32 | 0.24 | mRNA binding (GO:0003729) |
RTKN2 | 0.33 | 0.40 | Positive regulation of NIK/NF-kappaB signalling (GO:1901224) |
CHD1 | 0.34 | 0.38 | DNA binding (GO:0003677) |
MAFF | 0.34 | 0.38 | DNA-binding transcription factor activity (GO:0000981) |
SYNE2 | 0.34 | - | Positive regulation of cell migration (GO:0030335) |
LDLR | 0.35 | 0.39 | Low-density lipoprotein particle binding (GO:0030169) |
LINC01277 | 0.36 | 0.45 | Not available |
Category | Term/Gene Function | Gene Count | p-Value | ||
---|---|---|---|---|---|
hOPN | bOPN | hOPN | bOPN | ||
GO:0016567 | Protein ubiquitination | 11 | 13 | 0.037 | N.S. |
GO:0006357 | Regulation of transcription from RNA polymerase II | 35 | 40 | 0.00024 | 0.0028 |
GO:0003678 | DNA helicase activity | 1 | 5 | N.S. | 0.0135 |
GO:0003677 | DNA binding | 27 | 34 | N.S. | 0.0018 |
GO:0004843 | Cysteine-type deubiquitinase activity | 4 | 6 | N.S. | 0.034 |
hassa03015 | mRNA surveillance pathway | 5 | 3 | 0.01 | Nhas |
hsa03040 | Spliceosome | 5 | 1 | 0.044 | N.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, B.; Buitenhuis, A.J.; Jacobsen, L.N.; Ostenfeld, M.S.; Sørensen, E.S. The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison. Nutrients 2023, 15, 1166. https://doi.org/10.3390/nu15051166
Christensen B, Buitenhuis AJ, Jacobsen LN, Ostenfeld MS, Sørensen ES. The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison. Nutrients. 2023; 15(5):1166. https://doi.org/10.3390/nu15051166
Chicago/Turabian StyleChristensen, Brian, Albert J. Buitenhuis, Lotte N. Jacobsen, Marie S. Ostenfeld, and Esben S. Sørensen. 2023. "The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison" Nutrients 15, no. 5: 1166. https://doi.org/10.3390/nu15051166
APA StyleChristensen, B., Buitenhuis, A. J., Jacobsen, L. N., Ostenfeld, M. S., & Sørensen, E. S. (2023). The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison. Nutrients, 15(5), 1166. https://doi.org/10.3390/nu15051166