Dietary Fats and Cognitive Status in Italian Middle-Old Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Cognitive Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Buckley, R.F.; Saling, M.M.; Frommann, I.; Wolfsgruber, S.; Wagner, M. Subjective Cognitive Decline from a Phenomenological Perspective: A Review of the Qualitative Literature. J. Alzheimers Dis. 2015, 48 (Suppl. 1), S125–S140. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013, 9, 63–75.e2. [Google Scholar] [CrossRef]
- Tricco, A.C.; Soobiah, C.; Berliner, S.; Ho, J.M.; Ng, C.H.; Ashoor, H.M.; Chen, M.H.; Hemmelgarn, B.; Straus, S.E. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: A systematic review and meta-analysis. CMAJ 2013, 185, 1393–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgart, M.; Snyder, H.M.; Carrillo, M.C.; Fazio, S.; Kim, H.; Johns, H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. 2015, 11, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.C.; Tangney, C.C. Dietary fat composition and dementia risk. Neurobiol. Aging 2014, 35 (Suppl. 2), S59–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourida, I.; Soni, M.; Thompson-Coon, J.; Purandare, N.; Lang, I.A.; Ukoumunne, O.C.; Llewellyn, D.J. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013, 24, 479–489. [Google Scholar] [CrossRef]
- Caruso, G.; Torrisi, S.A.; Mogavero, M.P.; Currenti, W.; Castellano, S.; Godos, J.; Ferri, R.; Galvano, F.; Leggio, G.M.; Grosso, G.; et al. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol. Ther. 2022, 232, 108013. [Google Scholar] [CrossRef]
- Mooijaart, S.P.; Gussekloo, J.; Frölich, M.; Jolles, J.; Stott, D.J.; Westendorp, R.G.J.; de Craen, A.J.M. Homocysteine, vitamin B-12, and folic acid and the risk of cognitive decline in old age: The Leiden 85-Plus study. Am. J. Clin. Nutr. 2005, 82, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Bharadwaj, P.K.; Raichlen, D.A.; Habeck, C.G.; Huentelman, M.J.; Hishaw, G.A.; Trouard, T.P.; Alexander, G.E. Association of homocysteine-related subcortical brain atrophy with white matter lesion volume and cognition in healthy aging. Neurobiol. Aging 2022, 121, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 2017, 76, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinna-Meyyappan, A.; Gomes, F.A.; Koning, E.; Fabe, J.; Breda, V.; Brietzke, E. Effects of the ketogenic diet on cognition: A systematic review. Nutr. Neurosci. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Currenti, W.; Godos, J.; Castellano, S.; Caruso, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F. Association between Time Restricted Feeding and Cognitive Status in Older Italian Adults. Nutrients 2021, 13, 191. [Google Scholar] [CrossRef]
- Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin D deficiency as a risk factor for dementia: A systematic review and meta-analysis. BMC Geriatr. 2017, 17, 16. [Google Scholar] [CrossRef] [Green Version]
- Okereke, O.I.; Rosner, B.A.; Kim, D.H.; Kang, J.H.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Willett, W.C.; Grodstein, F. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann. Neurol. 2012, 72, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Yehuda, S. Polyunsaturated fatty acids as putative cognitive enhancers. Med. Hypotheses 2012, 79, 456–461. [Google Scholar] [CrossRef]
- Lenighan, Y.M.; McNulty, B.A.; Roche, H.M. Dietary fat composition: Replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proc. Nutr. Soc. 2019, 78, 234–245. [Google Scholar] [CrossRef]
- Currenti, W.; Godos, J.; Alanazi, A.M.; Grosso, G.; Cincione, R.I.; La Vignera, S.; Buscemi, S.; Galvano, F. Dietary Fats and Cardio-Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 2022, 14, 4294. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef]
- Pfeiffer, E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Erkinjuntti, T.; Sulkava, R.; Wikström, J.; Autio, L. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J. Am. Geriatr. Soc. 1987, 35, 412–416. [Google Scholar] [CrossRef]
- Kawamura, N.; Katsuura, G.; Yamada-Goto, N.; Novianti, E.; Inui, A.; Asakawa, A. Impaired brain fractalkine-CX3CR1 signaling is implicated in cognitive dysfunction in diet-induced obese mice. BMJ Open Diabetes Res. Care 2021, 9, e001492. [Google Scholar] [CrossRef] [PubMed]
- Granholm, A.-C.; Bimonte-Nelson, H.A.; Moore, A.B.; Nelson, M.E.; Freeman, L.R.; Sambamurti, K. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J. Alzheimers Dis. 2008, 14, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galloway, S.; Jian, L.; Johnsen, R.; Chew, S.; Mamo, J.C.L. beta-amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J. Nutr. Biochem. 2007, 18, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.R.; Granholm, A.-C.E. Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J. Cereb. Blood Flow Metab. 2012, 32, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskelinen, M.H.; Ngandu, T.; Helkala, E.-L.; Tuomilehto, J.; Nissinen, A.; Soininen, H.; Kivipelto, M. Fat intake at midlife and cognitive impairment later in life: A population-based CAIDE study. Int. J. Geriatr. Psychiatry 2008, 23, 741–747. [Google Scholar] [CrossRef]
- Gibson, E.L.; Barr, S.; Jeanes, Y.M. Habitual fat intake predicts memory function in younger women. Front. Hum. Neurosci. 2013, 7, 838. [Google Scholar] [CrossRef] [Green Version]
- Puglielli, L.; Konopka, G.; Pack-Chung, E.; Ingano, L.A.; Berezovska, O.; Hyman, B.T.; Chang, T.Y.; Tanzi, R.E.; Kovacs, D.M. Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 2001, 3, 905–912. [Google Scholar] [CrossRef]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- Loktionov, A.; Scollen, S.; McKeown, N.; Bingham, S.A. Gene-nutrient interactions: Dietary behaviour associated with high coronary heart disease risk particularly affects serum LDL cholesterol in apolipoprotein E epsilon4-carrying free-living individuals. Br. J. Nutr. 2000, 84, 885–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, G.Y.; Li, M.; Han, L.; Tayie, F.; Yao, S.S.; Huang, Z.; Ai, P.; Liu, Y.Z.; Hu, Y.H.; Xu, B. Dietary Fat Intake and Cognitive Function among Older Populations: A Systematic Review and Meta-Analysis. J. Prev. Alzheimers Dis. 2019, 6, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Wilson, R.S. Fish consumption and cognitive decline with age in a large community study. Arch. Neurol. 2005, 62, 1849–1853. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, A.Z.; Harty, B.; Mukamal, K.J.; Stoddard, A.M.; Vitolins, M.; Dunn, J.E. Monounsaturated, trans, and saturated Fatty acids and cognitive decline in women. J. Am. Geriatr. Soc. 2011, 59, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Vercambre, M.N.; Grodstein, F.; Kang, J.H. Dietary fat intake in relation to cognitive change in high-risk women with cardiovascular disease or vascular factors. Eur. J. Clin. Nutr. 2010, 64, 1134–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Dalile, B.; Vervliet, B.; Bergonzelli, G.; Verbeke, K.; Van Oudenhove, L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology 2020, 45, 2257–2266. [Google Scholar] [CrossRef]
- Currenti, W.; Godos, J.; Castellano, S.; Mogavero, M.P.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F. Time restricted feeding and mental health: A review of possible mechanisms on affective and cognitive disorders. Int. J. Food Sci. Nutr. 2021, 72, 723–733. [Google Scholar] [CrossRef]
- Marrocco, F.; Delli Carpini, M.; Garofalo, S.; Giampaoli, O.; De Felice, E.; Di Castro, M.A.; Maggi, L.; Scavizzi, F.; Raspa, M.; Marini, F.; et al. Short-chain fatty acids promote the effect of environmental signals on the gut microbiome and metabolome in mice. Commun. Biol. 2022, 5, 517. [Google Scholar] [CrossRef]
- Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Robles-Vera, I.; Toral, M.; de la Visitación, N.; Aguilera-Sánchez, N.; Redondo, J.M.; Duarte, J. Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Front. Physiol. 2020, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef] [Green Version]
- Machado-Vieira, R.; Ibrahim, L.; Zarate, C.A. Histone deacetylases and mood disorders: Epigenetic programming in gene-environment interactions. CNS Neurosci. Ther. 2011, 17, 699–704. [Google Scholar] [CrossRef]
- Huang, W.; Man, Y.; Gao, C.; Zhou, L.; Gu, J.; Xu, H.; Wan, Q.; Long, Y.; Chai, L.; Xu, Y.; et al. Short-Chain Fatty Acids Ameliorate Diabetic Nephropathy via GPR43-Mediated Inhibition of Oxidative Stress and NF-κB Signaling. Oxid. Med. Cell. Longev. 2020, 2020, 4074832. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Nakatani, A.; Hasegawa, S.; Irie, J.; Ozawa, K.; Tsujimoto, G.; Suganami, T.; Itoh, H.; Kimura, I. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 2017, 12, e0179696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zhang, Y.; Gong, Y.; Yang, R.; Chen, Z.; Hu, W.; Wu, Y.; Gao, M.; Xu, X.; Qin, Y.; et al. Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiol. Dis. 2018, 111, 12–25. [Google Scholar] [CrossRef]
- André, P.; Laugerette, F.; Féart, C. Metabolic Endotoxemia: A Potential Underlying Mechanism of the Relationship between Dietary Fat Intake and Risk for Cognitive Impairments in Humans? Nutrients 2019, 11, 1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.S.; Lavrador, M.S.F.; Koike, M.K.; Cintra, D.E.; Ferreira, F.D.; Nunes, V.S.; Castilho, G.; Gioielli, L.A.; Paula Bombo, R.; Catanozi, S.; et al. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation. J. Nutr. Biochem. 2016, 32, 91–100. [Google Scholar] [CrossRef]
- Fadó, R.; Molins, A.; Rojas, R.; Casals, N. Feeding the brain: Effect of nutrients on cognition, synaptic function, and AMPA receptors. Nutrients 2022, 14, 4137. [Google Scholar] [CrossRef]
- Nishimura, Y.; Moriyama, M.; Kawabe, K.; Satoh, H.; Takano, K.; Azuma, Y.-T.; Nakamura, Y. Lauric Acid Alleviates Neuroinflammatory Responses by Activated Microglia: Involvement of the GPR40-Dependent Pathway. Neurochem. Res. 2018, 43, 1723–1735. [Google Scholar] [CrossRef]
- Nakajima, S.; Kunugi, H. Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures. Heliyon 2020, 6, e03892. [Google Scholar] [CrossRef]
- Tessier, A.-J.; Presse, N.; Rahme, E.; Ferland, G.; Bherer, L.; Chevalier, S. Milk, yogurt, and cheese intake is positively associated with cognitive executive functions in older adults of the canadian longitudinal study on aging. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 2223–2231. [Google Scholar] [CrossRef]
- Kim, E.; Ko, H.J.; Jeon, S.J.; Lee, S.; Lee, H.E.; Kim, H.N.; Woo, E.-R.; Ryu, J.H. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice. Pharmacol. Biochem. Behav. 2016, 142, 85–90. [Google Scholar] [CrossRef]
- Kumar, J.B.S.; Sharma, B. A review on neuropharmacological role of erucic acid: An omega-9 fatty acid from edible oils. Nutr. Neurosci. 2022, 25, 1041–1055. [Google Scholar] [CrossRef]
- van de Rest, O.; Wang, Y.; Barnes, L.L.; Tangney, C.; Bennett, D.A.; Morris, M.C. APOE ε4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 2016, 86, 2063–2070. [Google Scholar] [CrossRef] [Green Version]
- Andruchow, N.D.; Konishi, K.; Shatenstein, B.; Bohbot, V.D. A lower ratio of omega-6 to omega-3 fatty acids predicts better hippocampus-dependent spatial memory and cognitive status in older adults. Neuropsychology 2017, 31, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.K.; Shahar, S.; Rajab, N.; Yusoff, N.A.M.; Jamal, R.A.; Then, S.M. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: A case-control study. J. Nutr. Biochem. 2013, 24, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Muth, A.-K.; Park, S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 2021, 40, 3999–4010. [Google Scholar] [CrossRef] [PubMed]
- Heron, D.S.; Shinitzky, M.; Hershkowitz, M.; Samuel, D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 1980, 77, 7463–7467. [Google Scholar] [CrossRef] [Green Version]
- Vedin, I.; Cederholm, T.; Freund-Levi, Y.; Basun, H.; Hjorth, E.; Irving, G.F.; Eriksdotter-Jönhagen, M.; Schultzberg, M.; Wahlund, L.-O.; Palmblad, J. Reduced prostaglandin F2 alpha release from blood mononuclear leukocytes after oral supplementation of omega3 fatty acids: The OmegAD study. J. Lipid Res. 2010, 51, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, M.; Caruso, G.; Godos, J.; Bonaccorso, A.; Carbone, C.; Castellano, S.; Currenti, W.; Grosso, G.; Musumeci, T.; Caraci, F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Oleson, S.; Eagan, D.; Kaur, S.; Hertzing, W.J.; Alkatan, M.; Davis, J.N.; Tanaka, H.; Haley, A.P. Apolipoprotein E genotype moderates the association between dietary polyunsaturated fat and brain function: An exploration of cerebral glutamate and cognitive performance. Nutr. Neurosci. 2020, 23, 696–705. [Google Scholar] [CrossRef]
- Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010, 460, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Wu, J.H.Y.; de Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [Green Version]
- Najem, D.; Bamji-Mirza, M.; Chang, N.; Liu, Q.Y.; Zhang, W. Insulin resistance, neuroinflammation, and Alzheimer’s disease. Rev. Neurosci. 2014, 25, 509–525. [Google Scholar] [CrossRef]
- Taha, A.Y. Linoleic acid-good or bad for the brain? NPJ Sci. Food 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Ramsden, C.E.; Faurot, K.R.; Zamora, D.; Palsson, O.S.; MacIntosh, B.A.; Gaylord, S.; Taha, A.Y.; Rapoport, S.I.; Hibbeln, J.R.; Davis, J.M.; et al. Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: A secondary analysis of a randomized trial. Pain 2015, 156, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
Total Fats | p-Value | ||||
---|---|---|---|---|---|
Q1 (n = 198) | Q2 (n = 250) | Q3 (n = 242) | Q4 (n = 193) | ||
Sex, n (%) | 0.006 | ||||
Male | 68 (34.3) | 103 (41.2) | 122 (50.4) | 89 (46.1) | |
Female | 130 (65.7) | 147 (58.8) | 120 (49.6) | 104 (53.9) | |
Age, mean (SD) | 67.1 (10.1) | 64.8 (9.1) | 64.8 (9.5) | 62.8 (9.2) | <0.001 |
Educational level, n (%) | 0.137 | ||||
Low | 108 (54.5) | 116 (46.4) | 117 (48.3) | 110 (57.0) | |
Medium | 65 (32.8) | 90 (36.0) | 76 (31.4) | 54 (28.0) | |
High | 25 (12.6) | 44 (17.6) | 49 (20.2) | 29 (15.0) | |
Smoking status, n (%) | <0.001 | ||||
Non-smoker | 128 (64.6) | 157 (62.8) | 123 (50.8) | 89 (46.1) | |
Current smoker | 40 (20.2) | 52 (20.8) | 50 (20.7) | 45 (23.3) | |
Former smoker | 30 (15.2) | 41 (16.4) | 69 (28.5) | 59 (30.6) | |
Physical activity level, n (%) | 0.022 | ||||
Low | 66 (33.8) | 53 (24.8) | 33 (20.1) | 44 (25.6) | |
Medium | 89 (45.6) | 99 (45.4) | 92 (56.1) | 90 (52.3) | |
High | 40 (20.5) | 66 (30.3) | 39 (23.8) | 38 (22.1) | |
BMI categories, n (%) | 0.066 | ||||
Normal | 82 (42.1) | 92 (38.0) | 74 (33.3) | 52 (30.2) | |
Overweight | 62 (31.8) | 102 (42.1) | 95 (42.8) | 80 (46.5) | |
Obese | 51 (26.2) | 48 (19.2) | 53 (23.9) | 40 (23.3) | |
Mediterranean diet adherence, n (%) | 0.001 | ||||
Low | 119 (60.1) | 117 (46.8) | 123 (50.8) | 82 (42.5) | |
Medium | 68 (34.3) | 97 (38.8) | 89 (36.8) | 95 (49.2) | |
High | 11 (5.6) | 36 (14.4) | 30 (12.4) | 16 (8.3) | |
Alcohol consumption, n (%) | 0.002 | ||||
None | 49 (24.7) | 57 (22.8) | 48 (19.8) | 36 (18.7) | |
Occasional | 120 (60.6) | 158 (63.2) | 129 (53,3) | 108 (56) | |
Regular | 29 (14.6) | 35 (14) | 65 (26.9) | 49 (25.4) | |
Cognitive impairment, n (%) | 35 (17.7) | 16 (6.4) | 20 (8.3) | 11 (5.7) | <0.001 |
OR (95% CI) | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Total fats | ||||
Energy-adjusted | 1 | 0.53 (0.26, 1.10) | 0.96 (0.43, 2.15) | 0.81 (0.26, 2.51) |
Multivariate-adjusted | 1 | 0.52 (0.25, 1.10) | 0.82 (0.36, 1.87) | 0.63 (0.19, 2.02) |
Saturated fats | ||||
Energy-adjusted | 1 | * 0.45 (0.23, 0.91) | * 0.40 (0.17, 0.95) | 0.44 (0.15, 1.30) |
Multivariate-adjusted | 1 | * 0.41 (0.20, 0.83) | * 0.32 (0.13, 0.77) | * 0.27 (0.09, 0.87) |
MUFA | ||||
Energy-adjusted | 1 | 0.62 (0.30, 1.28) | 1.38 (0.59, 3.23) | 1.11 (0.35, 3.51) |
Multivariate-adjusted | 1 | 0.63 (0.30, 1.30) | 1.30 (0.55, 3.07) | 0.91 (0.28, 2.95) |
PUFA | ||||
Energy-adjusted | 1 | 0.50 (0.24, 1.06) | 1.00 (0.43, 2.36) | 0.72 (0.22, 2.37) |
Multivariate-adjusted | 1 | 0.52 (0.25, 1.10) | 1.09 (0.46, 2.59) | 0.74 (0.22, 2.44) |
OR (95% CI) | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Saturated fats | ||||
SCSFAs (C4-C10) | 1 | * 0.23 (0.08, 0.66) | 0.35 (0.09, 1.22) | 0.60 (0.15, 2.38) |
MCSFAs (C12:0) | 1 | * 0.27 (0.09, 0.77) | 0.51 (0.17, 1.47) | 0.53 (0.16, 1.76) |
C14:0 | 1 | 1.86 (0.71, 4.87) | 3.61 (0.78, 1.67) | 3.52 (0.56, 2.22) |
C16:0 | 1 | 0.62 (0.18, 2.16) | 0.94 (0.13, 7.00) | 0.49 (0.03, 6.69) |
C18:0 | 1 | 0.65 (0.18, 2.30) | 0.60 (0.09, 3.63) | 0.28 (0.03, 2.88) |
C20:0 | 1 | 0.59 (0.27, 1.28) | 2.28 (0.89, 5.86) | 3.67 (0.86, 1.56) |
C22:0 | 1 | 1.29 (0.63, 2.63) | 0.91 (0.36, 2.29) | 0.41 (0.10, 1.60) |
MUFA | ||||
C14:1 | 1 | 1.36 (0.68, 2.72) | 0.91 (0.38, 2.18) | 2.45 (0.89, 6.74) |
C16:1 | 1 | 0.67 (0.27, 1.62) | 0.90 (0.31, 2.65) | 0.81 (0.18, 3.65) |
C18:1 | 1 | 0.76 (0.32, 1.80) | 1.86 (0.58, 5.54) | 0.64 (0.15, 2.78) |
C20:1 | 1 | 1.20 (0.56, 2.57) | 1.26 (0.39, 4.05) | 8.82 (0.91, 8.53) |
C22:1 | 1 | * 0.47 (0.22, 0.97) | * 0.04 (0.01, 0.18) | * 0.04 (0.00, 0.39) |
PUFA | ||||
C18:2 | 1 | 2.04 (0.89, 4.65) | 4.59 (1.51, 13.94) | 2.03 (0.51, 8.05) |
C18:3 | 1 | * 0.38 (0.17, 0.85) | * 0.19 (0.06, 0.64) | 0.51 (0.16, 1.64) |
C20:4 | 1 | 0.74 (0.37, 1.51) | 0.63 (0.25, 1.60) | 0.56 (0.17, 1.80) |
C20:5 | 1 | 0.68 (0.24, 1.95) | 0.34 (0.05, 2.19) | 0.88 (0.02, 3.91) |
C22:6 | 1 | 2.11 (0.05, 84.16) | 1.13 (0.03, 40.64) | 0.83 (0.03, 22.02) |
OR (95% CI) | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Milk | 1 | 1.41 (0.75, 2.65) | 0.83 (0.43, 1.62) | - |
Yogurt | 1 | 0.78 (0.41, 1.46) | * 0.39 (0.19, 0.79) | - |
Cheese | 1 | 1.40 (0.71, 2.78) | 0.72 (0.34, 1.55) | 1.15 (0.51, 2.61) |
Butter | 1 | 0.97 (0.55, 1.68) | 0.54 (0.24, 1.22) | - |
Fruit and vegetables | 1 | 1.14 (0.57, 2.26) | 1.47 (0.73, 2.98) | 0.85 (0.36, 1.97) |
Sweets and snacks | 1 | * 0.30 (0.12, 0.71) | 1.06 (0.54, 2.07) | 0.92 (0.39, 2.18) |
Nuts | 1 | 0.91 (0.46, 1.78) | 0.66 (0.30, 1.47) | 0.91 (0.41, 2.03) |
Eggs | 1 | 0.54 (0.22, 1.36) | 0.93 (0.43, 2.00) | 0.73 (0.34, 1.56) |
Meat | 1 | 0.87 (0.43, 1.76) | 0.95 (0.46, 1.99) | 0.76 (0.37, 1.56) |
Processed meat | 1 | 0.80 (0.40, 1.59) | 0.98 (0.48, 1.99) | 0.73 (0.35, 1.49) |
Fish and seafoods | 1 | 0.87 (0.41, 1.85) | 0.98 (0.49, 1.95) | 1.13 (0.55, 2.34) |
Olive oil | 1 | 1.84 (0.78, 4.37) | 1.39 (0.61, 3.20) | - |
Other vegetable oils | 1 | 1.17 (0.69, 1.97) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currenti, W.; Godos, J.; Alanazi, A.M.; Lanza, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F.; Castellano, S. Dietary Fats and Cognitive Status in Italian Middle-Old Adults. Nutrients 2023, 15, 1429. https://doi.org/10.3390/nu15061429
Currenti W, Godos J, Alanazi AM, Lanza G, Ferri R, Caraci F, Grosso G, Galvano F, Castellano S. Dietary Fats and Cognitive Status in Italian Middle-Old Adults. Nutrients. 2023; 15(6):1429. https://doi.org/10.3390/nu15061429
Chicago/Turabian StyleCurrenti, Walter, Justyna Godos, Amer M. Alanazi, Giuseppe Lanza, Raffaele Ferri, Filippo Caraci, Giuseppe Grosso, Fabio Galvano, and Sabrina Castellano. 2023. "Dietary Fats and Cognitive Status in Italian Middle-Old Adults" Nutrients 15, no. 6: 1429. https://doi.org/10.3390/nu15061429
APA StyleCurrenti, W., Godos, J., Alanazi, A. M., Lanza, G., Ferri, R., Caraci, F., Grosso, G., Galvano, F., & Castellano, S. (2023). Dietary Fats and Cognitive Status in Italian Middle-Old Adults. Nutrients, 15(6), 1429. https://doi.org/10.3390/nu15061429