How Fast Do “Owls” and “Larks” Eat?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Anthropometric Assessment
2.4. Lifestyle Habits
2.5. Eating Speed Assessment
2.6. Chronotype Assessment
2.7. Statistical Analysis
3. Results
3.1. Chronotype Categories in the Study Population and Degree of Obesity According to the Same Categories
3.2. Clinical Characteristics According to Eating Speed at Main Meals
3.3. Chronotype Categories According to Eating Speed at Main Meals
3.4. Differences in Eating Speed of Main Meals between Chronotype Categories
3.5. Correlation Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 February 2023).
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Verde, L.; Vetrani, C.; Savastano, S.; Colao, A.; Muscogiuri, G. Chronotype: A Tool to Screen Eating Habits in Polycystic Ovary Syndrome? Nutrients 2022, 14, 955. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Castelli, L.; Mule, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef]
- Teixeira, G.P.; Guimarães, K.C.; Soares, A.; Marqueze, E.C.; Moreno, C.R.C.; Mota, M.C.; Crispim, C.A. Role of chronotype in dietary intake, meal timing, and obesity: A systematic review. Nutr. Rev. 2022, 81, 75–90. [Google Scholar] [CrossRef]
- Vetrani, C.; Barrea, L.; Verde, L.; Sarno, G.; Docimo, A.; de Alteriis, G.; Savastano, S.; Colao, A.; Muscogiuri, G. Evening chronotype is associated with severe NAFLD in obesity. Int. J. Obes. 2022, 46, 1638–1643. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Altieri, B.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. Chronotype and cardio metabolic health in obesity: Does nutrition matter? Int. J. Food Sci. Nutr. 2021, 72, 892–900. [Google Scholar] [CrossRef]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef]
- Robinson, E.; Almiron-Roig, E.; Rutters, F.; de Graaf, C.; Forde, C.G.; Smith, C.T.; Nolan, S.J.; Jebb, S.A. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am. J. Clin. Nutr. 2014, 100, 123–151. [Google Scholar] [CrossRef] [Green Version]
- Hawton, K.; Ferriday, D.; Rogers, P.; Toner, P.; Brooks, J.; Holly, J.; Biernacka, K.; Hamilton-Shield, J.; Hinton, E. Slow Down: Behavioural and Physiological Effects of Reducing Eating Rate. Nutrients 2018, 11, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkuma, T.; Fujii, H.; Iwase, M.; Kikuchi, Y.; Ogata, S.; Idewaki, Y.; Ide, H.; Doi, Y.; Hirakawa, Y.; Mukai, N.; et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: The Fukuoka Diabetes Registry and the Hisayama Study. Diabetologia 2013, 56, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Kim, D.; Jang, J.S.; Nam, G.; Shin, Y.; Bok, A.; Kim, M.; Cho, K. Eating rate is associated with cardiometabolic risk factors in Korean adults. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 635–641. [Google Scholar] [CrossRef]
- Barrea, L.; Vetrani, C.; Verde, L.; Napolitano, B.; Savastano, S.; Colao, A.; Muscogiuri, G. “Forever young at the table”: Metabolic effects of eating speed in obesity. J. Transl. Med. 2021, 19, 530. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Aprano, S.; Framondi, L.; Di Matteo, R.; Riccio, P.A.; Savastano, S.; Colao, A. The opera prevention project. Int. J. Food Sci. Nutr. 2021, 72, 1–3. [Google Scholar] [CrossRef] [PubMed]
- NHANES. Anthropometry Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/BM.pdf (accessed on 1 February 2023).
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Guss, J.; Kissileff, H.R. Microstructural analyses of human ingestive patterns: From description to mechanistic hypotheses. Neurosci. Biobehav. Rev. 2000, 24, 261–268. [Google Scholar] [CrossRef]
- Viskaal-van Dongen, M.; Kok, F.J.; de Graaf, C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite 2011, 56, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Zandian, M.; Ioakeimidis, I.; Bergh, C.; Brodin, U.; Södersten, P. Decelerated and linear eaters: Effect of eating rate on food intake and satiety. Physiol. Behav. 2009, 96, 270–275. [Google Scholar] [CrossRef]
- Llewellyn, C.H.; van Jaarsveld, C.H.; Boniface, D.; Carnell, S.; Wardle, J. Eating rate is a heritable phenotype related to weight in children. Am. J. Clin. Nutr. 2008, 88, 1560–1566. [Google Scholar] [CrossRef] [Green Version]
- Hozer, C.; Perret, M.; Pavard, S.; Pifferi, F. Survival is reduced when endogenous period deviates from 24 h in a non-human primate, supporting the circadian resonance theory. Sci. Rep. 2020, 10, 18002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ptacek, L.J.; Fu, Y.H. Diversity of human clock genotypes and consequences. Prog. Mol. Biol. Transl. Sci. 2013, 119, 51–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. Chronotype and Adherence to the Mediterranean Diet in Obesity: Results from the Opera Prevention Project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Vetrani, C.; Docimo, A.; de Alteriis, G.; Savastano, S.; Colao, A.; Muscogiuri, G. Evening chronotype is associated with hormonal and metabolic disorders in polycystic ovary syndrome. J. Pineal Res. 2023, 74, e12844. [Google Scholar] [CrossRef]
- Barrea, L.; Vetrani, C.; Altieri, B.; Verde, L.; Savastano, S.; Colao, A.; Muscogiuri, G. The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus? Nutrients 2021, 13, 3762. [Google Scholar] [CrossRef]
Parameters | Subjects (n = 81) |
---|---|
Gender (M/F) | 28/53 |
Age (years) | 46.38 ± 16.62 |
BMI (kg/m2) | 31.48 ± 7.30 |
Waist circumference (cm) | 99.42 ± 20.64 |
Hip circumference (cm) | 107.96 ± 12.19 |
Waist to Hip ratio | 0.92 ± 0.13 |
Physical activity (yes) | 14 (17.3%) |
Parameters | Fast Eating Group | Slow Eating Group | p Value |
---|---|---|---|
Breakfast | |||
<10 min (n = 42) | ≥10 min (n = 39) | ||
Gender (M/F) | 13/29 | 15/24 | 0.478 |
Age (years) | 49.69 ± 16.85 | 42.82 ± 15.82 | 0.128 |
BMI (kg/m2) | 32.33 ± 7.54 | 30.56 ± 7.00 | 0.334 |
Waist circumference (cm) | 97.76 ± 19.57 | 101.21 ± 21.85 | 0.419 |
Hip circumference (cm) | 107.98 ± 11.61 | 107.95 ± 12.93 | 0.951 |
Waist-to-hip ratio | 0.90 ± 0.12 | 0.93 ± 0.13 | 0.214 |
Physical activity (yes) | 4 | 10 | 0.055 |
Lunch | |||
<20 min (n = 53) | ≥20 min (n = 28) | ||
Gender (M/F) | 19/34 | 9/19 | 0.739 |
Age (years) | 48.30 ± 16.98 | 42.75 ± 15.58 | 0.255 |
BMI (kg/m2) | 31.23 ± 6.74 | 31.96 ± 8.36 | 0.774 |
Waist circumference (cm) | 95.96 ± 18.41 | 105.96 ± 23.27 | 0.041 |
Hip circumference (cm) | 106.60 ± 11.27 | 110.54 ± 13.60 | 0.198 |
Waist to hip ratio | 0.90 ± 0.12 | 0.96 ± 0.13 | 0.041 |
Physical activity (yes) | 7 | 7 | 0.182 |
Dinner | |||
<20 min (n = 52) | ≥20 min (n = 29) | ||
Gender (M/F) | 18/34 | 10/19 | 0.990 |
Age (years) | 47.31 ± 17.02 | 44.72 ± 16.06 | 0.626 |
BMI (kg/m2) | 31.61 ± 7.41 | 31.24 ± 7.21 | 0.874 |
Waist circumference (cm) | 96.54 ± 19.25 | 104.58 ± 22.34 | 0.085 |
Hip circumference (cm) | 107.31 ± 12.44 | 109.14 ± 11.85 | 0.503 |
Waist to hip ratio | 0.89 ± 0.12 | 0.96 ± 0.13 | 0.039 |
Physical activity (yes) | 7 | 7 | 0.223 |
Fast Eating Group | Slow Eating Group | χ2 | p Value | |
Breakfast | ||||
<10 min | ≥10 min | |||
Morning chronotype | 5 | 9 | 2.8505 | 0.240 |
Intermediate chronotype | 20 | 20 | ||
Evening chronotype | 17 | 10 | ||
Lunch | ||||
<20 min | ≥20 min | |||
Morning chronotype | 5 | 9 | 7.3614 | 0.025 |
Intermediate chronotype | 27 | 13 | ||
Evening chronotype | 21 | 6 | ||
Dinner | ||||
<20 min | ≥20 min | |||
Morning chronotype | 5 | 9 | 5.9752 | 0.050 |
Intermediate chronotype | 28 | 12 | ||
Evening chronotype | 19 | 8 |
Minutes Spent at | Morning Chronotype (n = 14) | Intermediate Chronotype (n = 40) | Evening Chronotype (n = 27) | p Value |
---|---|---|---|---|
Breakfast | 9.64 ± 4.99 | 8.00 ± 4.36 | 7.59 ± 4.24 | 0.361 |
Lunch | 18.93 ± 5.94 a | 15.00 ± 6.10 | 12.96 ± 6.39 | 0.017 |
Dinner | 19.64 ± 5.71 b | 15.25 ± 4.52 | 15.56 ± 6.98 | 0.041 |
Minutes Spent at | Chronotype Score | |||
---|---|---|---|---|
Simple Correlation | after Adjusted for BMI and Age | |||
r | p Value | r | p Value | |
Breakfast | 0.185 | 0.099 | 0.098 | 0.392 |
Lunch | 0.370 | 0.001 | 0.347 | 0.002 |
Dinner | 0.214 | 0.055 | 0.187 | 0.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde, L.; Docimo, A.; Chirico, G.; Savastano, S.; Colao, A.; Barrea, L.; Muscogiuri, G. How Fast Do “Owls” and “Larks” Eat? Nutrients 2023, 15, 1437. https://doi.org/10.3390/nu15061437
Verde L, Docimo A, Chirico G, Savastano S, Colao A, Barrea L, Muscogiuri G. How Fast Do “Owls” and “Larks” Eat? Nutrients. 2023; 15(6):1437. https://doi.org/10.3390/nu15061437
Chicago/Turabian StyleVerde, Ludovica, Annamaria Docimo, Giovanni Chirico, Silvia Savastano, Annamaria Colao, Luigi Barrea, and Giovanna Muscogiuri. 2023. "How Fast Do “Owls” and “Larks” Eat?" Nutrients 15, no. 6: 1437. https://doi.org/10.3390/nu15061437
APA StyleVerde, L., Docimo, A., Chirico, G., Savastano, S., Colao, A., Barrea, L., & Muscogiuri, G. (2023). How Fast Do “Owls” and “Larks” Eat? Nutrients, 15(6), 1437. https://doi.org/10.3390/nu15061437