Assessing Effects of Diet Alteration on Carbohydrate–Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study
Abstract
:2. Materials and Methods
2.1. Participants
2.2. Diet and Nutrition
2.3. Anthropometric Analyses
2.4. Biochemical Assays
2.5. Statistical Treatment
3. Results
4. Discussion
5. Conclusions
- Schizophrenia patients are capable of adhering, with full acceptance and cooperation, to principles of appropriate nutrition.
- Nutrition effects are strong enough to produce a significant reduction in blood glucose concentration to the reference level, as observed in all the patients, regardless of the antipsychotic used in schizophrenia treatment.
- The glucose concentration reduction found enhances blood lipid indicators, but the reduction in triacylglycerols, total cholesterol and LDL cholesterol was significant in male patients only.
- Nutritional changes were reflected, in overweight and obese women only, in body weight reduction and waist adipose tissue loss.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Institute of Health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx). Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/27a7644e8ad28e739382d31e77589dd7 (accessed on 1 January 2023).
- OECD/EU. Health at a Glance: Europe 2018: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Rajca, A.; Wojciechowska, A.; Śmigielski, W.; Drygas, W.; Piwońska, A.; Pająk, A.; Tykarski, A.; Kozakiewicz, K.; Kwaśniewska, M.; Zdrojewski, T. Increase in the prevalence of metabolic syndrome in Poland: Comparison of the results of the WOBASZ (2003–2005) and WOBASZ II (2013–2014) studies. Pol. Arch. Intern. Med. 2021, 131, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Ferns, G. Cause, consequence or coincidence: The relationship between psychiatric disease and metabolic syndrome. Trans. Metab. Syn. Res. 2018, 1, 23–38. [Google Scholar] [CrossRef]
- Zuccoli, G.S.; Saia-Cereda, V.M.; Nascimento, J.M.; Martins-de-Souza, D. The Energy Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence. Front. Neurosci. 2017, 11, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adan, R.A.H.; van der Beek, E.M.; Buitelaar, J.K.; Cryan, J.F.; Hebebrand, J.; Higgs, S.; Schellekens, H.; Dickson, S.L. Nutritional psychiatry: Towards improving mental health by what you eat. Eur. Neuropsychopharmacol. 2019, 12, 1321–1332. [Google Scholar] [CrossRef]
- Kose, J.; Duquenne, P.; Robert, M.; Debras, C.; Galan, P.; Péneau, S.; Hercberg, S.; Touvier, M.; Andreeva, V.A. Associations of overall and specific carbohydrate intake with anxiety status evolution in the prospective NutriNet-Santé population-based cohort. Sci. Rep. 2022, 12, 21647. [Google Scholar] [CrossRef]
- Casey, D.E.; Haupt, D.W.; Newcomer, J.W.; Henderson, D.C.; Sernyak, M.J.; Davidson, M.; Lindenmayer, J.P.; Manoukian, S.V.; Banerji, M.A.; Lebovitz, H.E.; et al. Antipsychotic-induced weight gain and metabolic abnormalities: Implications for increased mortality in patients with schizophrenia. J. Clin. Psychiatry 2004, 65, 4–18. [Google Scholar]
- Haupt, D.W.; Newcomer, J.W. Hyperglycemia and antipsychotic medications. J. Clin. Psychiatry 2001, 62, 15–26. [Google Scholar]
- Ryan, M.C.; Collins, P.; Thakore, J.H. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am. J. Psychiatry 2003, 160, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Teff, K.L.; Rickels, M.R.; Grudziak, J.; Fuller, C.; Nguyen, H.L.; Rickels, K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes 2013, 62, 3232–3240. [Google Scholar] [CrossRef] [Green Version]
- Haupt, D.W. Differential metabolic effects of antipsychotic treatments. Eur. Neuropsychopharmacol. 2006, 16, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Uçok, A.; Gaebel, W. Side effects of atypical antipsychotics: A brief overview. World Psychiatry 2008, 7, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.; Goudie, C.T.; Agius, M. The metabolic syndrome in untreated schizophrenia patients: Prevalence and putative mechanisms. Psychiatr. Danub. 2013, 25, 94–98. [Google Scholar]
- Kalinowska, S.; Trześniowska-Drukała, B.; Kłoda, K.; Safranow, K.; Misiak, B.; Cyran, A.; Samochowiec, J. The Association between Lifestyle Choices and Schizophrenia Symptoms. J. Clin. Med. 2021, 10, 165. [Google Scholar] [CrossRef]
- Zomer, E.; Osborn, D.; Nazareth, I.; Blackburn, R.; Burton, A.; Hardoon, S.; Holt, R.I.G.; King, M.; Marston, L.; Morris, S.; et al. Effectiveness and cost-effectiveness of a cardiovascular risk prediction algorithm for people with severe mental illness (PRIMROSE). BMJ Open 2017, 7, e018181. [Google Scholar] [CrossRef]
- Gilbody, S.; Peckham, E.; Bailey, D.; Arundel, C.; Heron, P.; Crosland, S.; Fairhurst, C.; Hewitt, C.; Li, J.; Parrott, S.; et al. Smoking cessation for people with severe mental illness (SCIMITAR+): A pragmatic randomised controlled trial. Lancet Psychiatry 2019, 6, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.B.; Firth, J.; Rosenbaum, S.; Samaras, K.; Stubbs, B.; Curtis, J. Lifestyle interventions to reduce premature mortality in schizophrenia. Lancet Psychiatry 2017, 4, e14. [Google Scholar] [CrossRef] [Green Version]
- Tylec, A.; Skałecki, M.; Ziemecki, P.; Brzozowska, A.; Dubas-Ślemp, H.; Kucharska, K. Assessment of cardiovascular disease risk factors in patients treated for schizophrenia. Psychiatr. Pol. 2019, 53, 1305–1319. [Google Scholar] [CrossRef]
- Sinha, J.K.; Sachdeva, P.; Ahmad, F.; Sarkar, J.; Izhar, R.; Rahman, A.; Ghosh, S. Pharmacotherapy and emerging treatment strategies for schizophrenia. In Cognizance of Schizophrenia: A Profound Insight into the Psyche; Chatterjee, I., Ed.; Springer Nature: Singapore, 2023; pp. 149–179. [Google Scholar] [CrossRef]
- Ghosh, S.; Sinha, J.K.; Raghunath, M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB life 2016, 68, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.; Fugiel, J.; Bruszkowska, M. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part I: Effects of diet modification on carbohydrate-lipid metabolism. Psychiatr. Pol. 2020, 54, 915–933. [Google Scholar] [CrossRef]
- Jarosz, M. Normy Żywienia dla Populacji Polskiej; IŻŻ: Warszawa, Poland, 2017; pp. 330–374. Available online: https://www.pzh.gov.pl/wp-content/uploads/2020/12/Normy_zywienia_2020web-1.pdf (accessed on 1 January 2023).
- Wolever, T.M.; Yang, M.; Zeng, X.Y.; Atkinson, F.; Brand-Miller, J.C. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. Am. J. Clin. Nutr. 2006, 83, 1306–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- The University of Sydney Database. Available online: www.glycemicindex.com/gi-search (accessed on 10 July 2020).
- Dz.U. 2012 poz. 964. Rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 23 Sierpnia 2012 r. w Sprawie Domów Pomocy Społecznej [Regulation of the Minister of Labour and Social Policy of 23 August 2012 on Social Welfare Homes]. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20120000964 (accessed on 5 March 2018).
- Malinowski, A.; Bożiłow, W. Podstawy Antropometrii. Metody, Techniki, Normy; PWN: Warszawa, Poland, 1997; pp. 178–242. [Google Scholar]
- Lipschitz, D.A. Screening for nutritional status in the elderly. Prim. Care 1994, 21, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.; Cameron, A.J.; Zimmet, P.Z.; Shaw, J.E.; Jolley, D.; Dunstan, D.W.; Welborn, T.A.; AusDiab Steering Committee. Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J. Intern. Med. 2003, 254, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Neumeister, B.; Besenthal, I.; Bohm, B.O. Diagnostyka laboratoryjna; Elservier Urban& Fischer: Wroclaw, Poland, 2013; pp. 214–247. Available online: https://www.ksiazki-medyczne.eu/diagnostyka-laboratoryjna-2013-b-neumeister-i-besenthal-b-o-boehm.html (accessed on 5 May 2020).
- European Association for Cardiovascular Prevention & Rehabilitation; Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar]
- Dixon, L.; Weiden, P.; Delahanty, J.; Goldberg, R.; Postrado, L.; Lucksted, A.; Lehman, A. Prevalence and correlates of diabetes in national schizophrenia samples. Schizophr. Bull. 2000, 26, 903–912. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Detraux, J.; Vancampfort, D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin. Neurosci. 2018, 20, 31–40. [Google Scholar] [CrossRef]
- Tomasik, J.; Lago, S.G.; Vázquez-Bourgon, J.; Papiol, S.; Suárez-Pinilla, P.; Crespo-Facorro, B.; Bahn, S. Association of Insulin Resistance with Schizophrenia Polygenic Risk Score and Response to Antipsychotic Treatment. JAMA Psychiatry 2019, 76, 864–867. [Google Scholar] [CrossRef]
- Kessing, L.V.; Thomsen, A.F.; Mogensen, U.B.; Andersen, P.K. Treatment with antipsychotics and the risk of diabetes in clinical practice. Br. J. Psychiatry 2010, 197, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.C. Atypical antipsychotic-induced diabetes mellitus: How strong is the evidence? CNS Drugs 2002, 16, 77–89. [Google Scholar] [CrossRef]
- Dwyer, D.S.; Pinkofsky, H.B.; Liu, Y.; Bradley, R.J. Antipsychotic drugs affect glucose uptake and the expression of glucose transporters in PC12 cells. Prog. Neuropsychopharmacol. Biol. Psychiatry 1999, 23, 69–80. [Google Scholar]
- Wu, R.R.; Zhao, J.P.; Liu, Z.N.; Zhai, J.G.; Guo, X.F.; Guo, W.B.; Tang, J.S. Effects of typical and atypical antipsychotics on glucose-insulin homeostasis and lipid metabolism in first-episode schizophrenia. Psychopharmacology 2006, 186, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Meynier, A.; Goux, A.; Atkinson, F.; Brack, O.; Vinoy, S. Postprandial glycaemic response: How is it influenced by characteristics of cereal products? Br. J. Nutr. 2015, 113, 1931–1939. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, M.P.; Lamon-Fava, S.; Fielding, R.A. Skeletal muscle lipid deposition and insulin resistance: Effect of dietary fatty acids and exercise. Am. J. Clin. Nutr. 2007, 85, 662–677. [Google Scholar] [PubMed]
- Haus, J.M.; Solomon, T.P.; Marchetti, C.M.; Edmison, J.M.; González, F.; Kirwan, J.P. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J. Clin. Endocrinol. Metab. 2010, 95, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Parker, E.D.; Folsom, A.R. Coffee consumption and risk of type 2 diabetes mellitus: An 11-year prospective study of 28 812 postmenopausal women. Arch. Intern. Med. 2006, 66, 1311–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bak, M.; Fransen, A.; Janssen, J.; van Os, J.; Drukker, M. Almost all antipsychotics result in weight gain: A meta-analysis. PLoS ONE 2014, 9, e94112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J.; Yao, Z.J.; Liu, W.; Fang, Q.; Reynolds, G.P. Effects of antipsychotics on fat deposition and changes in leptin and insulin levels. Magnetic resonance imaging study of previously untreated people with schizophrenia. Br. J. Psychiatry 2004, 184, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M. Effects of health-promoting nutritional education and change in dietary habits on visceral fatty tissue contents and on concentrations of insulin and cortisol in menopausal women. Pol. J. Food Nutr. Sci. 2005, 55, 91–96. [Google Scholar]
- Tessari, P. Role of insulin in age-related changes in macronutrient metabolism. Eur. J. Clin. Nutr. 2000, 54, 126–130. [Google Scholar] [CrossRef]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Bälter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaira, S.; Jood, S. Effect of dietary barley beta-glucan on cholesterol and lipoprotein fraction in rats. J. Cereal Sci. 2000, 31, 141–145. [Google Scholar]
- Figurska-Ciura, D.; Orzeł, D.; Styczyńska, M.; Wacław, L.; Zechałko-Czajkowska, A. Wpływ skrobi opornej RS4 na metabolizm szczurów rasy Wistar. Wskaźniki biochemiczne i lipidowe [The influence of RS4 resistant starch on wistar rats metabolism. Biochemical and lipid indices]. Rocz. Panstw. Zakl. Hig. 2007, 58, 1–6. [Google Scholar]
- McRae, M.P. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: A meta-analysis of 13 randomized controlled trials. J. Chiropr. Med. 2008, 7, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Majewska, K.; Szulińska, M.; Michałowska, J.; Markuszewski, L.; Bogdański, L. Flora bakteryjna przewodu pokarmowego a choroby układu sercowo-naczyniowego [The role of gut microbiota in cardiovascular disease]. Forum Zaburzeń Metabolicznych 2017, 8, 1–6. [Google Scholar]
- Sonnenburg, J.L.; Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef]
- Stachowicz, N.; Kiersztan, A. Rola mikroflory jelitowej w patogenezie otyłości i cukrzycy [The role of gut microbiota in the pathogenesis of obesity and diabetes]. Postepy Hig. Med. Dosw. 2013, 15, 288–303. [Google Scholar] [CrossRef]
- Álvarez-Arraño, V.; Martín-Peláez, S. Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients 2021, 13, 3627. [Google Scholar] [CrossRef]
- Gulas, E.; Wysiadecki, G.; Strzelecki, D.; Gawlik-Kotelnicka, O.; Polguj, M. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatr. Pol. 2018, 52, 1023–1039. [Google Scholar] [CrossRef]
- Kunadian, V.; Qiu, W.; Ludman, P.; Redwood, S.; Curzen, N.; Stables, R.; Gunn, J.; Gershlick, A.; National Institute for Cardiovascular Outcomes Research. Outcomes in patients with cardiogenic shock following percutaneous coronary intervention in the contemporary era: An analysis from the BCIS database (British Cardiovascular Intervention Society). JACC Cardiovasc. Interv. 2014, 7, 1374–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemel, M.B. Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J. Am. Coll. Nutr. 2002, 21, 146S–151S. [Google Scholar] [CrossRef] [PubMed]
- Chadda, R.K.; Ramshankar, P.; Deb, K.S.; Sood, M. Metabolic syndrome in schizophrenia: Differences between antipsychotic-naïve and treated patients. J. Pharmacol. Pharmacother. 2013, 4, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Raben, A.T.; Marshe, V.S.; Chintoh, A.; Gorbovskaya, I.; Müller, D.J.; Hahn, M.K. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front. Neurosci. 2018, 22, 741. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M. Effects of diet modification and the resultant body weight loss on body composition in obese menopausal women. Pol. J. Food Nutr. Sci. 2007, 57, 503–508. [Google Scholar]
- Friedrich, M.; Goluch-Koniuszy, Z. The effectiveness of nutritional education among women aged 60-85 on the basis of anthropometric parameters and lipid profiles. Rocz. Panstw. Zakl. Hig. 2017, 68, 253–260. [Google Scholar]
- Friedrich, M.; Goluch-Koniuszy, Z.; Kuchlewska, M. Analysis of body composition of children aged 13 with normal Body Mass Index and waist circumference above the 90th percentile. Pol. J. Food Nutr. Sci. 2011, 61, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.; Junak, M. Assessment of dietary choices of young women in the contexts of hormonal contraceptives. Rocz. Panstw. Zakl. Hig. 2017, 68, 69–76. [Google Scholar]
Component | Women | SS | Men | SS | ||
---|---|---|---|---|---|---|
before n = 360 | after n = 360 | before n = 540 | after n = 540 | |||
Energy (MJ) (%) | 12.6 ± 1.14 156 ± 12.7 | 11.5 ± 0.79 142 ± 11.5 | ** ** | 12.6 ± 2.31 128 ± 26.0 | 11.6 ± 1.69 118 ± 19.9 | ** ** |
Total protein (g) (%) | 93.2 ± 5.84 128 ± 11.1 | 93.4 ± 6.0 128 ± 11.4 | - - | 93.5 ± 13.9 95.5 ± 13.9 | 105 ± 17.5 108 ± 16.6 | ** ** |
Animal protein (g) (%) | 50.1 ± 3.07 138 ± 14.1 | 46.9 ± 4.17 129 ± 14.0 | ** ** | 52.9 ± 10.1 179 ± 33.1 | 49.7 ± 12.4 168 ± 39.8 | ** ** |
Fat (g) (%) | 104 ± 8.99 162 ± 14.3 | 83.7 ± 7.91 130 ± 15.8 | ** ** | 107 ± 27.3 137 ± 36.6 | 81.9 ± 11.8 104 ± 16.0 | ** ** |
Cholesterol (mg) (%) | 350 ± 40.7 117 ± 13.6 | 307 ± 27.2 102 ± 9.05 | ** ** | 354 ± 58.1 118 ± 19.4 | 307 ± 39.9 102 ± 13.3 | ** ** |
Carbohydrates (g) (%) | 462 ± 48.8 173 ± 16.3 | 454 ± 33.6 170 ± 12.0 | - - | 449 ± 74.1 128 ± 30.2 | 461 ± 66.7 131 ± 25.4 | ** ** |
Fiber (g) (%) | 39.5 ± 8.42 157 ± 33.7 | 53.4 ± 8.07 213 ± 32.2 | ** ** | 36.0 ± 7.97 144 ± 31,9 | 50.9 ± 6.6 203 ± 26.4 | ** ** |
Liquids (ml) (%) | 2015 ± 270 101 ± 13.5 | 2597 ± 340 130 ± 17.0 | ** ** | 2052 ± 325 82.1 ± 13.0 | 2603 ± 418 104 ± 16.7 | ** ** |
The Share of Energy from: | Women | SS | Men | SS | ||
---|---|---|---|---|---|---|
before n = 360 | after n = 360 | before n = 540 | after n = 540 | |||
Proteins | 12.4 ± 0.66 | 13.9 ± 0.57 | ** | 12.5 ± 0.69 | 13.8 ± 0.72 | ** |
Lipids | 31.2 ± 1.89 | 27.3 ± 1.66 | ** | 32.0 ± 3.0 | 26.7 ± 1.60 | ** |
Carbohydrates | 56.4 ± 2.13 | 58.8 ± 1.65 | ** | 55.5 ± 2.61 | 59.5 ± 1.94 | ** |
Saccharose | 17.8 ± 1.52 | 9.9 ± 0.69 | * | 18.9 ± 1.23 | 9.4 ± 0.58 | - |
Component | Women | SS | Men | SS | ||
---|---|---|---|---|---|---|
before n = 360 | after n = 360 | before n = 540 | after n = 540 | |||
Folate (µg) (%) | 443 ± 35.0 138 ± 10.9 | 603 ± 52.2 188 ± 16.2 | ** ** | 442 ± 57.2 138 ± 17.9 | 606 ± 55.4 189 ± 17.3 | ** ** |
Vitamin B1 (mg) (%) | 1.62 ± 0.155 180 ± 17.2 | 1.76 ± 0.137 195 ± 15.2 | ** ** | 1.64 ± 0.279 149 ± 25.4 | 1.80 ± 0.19 163 ± 17.7 | ** ** |
Vitamin B2 (mg) (%) | 1.86 ± 0.177 207 ± 19.7 | 2.10 ± 0.23 233 ± 25.6 | ** ** | 1.85 ± 0.23 168 ± 21.1 | 2.10 ± 0.39 191 ± 35.9 | ** ** |
Vitamin B6 (mg) (%) | 2.30 ± 0.231 181 ± 23.3 | 2.71 ± 0.33 213 ± 25.7 | ** ** | 2.34 ± 0.38 176 v 28.3 | 2.76 ± 0.36 211 ± 30.9 | ** ** |
Vitamin C (mg) (%) | 96.8 ± 43.4 161 ± 72.3 | 181 ± 28.4 302 ± 47.3 | ** ** | 102 ± 77.7 136 ± 104 | 191 ± 77.3 255 ± 103 | ** ** |
Vitamin D 1 (µg) (%) | 2.10 ± 0.20 21.0 ± 1.98 | 2.79 ± 0.47 27.9 ± 8.77 | ** ** | 2.54 ± 1.62 25.3 ± 16.2 | 3.07 ± 2.07 30.7 ± 20.7 | ** ** |
Calcium (mg) (%) | 569 ± 82.7 58.7 ± 9.21 | 751 ± 150 77.8 ± 18.4 | ** ** | 561 ± 122 68.2 ± 17.2 | 742 ± 206 89.3 ± 28.4 | ** ** |
Magnesium (mg) (%) | 412 ± 61.2 155 ± 23.1 | 471 ± 69.8 177 ± 26.3 | ** ** | 395 ± 77.8 113 ± 22.0 | 463 ± 66.8 133 ± 18.8 | ** ** |
Iron (mg) (%) | 16.9 ± 2.27 272 ± 46.0 | 18.8 ± 2.25 303 ± 49.7 | ** ** | 16.4 ± 2.46 273 ± 41.1 | 18.6 ± 1.95 311 ± 32.5 | ** ** |
Zinc (mg) (%) | 15.0 ± 2.49 220 ± 36.6 | 15.0 ± 2.41 220 ± 35.5 | - - | 14.4 ± 2.89 211 ± 42.5 | 14.7 ± 2.38 217 ± 34.9 | - - |
Cooper (mg) (%) | 1.73 ± 0.228 192 ± 25.3 | 2.12 ± 0.246 235 ± 27.4 | ** ** | 1.68 ± 0.275 186 ± 30.6 | 2.08 ± 0.225 231 ± 25.1 | ** ** |
Trait | Women | SS | Men | SS | ||
---|---|---|---|---|---|---|
before n = 360 | after n = 360 | before n = 540 | after n = 540 | |||
Breakfast | 60.2 ± 15.9 | 54.8 ± 7.0 | * | 64.6 ± 13.3 | 56.5 ± 6.4 | * |
Lunch | 6.0 ± 8.3 | 3.0 ± 5.4 | - | 3.7 ± 7.5 | 2.4 ± 4.8 | - |
Dinner | 42.9 ± 0.3 | 43.9 ± 0.05 | - | 43.6 ± 0.2 | 43.5 ± 0.01 | - |
Afternoon snack | 0.0 ± 0.0 | 12.0 ± 0.05 | ** | 0.0 ± 0.0 | 13.2 ± 0.04 | ** |
Supper | 62.3 ± 17.8 | 58.5 ± 6.6 | - | 65.6 ± 16.1 | 59.9 ± 6.1 | - |
Snacks | 76.1 ± 36.9 | 47.8 ± 20.1 | ** | 84.5 ± 58.0 | 53.1 ± 33.6 | ** |
Σ of 24 hours | 247.3 ± 45.7 | 220.0 ± 21.9 | ** | 262.1 ± 61.7 | 228.6 ± 35.2 | ** |
Trait | Women, n = 12 | SS | Men, n = 18 | SS | ||
---|---|---|---|---|---|---|
before | after | before | after | |||
Body weight (kg) | 77.9 ± 18.8 56–118 | 75.2 ± 17.6 56–112 | * | 79.1 ± 9.7 64–102 | 79.3 ± 12.0 62.7–106 | - |
BMI (kg/m2) | 30.1 ± 7.8 20.6–51.1 | 29.1 ± 7.3 19.3–48 | * | 27.2 ± 3.8 21.5–36.6 | 27.3 ± 4.4 22.5–38.0 | - |
WC (cm) | 100.6 ± 14.4 78–135 | 98.9 ± 14.6 71–130.5 | - | 100.2 ± 8.7 89.0–114 | 101.0 ± 9.8 90.5–129 | - |
HC (cm) | 108.3 ± 13.3 91–140 | 104.6 ± 13.2 91–140 | * | 104.0 ± 6.4 93–118 | 101.3 ± 7.7 90–117 | - |
WHR | 0.93 ± 0.06 0.79–1.0 | 0.95 ± 0.08 0.77–1.07 | - | 0.96 ± 0.06 0.86–1.07 | 1.00 ± 0.05 0.92–1.11 | - |
WHtR | 0.63 ± 0.10 0.45–0.89 | 0.62 ± 0.11 0.41–0.86 | - | 0.59 ± 0.07 0.49–0.72 | 0.59 ± 0.07 0.51–0.72 | - |
Trait | Women, n = 12 | SS | Men, n = 18 | SS | ||
---|---|---|---|---|---|---|
before | after | before | after | |||
Glucose (mmol/L) | 4.96 ± 0.89 3.83–6.89 | 4.42 ± 0.76 3.56–6.22 | * | 4.97 ± 1.08 4.11–8.39 | 4.14 ± 0.61 3.22–5.28 | ** |
TG (mmol/L) | 2.05 ± 0,85 0.88–4.15 | 1.58 ± 0.63 0.82–2.79 | - | 1.92 ± 1.07 0.67–4.02 | 1.52 ± 0.75 0.61–3.56 | * |
TC (mmol/L) | 5.43 ± 1.39 3.26–7.59 | 4.76 ± 0.85 3.41–6.16 | - | 5.07 ± 1.08 3.16–6.83 | 4.41 ± 0.91 2.67 –5.62 | * |
HDL-C (mmol/L) | 1.17 ± 0.35 0.72–1.93 | 1.24 ± 0.33 0.84–1.78 | - | 1.11 ± 0.39 0.75–1.88 | 1.09 ± 0.42 0.46–1.84 | - |
LDL-C (mmol/L) | 3.25 ± 1.14 1.58–4.25 | 2.81 ± 0.79 1.58–4.25 | - | 3.19 ± 0.98 1.58–4.87 | 2.71±0.86 1.48–4.17 | ** |
HDL-C/TC | 0,229 ± 0,094 0,122–0,455 | 0,279 ± 0,009 0,137–0,443 | - | 0,235 ± 0,102 0,124–0,427 | 0,258 ± 0,107 0,126–0,482 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, M.; Fugiel, J.; Sadowska, J. Assessing Effects of Diet Alteration on Carbohydrate–Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients 2023, 15, 1871. https://doi.org/10.3390/nu15081871
Friedrich M, Fugiel J, Sadowska J. Assessing Effects of Diet Alteration on Carbohydrate–Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients. 2023; 15(8):1871. https://doi.org/10.3390/nu15081871
Chicago/Turabian StyleFriedrich, Mariola, Joanna Fugiel, and Joanna Sadowska. 2023. "Assessing Effects of Diet Alteration on Carbohydrate–Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study" Nutrients 15, no. 8: 1871. https://doi.org/10.3390/nu15081871
APA StyleFriedrich, M., Fugiel, J., & Sadowska, J. (2023). Assessing Effects of Diet Alteration on Carbohydrate–Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients, 15(8), 1871. https://doi.org/10.3390/nu15081871