Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge
Abstract
:1. Introduction
2. Understanding Collagen World
3. Mechanism of Action in Joint Health
3.1. Native Collagen
3.2. Hydrolyzed Collagens
4. Clinical Evidence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Peat, G.; Thomas, M.J. Osteoarthritis Year in Review 2020: Epidemiology & Therapy. Osteoarthr. Cartil. 2021, 29, 180–189. [Google Scholar] [CrossRef]
- Neogi, T. The Epidemiology and Impact of Pain in Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honvo, G.; Lengelé, L.; Charles, A.; Reginster, J.-Y.; Bruyère, O. Role of Collagen Derivatives in Osteoarthritis and Cartilage Repair: A Systematic Scoping Review with Evidence Mapping. Rheumatol. Ther. 2020, 7, 703–740. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E. Pharmacologic and Non-Pharmacologic Treatment of Osteoarthritis. Curr. Treat. Options Rheum. 2016, 2, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Curtis, E.; Fuggle, N.; Shaw, S.; Spooner, L.; Ntani, G.; Parsons, C.; Corp, N.; Honvo, G.; Baird, J.; Maggi, S.; et al. Safety of Cyclooxygenase-2 Inhibitors in Osteoarthritis: Outcomes of a Systematic Review and Meta-Analysis. Drugs Aging 2019, 36, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, O.; Honvo, G.; Veronese, N.; Arden, N.K.; Branco, J.; Curtis, E.M.; Al-Daghri, N.M.; Herrero-Beaumont, G.; Martel-Pelletier, J.; Pelletier, J.-P.; et al. An Updated Algorithm Recommendation for the Management of Knee Osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin. Arthritis Rheum. 2019, 49, 337–350. [Google Scholar] [CrossRef]
- Reginster, J.-Y.; Veronese, N. Highly Purified Chondroitin Sulfate: A Literature Review on Clinical Efficacy and Pharmacoeconomic Aspects in Osteoarthritis Treatment. Aging Clin. Exp. Res 2021, 33, 37–47. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [Green Version]
- Gelse, K. Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Therkildsen, M.; Aluko, R.E.; Lametsch, R. Exploration of Collagen Recovered from Animal By-Products as a Precursor of Bioactive Peptides: Successes and Challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 2011–2027. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S.; Chiotelli, E.; Noirt, F.; Mwewa, S.; Lassel, T. Consumption of a Functional Fermented Milk Containing Collagen Hydrolysate Improves the Concentration of Collagen-Specific Amino Acids in Plasma. J. Agric. Food Chem. 2008, 56, 7790–7795. [Google Scholar] [CrossRef] [PubMed]
- Aigner, T.; Stöve, J. Collagens--Major Component of the Physiological Cartilage Matrix, Major Target of Cartilage Degeneration, Major Tool in Cartilage Repair. Adv. Drug Deliv. Rev. 2003, 55, 1569–1593. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.E.; Oesser, S. Collagen Hydrolysate for the Treatment of Osteoarthritis and Other Joint Disorders: A Review of the Literature. Curr. Med. Res. Opin. 2006, 22, 2221–2232. [Google Scholar] [CrossRef]
- Oesser, S.; Proksch, E.; Schunck, M. Prophylactic Treatment with a Special Collagen Hydrolysate Decreases Cartilage Tissue Degeneration in the Knee Joints. Osteoarthr. Cartil. 2008, 16, S45. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, S.; Mano, H.; Sampei, C.; Shimizu, J.; Wada, M. Chondroprotective Effect of the Bioactive Peptide Prolyl-Hydroxyproline in Mouse Articular Cartilage in Vitro and in Vivo. Osteoarthr. Cartil. 2009, 17, 1620–1627. [Google Scholar] [CrossRef] [Green Version]
- Rezende, R.M.; Cox, L.M.; Weiner, H.L. Mucosal Tolerance Therapy in Humans: Past and Future. Clin. Exp. Neuroimmunol. 2019, 10, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Mannelli, L.D.C.; Micheli, L.; Zanardelli, M.; Ghelardini, C. Low Dose Native Type II Collagen Prevents Pain in a Rat Osteoarthritis Model. BMC Musculoskelet. Disord. 2013, 14, 228. [Google Scholar]
- Park, K.-S.; Park, M.-J.; Cho, M.-L.; Kwok, S.-K.; Ju, J.H.; Ko, H.-J.; Park, S.-H.; Kim, H.-Y. Type II Collagen Oral Tolerance; Mechanism and Role in Collagen-Induced Arthritis and Rheumatoid Arthritis. Mod. Rheumatol. 2009, 19, 581–589. [Google Scholar] [CrossRef]
- van der Rest, M.; Garrone, R. Collagen Family of Proteins. FASEB J. 1991, 5, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, G.N.; Kartha, G. Structure of Collagen. Nature 1954, 174, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, E.D. Nature and Cellular Origin of Connective Tissue Matrix. Ups J. Med. Sci. 1977, 82, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S.; Ruggiero, F. The Collagen Superfamily: From the Extracellular Matrix to the Cell Membrane. Pathol. Biol. 2005, 53, 430–442. [Google Scholar] [CrossRef]
- Carr, B.P.; Chen, Z.; Chung, J.H.Y.; Wallace, G.G. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers 2022, 14, 4270. [Google Scholar] [CrossRef]
- Rajabimashhadi, Z.; Gallo, N.; Salvatore, L.; Lionetto, F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers 2023, 15, 544. [Google Scholar] [CrossRef]
- Sklenářová, R.; Akla, N.; Latorre, M.J.; Ulrichová, J.; Franková, J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J. Funct. Biomater. 2022, 13, 249. [Google Scholar] [CrossRef]
- Shenoy, M.; Abdul, N.S.; Qamar, Z.; Bahri, B.M.A.; Al Ghalayini, K.Z.K.; Kakti, A. Collagen Structure, Synthesis, and Its Applications: A Systematic Review. Cureus 2022, 14, 24856. [Google Scholar] [CrossRef]
- Söderhäll, C.; Marenholz, I.; Kerscher, T.; Rüschendorf, F.; Esparza-Gordillo, J.; Worm, M.; Gruber, C.; Mayr, G.; Albrecht, M.; Rohde, K.; et al. Variants in a Novel Epidermal Collagen Gene (COL29A1) Are Associated with Atopic Dermatitis. PLoS Biol. 2007, 5, e242. [Google Scholar] [CrossRef] [Green Version]
- Gara, S.K.; Grumati, P.; Urciuolo, A.; Bonaldo, P.; Kobbe, B.; Koch, M.; Paulsson, M.; Wagener, R. Three Novel Collagen VI Chains with High Homology to the Alpha3 Chain. J. Biol. Chem. 2008, 283, 10658–10670. [Google Scholar] [CrossRef] [Green Version]
- Hay, E.D. Extracellular Matrix. J. Cell. Biol. 1981, 91, 205s–223s. [Google Scholar] [CrossRef] [PubMed]
- Bowes, J.H.; Kenten, R.H. Some Observations on the Amino Acid Distribution of Collagen, Elastin and Reticular Tissue from Different Sources. Biochem. J. 1949, 45, 281–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, A.J. Collagen and Elastin Fibres. J. Clin. Pathol. Suppl. R. Coll. Pathol. 1978, 12, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, H.J.; Reid, K.B. Collectins–Soluble Proteins Containing Collagenous Regions and Lectin Domains--and Their Roles in Innate Immunity. Protein. Sci. 1994, 3, 1143–1158. [Google Scholar] [CrossRef] [Green Version]
- Baccetti, B. Collagen and Animal Phylogeny. In Biology of Invertebrate and Lower Vertebrate Collagens; Bairati, A., Garrone, R., Eds.; Springer US: Boston, MA, USA, 1985; pp. 29–47. ISBN 978-1-4684-7638-5. [Google Scholar]
- Tang, C.; Zhou, K.; Zhu, Y.; Zhang, W.; Xie, Y.; Wang, Z.; Zhou, H.; Yang, T.; Zhang, Q.; Xu, B. Collagen and Its Derivatives: From Structure and Properties to Their Applications in Food Industry. Food Hydrocoll. 2022, 131, 107748. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H. Recent Advances of Collagen-Based Biomaterials: Multi-Hierarchical Structure, Modification and Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1509–1522. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zheng, L.; Su, G.; Luo, D.; Lai, C.; Zhao, M. Protein Solubility, Secondary Structure and Microstructure Changes in Two Types of Undenatured Type II Collagen under Different Gastrointestinal Digestion Conditions. Food Chem. 2021, 343, 128555. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Toriumi, S.; Ura, K.; Takagi, Y. Feasibility of Collagens Obtained from Bester Sturgeon Huso Huso × Acipenser Ruthenus for Industrial Use. Aquaculture 2020, 529, 735641. [Google Scholar] [CrossRef]
- Arias, J.L.; Carrino, D.A.; Fernández, M.S.; Rodríguez, J.P.; Dennis, J.E.; Caplan, A.I. Partial Biochemical and Immunochemical Characterization of Avian Eggshell Extracellular Matrices. Arch. Biochem. Biophys. 1992, 298, 293–302. [Google Scholar] [CrossRef]
- Abedinia, A.; Mohammadi Nafchi, A.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry Gelatin: Characteristics, Developments, Challenges, and Future Outlooks as a Sustainable Alternative for Mammalian Gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. [Google Scholar] [CrossRef]
- Oliveira, V.D.M.; Assis, C.R.D.; Costa, B.D.A.M.; Neri, R.C.D.A.; Monte, F.T.; Freitas, H.M.S.D.C.V.; França, R.C.P.; Santos, J.; Bezerra, R.D.S.; Porto, A.L.F. Physical, Biochemical, Densitometric and Spectroscopic Techniques for Characterization Collagen from Alternative Sources: A Review Based on the Sustainable Valorization of Aquatic by-Products. J. Mol. Struct. 2021, 1224, 129023. [Google Scholar] [CrossRef]
- Takahashi, S.; Zhao, M.; Eng, C. Isolation and Characterization of Insoluble Collagen of Dog Hearts. Protein. Expr. Purif. 1991, 2, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Madhurapantula, R.; Kalyanasundaram, A.; Sabharwal, T.; Antipova, O.; Bishnoi, S.; Orgel, J. Ultrastructural Location and Interactions of the Immunoglobulin Receptor Binding Sequence within Fibrillar Type I Collagen. Int. J. Mol. Sci. 2020, 21, 4166. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Li, N.; Liu, M.; Chen, J.; Elango, J.; Rahman, S.U.; Bao, B.; Wu, W. Therapeutic Effect of Nile Tilapia Type II Collagen on Rigidity in CD8+ Cells by Alleviating Inflammation and Rheumatoid Arthritis in Rats by Oral Tolerance. Polymers 2022, 14, 1284. [Google Scholar] [CrossRef]
- Stimler, N.P.; Tanzer, M.L. Purification of Large Crosslinked Peptides from Insoluble Calf Bone and Skin Collagens by Hydroxyapatite Chromatography. Biochim. Biophys. Acta 1974, 365, 425–433. [Google Scholar] [CrossRef]
- Tanzer, M.L.; Fairweather, R.; Gallop, P.M. Collagen Crosslinks: Isolation of Reduced N-Hexosylhydroxylysine from Borohydride-Reduced Calf Skin Insoluble Collagen. Arch. Biochem. Biophys. 1972, 151, 137–141. [Google Scholar] [CrossRef]
- Hong, H.; Fan, H.; Chalamaiah, M.; Wu, J. Preparation of Low-Molecular-Weight, Collagen Hydrolysates (Peptides): Current Progress, Challenges, and Future Perspectives. Food Chem. 2019, 301, 125222. [Google Scholar] [CrossRef]
- Fields, G.B.; Prockop, D.J. Perspectives on the Synthesis and Application of Triple-Helical, Collagen-Model Peptides. Biopolymers 1996, 40, 345–357. [Google Scholar] [CrossRef]
- Fertala, A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering 2020, 7, 155. [Google Scholar] [CrossRef]
- DePhillipo, N.N.; Aman, Z.S.; Kennedy, M.I.; Begley, J.P.; Moatshe, G.; LaPrade, R.F. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop. J. Sport Med. 2018, 6, 2325967118804544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, E.D.; Rayton, J.K.; Balthrop, J.E.; DiSilvestro, R.A.; Garcia-de-Quevedo, M. Copper and the Synthesis of Elastin and Collagen. Ciba Found. Symp. 1980, 79, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Ding, C.; Su, J.; Cheng, B. Effect of Copper and Zinc Ions on Type I Collagen Self-Assembly. Int. J. Polym. Anal. Charact. 2022, 27, 394–408. [Google Scholar] [CrossRef]
- Valcarcel, J.; Fraguas, J.; Hermida-Merino, C.; Hermida-Merino, D.; Piñeiro, M.M.; Vázquez, J.A. Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Mar. Drugs 2021, 19, 491. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef]
- Taga, Y.; Iwasaki, Y.; Shigemura, Y.; Mizuno, K. Improved in Vivo Tracking of Orally Administered Collagen Hydrolysate Using Stable Isotope Labeling and LC–MS Techniques. J. Agric. Food Chem. 2019, 67, 4671–4678. [Google Scholar] [CrossRef]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef]
- Weiner, H.L.; da Cunha, A.P.; Quintana, F.; Wu, H. Oral Tolerance: Basic Mechanisms and Applications of Oral Tolerance. Immunol. Rev. 2011, 241, 241–259. [Google Scholar] [CrossRef]
- Pabst, O.; Mowat, A.M. Oral Tolerance to Food Protein. Mucosal. Immunol. 2012, 5, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Faria, A.M.C.; Weiner, H.L. Oral Tolerance: Therapeutic Implications for Autoimmune Diseases. Clin. Dev. Immunol. 2006, 13, 143–157. [Google Scholar] [CrossRef]
- Coombes, J.L.; Powrie, F. Dendritic Cells in Intestinal Immune Regulation. Nat. Rev. Immunol. 2008, 8, 435–446. [Google Scholar] [CrossRef]
- Miller, A.; Lider, O.; Roberts, A.B.; Sporn, M.B.; Weiner, H.L. Suppressor T Cells Generated by Oral Tolerization to Myelin Basic Protein Suppress Both in Vitro and in Vivo Immune Responses by the Release of Transforming Growth Factor Beta after Antigen-Specific Triggering. Proc. Natl. Acad. Sci. USA 1992, 89, 421–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asnagli, H.; Martire, D.; Belmonte, N.; Quentin, J.; Bastian, H.; Boucard-Jourdin, M.; Fall, P.B.; Mausset-Bonnefont, A.-L.; Mantello-Moreau, A.; Rouquier, S.; et al. Type 1 Regulatory T Cells Specific for Collagen Type II as an Efficient Cell-Based Therapy in Arthritis. Arthritis Res. 2014, 16, R115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrosimone, K.M.; Jin, M.; Poston, B.; Liu, P. Collagen-Induced Arthritis: A Model for Murine Autoimmune Arthritis. Bio Protoc. 2015, 5, e1626. [Google Scholar] [CrossRef]
- Nagler-Anderson, C.; Bober, L.A.; Robinson, M.E.; Siskind, G.W.; Thorbecke, G.J. Suppression of Type II Collagen-Induced Arthritis by Intragastric Administration of Soluble Type II Collagen. Proc. Natl. Acad. Sci. USA 1986, 83, 7443–7446. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.S.; Harper, N.; Bevan, D.J.; Staines, N.A. Suppression of Collagen Induced Arthritis by Oral Administration of Type II Collagen: Changes in Immune and Arthritic Responses Mediated by Active Peripheral Suppression. Autoimmunity 1993, 16, 189–199. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lee, C.S.; Lider, O.; Weiner, H.L. Suppression of Adjuvant Arthritis in Lewis Rats by Oral Administration of Type II Collagen. J. Immunol. 1990, 145, 2489–2493. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Xiang, Y.; Nakamura, H.; Nishioka, K. Neoantigens in Osteoarthritic Cartilage. Curr. Opin. Rheumatol. 2004, 16, 604–608. [Google Scholar] [CrossRef]
- Haseeb, A.; Haqqi, T.M. Immunopathogenesis of Osteoarthritis. Clin. Immunol. 2013, 146, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Fergusson, C.M. The Aetiology of Osteoarthritis. Postgrad. Med. J. 1987, 63, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.P.; Martel-Pelletier, J.; Abramson, S.B. Osteoarthritis, an Inflammatory Disease: Potential Implication for the Selection of New Therapeutic Targets. Arthritis Rheum. 2001, 44, 1237–1247. [Google Scholar] [CrossRef]
- Charrière, G.; Hartmann, D.J.; Vignon, E.; Ronzière, M.C.; Herbage, D.; Ville, G. Antibodies to Types I, II, IX, and XI Collagen in the Serum of Patients with Rheumatic Diseases. Arthritis Rheum. 1988, 31, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.S.; Carter, S.D.; Bell, S.C.; Morgan, K.; Bennett, D. Anti-Type II Collagen Antibody in Naturally Occurring Canine Joint Diseases. Br. J. Rheumatol. 1989, 28, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.D.; Gray, R.; Ramshaw, J.; Mackay, I.R.; Rowley, M.J. Antibodies against the CB10 Fragment of Type II Collagen in Rheumatoid Arthritis. Arthritis Res. 2004, 6, R477–R483. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare Mannelli, L.; Maresca, M.; Micheli, L.; Puig, D.M.; Ghelardini, C. Low Dose Chicken Native Type II Collagen Is Active in a Rat Model of Osteoarthritis. Osteoporos. Int. 2015, 26, P366. [Google Scholar]
- Skov, K.; Oxfeldt, M.; Thøgersen, R.; Hansen, M.; Bertram, H.C. Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial. Nutrients 2019, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Osawa, Y.; Mizushige, T.; Jinno, S.; Sugihara, F.; Inoue, N.; Tanaka, H.; Kabuyama, Y. Absorption and Metabolism of Orally Administered Collagen Hydrolysates Evaluated by the Vascularly Perfused Rat Intestine and Liver in Situ. Biomed. Res. 2018, 39, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of Food-Derived Collagen Peptides in Human Blood after Oral Ingestion of Gelatin Hydrolysates. J. Agric. Food Chem. 2005, 53, 6531–6536. [Google Scholar] [CrossRef]
- Mobasheri, A.; Mahmoudian, A.; Kalvaityte, U.; Uzieliene, I.; Larder, C.E.; Iskandar, M.M.; Kubow, S.; Hamdan, P.C.; de Almeida, C.S.; Favazzo, L.J.; et al. A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr. Rheumatol. Rep. 2021, 23, 78. [Google Scholar] [CrossRef]
- Oesser, S.; Seifert, J. Stimulation of Type II Collagen Biosynthesis and Secretion in Bovine Chondrocytes Cultured with Degraded Collagen. Cell. Tissue Res. 2003, 311, 393–399. [Google Scholar] [CrossRef]
- Raabe, O.; Reich, C.; Wenisch, S.; Hild, A.; Burg-Roderfeld, M.; Siebert, H.-C.; Arnhold, S. Hydrolyzed Fish Collagen Induced Chondrogenic Differentiation of Equine Adipose Tissue-Derived Stromal Cells. Histochem. Cell. Biol. 2010, 134, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Guillerminet, F.; Beaupied, H.; Fabien-Soulé, V.; Tomé, D.; Benhamou, C.-L.; Roux, C.; Blais, A. Hydrolyzed Collagen Improves Bone Metabolism and Biomechanical Parameters in Ovariectomized Mice: An in Vitro and in Vivo Study. Bone 2010, 46, 827–834. [Google Scholar] [CrossRef]
- Comblain, F.; Barthélémy, N.; Lefèbvre, M.; Schwartz, C.; Lesponne, I.; Serisier, S.; Feugier, A.; Balligand, M.; Henrotin, Y. A Randomized, Double-Blind, Prospective, Placebo-Controlled Study of the Efficacy of a Diet Supplemented with Curcuminoids Extract, Hydrolyzed Collagen and Green Tea Extract in Owner’s Dogs with Osteoarthritis. BMC V. Res. 2017, 13, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, Q.-A.; Schott, E.M.; Catheline, S.E.; Maynard, R.D.; Liu, Z.; Kamal, F.; Farnsworth, C.W.; Ketz, J.P.; Mooney, R.A.; Hilton, M.J.; et al. Daily Oral Consumption of Hydrolyzed Type 1 Collagen Is Chondroprotective and Anti-Inflammatory in Murine Posttraumatic Osteoarthritis. PLoS ONE 2017, 12, e0174705. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-H.; Kim, H.-M.; Chung, H.-C.; Kim, D.-U.; Lee, J.-H. Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model. J. Microbiol. Biotechnol. 2021, 31, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Schadow, S.; Simons, V.; Lochnit, G.; Kordelle, J.; Gazova, Z.; Siebert, H.-C.; Steinmeyer, J. Metabolic Response of Human Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates. Int. J. Mol. Sci. 2017, 18, 207. [Google Scholar] [CrossRef]
- Simons, V.S.; Lochnit, G.; Wilhelm, J.; Ishaque, B.; Rickert, M.; Steinmeyer, J. Comparative Analysis of Peptide Composition and Bioactivity of Different Collagen Hydrolysate Batches on Human Osteoarthritic Synoviocytes. Sci. Rep. 2018, 8, 17733. [Google Scholar] [CrossRef] [Green Version]
- Bakilan, F.; Armagan, O.; Ozgen, M.; Tascioglu, F.; Bolluk, O.; Alatas, O. Effects of Native Type II Collagen Treatment on Knee Osteoarthritis: A Randomized Controlled Trial. Eurasian. J. Med. 2016, 48, 95–101. [Google Scholar] [CrossRef]
- Scarpellini, M.; Lurati, A.; Vignati, G.; Marrazza, M.G.; Telese, F.; Re, K.; Bellistri, A. Biomarkers, Type II Collagen, Glucosamine and Chondroitin Sulfate in Osteoarthritis Follow-up: The “Magenta Osteoarthritis Study”. J. Orthop. Traumatol. 2008, 9, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Crowley, D.C.; Lau, F.C.; Sharma, P.; Evans, M.; Guthrie, N.; Bagchi, M.; Bagchi, D.; Dey, D.K.; Raychaudhuri, S.P. Safety and Efficacy of Undenatured Type II Collagen in the Treatment of Osteoarthritis of the Knee: A Clinical Trial. Int. J. Med. Sci. 2009, 6, 312. [Google Scholar] [CrossRef] [Green Version]
- Lugo, J.P.; Saiyed, Z.M.; Lane, N.E. Efficacy and Tolerability of an Undenatured Type II Collagen Supplement in Modulating Knee Osteoarthritis Symptoms: A Multicenter Randomized, Double-Blind, Placebo-Controlled Study. Nutr. J. 2015, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, D.; Misner, B.; Bagchi, M.; Kothari, S.C.; Downs, B.W.; Preuss, H.G. Effects of Orally Administered Undenatured Type II Chicken Collagen against Arthritic Inflammatory Pathologies: A Mechanistic Exploration. Int. J. Clin. Pharm. Res. 2002, 22, 101–110. [Google Scholar]
- Mehra, A.; Anand, P.; Borate, M.; Paul, P.; Kamble, S.; Mehta, K.D.; Qamra, A.; Shah, A.; Jain, R. A Non-Interventional, Prospective, Multicentric Real Life Indian Study to Assess Safety and Effectiveness of Un-Denatured Type 2 Collagen in Management of Osteoarthritis. Int. J. Res. Orthop. 2019, 5, 315–320. [Google Scholar] [CrossRef]
- Azeem, M.A.; Patil, R. The Study of Undenatured Type II Collagen in the Knee Osteoarthri. Indjst 2019, 5, 172–175. [Google Scholar] [CrossRef]
- Costa, A.P.; Cunha Teixeira, V.; Pereira, M.; Mota Ferreira, P.; Kuplich, P.A.; Dohnert, M.B.; da Silva Guths, J.F.; Boff Daitx, R. Associated Strengthening Exercises to Undenatured Oral Type II Collagen (UC-II). A Randomized Study in Patients Affected by Knee Osteoarthritis. Muscles Ligaments Tendons J. 2020, 10, 481–492. [Google Scholar] [CrossRef]
- Sadigursky, D.; Magnavita, V.F.S.; Sá, C.K.C.D.; Monteiro, H.D.S.; Braghiroli, O.F.M.; Matos, M.A.A. Undenatured Collagen Type II for the Treatment of Osteoarthritis of the Knee. Acta Ortop. Bras 2022, 30, e240572. [Google Scholar] [CrossRef]
- Jain, A.V.; Jain, K.A.; Vijayaraghavan, N. AflaB2® and Osteoarthritis: A Multicentric, Observational, Post-Marketing Surveillance Study in Indian Patients Suffering from Knee Osteoarthritis. Int. J. Res. Orthop. 2020, 7, 110. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Nuite, M.; Krishnan, N.; Ruthazer, R.; Price, L.L.; Burstein, D.; Griffith, J.; Flechsenhar, K. Change in Knee Osteoarthritis Cartilage Detected by Delayed Gadolinium Enhanced Magnetic Resonance Imaging Following Treatment with Collagen Hydrolysate: A Pilot Randomized Controlled Trial. Osteoarthr. Cartil. 2011, 19, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Benito-Ruiz, P.; Camacho-Zambrano, M.M.; Carrillo-Arcentales, J.N.; Mestanza-Peralta, M.A.; Vallejo-Flores, C.A.; Vargas-López, S.V.; Villacís-Tamayo, R.A.; Zurita-Gavilanes, L.A. A Randomized Controlled Trial on the Efficacy and Safety of a Food Ingredient, Collagen Hydrolysate, for Improving Joint Comfort. Int. J. Food Sci. Nutr. 2009, 60, 99–113. [Google Scholar] [CrossRef]
- Bernardo, M.L.R.; Azarcon, A.C. A Randomized Controlled Trial on the Effects of Oral Collagen Treatment on the Media) Knee Joint Space Aod Functional Outcome among Veterans Memorial Medical Center Patients Diagnosed with Osteoarthritis of the Knee. PARM. Proc. 2012, 4, 1–8. [Google Scholar]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A Double-Blind, Placebo-Controlled, Randomised, Clinical Study on the Effectiveness of Collagen Peptide on Osteoarthritis: Effect of Collagen Peptide on Arthritis. J. Sci. Food Agric. 2015, 95, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Schauss, A.; Stenehjem, J.; Park, J.; Endres, J.; Clewell, A. Effect of the Novel Low Molecular Weight Hydrolyzed Chicken Sternal Cartilage Extract, BioCell Collagen, on Improving Osteoarthritis-Related Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Agric. Food Chem. 2012, 60, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Trč, T.; Bohmová, J. Efficacy and Tolerance of Enzymatic Hydrolysed Collagen (EHC) vs. Glucosamine Sulphate (GS) in the Treatment of Knee Osteoarthritis (KOA). Int. Orthop. 2011, 35, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilinc, B.E.; Oc, Y.; Alibakan, G.; Bilgin, E.; Kanar, M.; Eren, O.T. An Observational 1-Month Trial on the Efficacy and Safety of Promerim for Improving Knee Joint. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2018, 11, 1179544118757496. [Google Scholar] [CrossRef] [PubMed]
- Puigdellivol, J.; Comellas Berenger, C.; Pérez Fernández, M.Á.; Cowalinsky Millán, J.M.; Carreras Vidal, C.; Gil Gil, I.; Martínez Pagán, J.; Ruiz Nieto, B.; Jiménez Gómez, F.; Comas Figuerola, F.X.; et al. Effectiveness of a Dietary Supplement Containing Hydrolyzed Collagen, Chondroitin Sulfate, and Glucosamine in Pain Reduction and Functional Capacity in Osteoarthritis Patients. J. Diet. Suppl. 2019, 16, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-X.; Zhou, J.-L.; Prawitt, J. Collagen Peptides Improve Knee Osteoarthritis in Elderly Women: A 6-Month Randomized, Double-Blind, Placebo-Controlled Study. Agro. Food Ind. Hi. Tech. 2014, 25, 19–23. [Google Scholar]
- Lugo, J.P.; Saiyed, Z.M.; Lau, F.C.; Molina, J.P.L.; Pakdaman, M.N.; Shamie, A.N.; Udani, J.K. Undenatured Type II Collagen (UC-II®) for Joint Support: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Volunteers. J. Int. Soc. Sport. Nutr. 2013, 24, 1. [Google Scholar]
- Schön, C.; Knaub, K.; Alt, W.; Durkee, S.; Saiyed, Z.; Juturu, V. UC-II Undenatured Type II Collagen for Knee Joint Flexibility: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Clinical Study. J. Integr. Complement. Med. 2022, 28, 540–548. [Google Scholar] [CrossRef]
- Knaub, K.; Schön, C.; Alt, W.; Durkee, S.; Saiyed, Z.; Juturu, V. UC-II® Undenatured Type II Collagen Reduces Knee Joint Discomfort and Improves Mobility in Healthy Subjects: A Randomized, Double- Blind, Placebo-Controlled Clinical Study. J. Clin. Trials 2022, 12, 1–8. [Google Scholar]
- Zdzieblik, D.; Brame, J.; Oesser, S.; Gollhofer, A.; König, D. The Influence of Specific Bioactive Collagen Peptides on Knee Joint Discomfort in Young Physically Active Adults: A Randomized Controlled Trial. Nutrients 2021, 13, 523. [Google Scholar] [CrossRef]
- Clark, K.L.; Sebastianelli, W.; Flechsenhar, K.R.; Aukermann, D.F.; Meza, F.; Millard, R.L.; Deitch, J.R.; Sherbondy, P.S.; Albert, A. 24-Week Study on the Use of Collagen Hydrolysate as a Dietary Supplement in Athletes with Activity-Related Joint Pain. Curr. Med. Res. Opin. 2008, 24, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.W.G.; Ten Haaf, D.S.M.; Catoire, M.; Kersten, B.; Wouters, J.A.; Eijsvogels, T.M.H.; Hopman, M.T.E. Effectiveness of Collagen Supplementation on Pain Scores in Healthy Individuals with Self-Reported Knee Pain: A Randomized Controlled Trial. Appl. Physiol. Nutr. Metab 2020, 45, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.M.C.; Weiner, H.L. Oral Tolerance. Immunol. Rev. 2005, 206, 232–259. [Google Scholar] [CrossRef] [PubMed]
Collagen Product | Collagen Type | Molecular Features | ||
---|---|---|---|---|
Cross Linking | Collagen Triple Hélix | Active Epitopes with Effect in OA | ||
Undenatured native collagen (insoluble) | Type I | ✓ | ✓ | ✗ |
Type II | ✓ | ✓ | ✓ | |
Soluble native collagen | Type I | ✗ | ✓ | ✗ |
Type II | ✗ | ✓ | ✓ | |
Gelatin (denatured collagen) | Type I & Type II | ✗ | ✗ | ✗ |
Hydrolyzed collagen/collagen peptides |
Collagen Type | Clinical Condition | Design | Intervention Duration | Daily Dose | Main Results Reported | Reference |
---|---|---|---|---|---|---|
Native collagen | Osteoarthritis | Randomized single-blind controlled study | 3 months | 40 mg | Symptomatic improvement (WOMAC) | [89] |
Observational retrospective study | 12 months | 2 mg | Reduce progression of cartilage degradation | [90] | ||
Randomized double-blind controlled study | 3 months | 40 mg | Symptomatic improvement (WOMAC, VAS) | [91] | ||
Randomized double-blind placebo-controlled study | 6 months | 40 mg | Symptomatic improvement (WOMAC) | [92] | ||
Open-label pilot study | 1.5 months | 10 mg | Symptomatic improvement (VAS) | [93] | ||
Non-interventional, prospective real-life study | 3 months | 40 mg | Symptomatic improvement (WOMAC, VAS) | [94] | ||
Observational open-label study | 4 months | 40 mg | Symptomatic improvement (WOMAC, VAS) | [95] | ||
Randomized double-blind placebo-controlled study | 3 months | 40 mg | No significant differences vs. controls | [96] | ||
Prospective controlled study | 4 months | 40 mg | Symptomatic improvement (WOMAC, VAS) | [97] | ||
Observational open-label study | 3 months | 40 mg | Symptomatic improvement (WOMAC, VAS) | [98] | ||
non-Osteoarthritis | Randomized double-blind placebo-controlled study | 4 months | 40 mg | Reduced joint discomfort and increased mobility | [108] | |
Randomized double-blind placebo-controlled study | 6 months | 40 mg | Reduced joint discomfort and increased mobility | [109,110] | ||
Hydrolyzed collagen | Osteoarthritis | Randomized double-blind placebo-controlled study | 6 months | 10 g | Increase of proteoglycan content in knee cartilage | [99] |
Randomized double-blind placebo-controlled study | 6 months | 10 g | Symptomatic improvement (WOMAC, VAS) | [100] | ||
Randomized single-blind open-labelled controlled study | 6 months | 1.2 g | Symptomatic improvement (WOMAC) | [101] | ||
Randomized double-blind placebo-controlled study | 3 months | 10 g | Symptomatic improvement (WOMAC, VAS) | [102] | ||
Randomized double-blind placebo-controlled study | 70 days | 2 g | Symptomatic improvement (WOMAC, VAS) | [103] | ||
Randomized double-blind controlled study | 3 months | 10 g | Symptomatic improvement (WOMAC, VAS) | [104] | ||
Prospective observational study | 1 month | 720 mg/360 mg | Symptomatic improvement (WOMAC, VAS) | [105] | ||
Prospective observational study | 6 months | 1.5 g | Symptomatic improvement (WOMAC, VAS, Lequesne) | [106] | ||
Randomized double-blind placebo-controlled study | 6 months | 8 g | Symptomatic improvement (WOMAC, VAS) | [107] | ||
non-Osteoarthritis | Randomized double-blind placebo-controlled study | 3 months | 5 g | Reduction of exercise-induced knee pain | [111] | |
Randomized double-blind placebo-controlled study | 6 months | 10 g | Reduction of join pain at rest and during activity | [112] | ||
Randomized double-blind placebo-controlled study | 3 months | 10 g | No significant differences vs. Placebo | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Puig, D.; Costa-Larrión, E.; Rubio-Rodríguez, N.; Gálvez-Martín, P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023, 15, 1332. https://doi.org/10.3390/nu15061332
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients. 2023; 15(6):1332. https://doi.org/10.3390/nu15061332
Chicago/Turabian StyleMartínez-Puig, Daniel, Ester Costa-Larrión, Nuria Rubio-Rodríguez, and Patricia Gálvez-Martín. 2023. "Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge" Nutrients 15, no. 6: 1332. https://doi.org/10.3390/nu15061332
APA StyleMartínez-Puig, D., Costa-Larrión, E., Rubio-Rodríguez, N., & Gálvez-Martín, P. (2023). Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients, 15(6), 1332. https://doi.org/10.3390/nu15061332