Further Evidence on Trace Element Imbalances in Haemodialysis Patients—Paired Analysis of Blood and Serum Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Reagents
2.3. Laboratory Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidney Disease Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Sundström, J.; Bodegard, J.; Bollmann, A.; Vervloet, M.G.; Mark, P.B.; Karasik, A.; Taveira-Gomes, T.; Botana, M.; Birkeland, K.I.; Thuresson, M.; et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: The CaReMe CKD study. Lancet Reg. Health Eur. 2022, 20, 100438. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Htay, H.; Bello, A.K.; Levin, A.; Lunney, M.; Osman, M.A.; Ye, F.; Ashuntantang, G.E.; Bellorin-Font, E.; Gharbi, M.B.; Davison, S.N.; et al. Hemodialysis Use and Practice Patterns: An International Survey Study. Am. J. Kidney Dis. 2021, 77, 326–335. [Google Scholar] [CrossRef]
- Baker, L.A.; March, D.S.; Wilkinson, T.J.; Billany, R.E.; Bishop, N.C.; Castle, E.M.; Chilcot, J.; Davies, M.D.; Graham-Brown, M.P.M.; Greenwood, S.A.; et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol. 2022, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- de Rooij, E.N.M.; Meuleman, Y.; de Fijter, J.W.; Le Cessie, S.; Jager, K.J.; Chesnaye, N.C.; Evans, M.; Pagels, A.A.; Caskey, F.J.; Torino, C.; et al. Quality of Life before and after the Start of Dialysis in Older Patients. Clin. J. Am. Soc. Nephrol. 2022, 17, 1159. [Google Scholar] [CrossRef]
- Nagasawa, H.; Sugita, I.; Tachi, T.; Esaki, H.; Yoshida, A.; Kanematsu, Y.; Noguchi, Y.; Kobayashi, Y.; Ichikawa, E.; Tsuchiya, T.; et al. The Relationship Between Dialysis Patients’ Quality of Life and Caregivers’ Quality of Life. Front. Pharmacol. 2018, 9, 770. [Google Scholar] [CrossRef]
- Nataatmadja, M.; Krishnasamy, R.; Zuo, L.; Hong, D.; Smyth, B.; Jun, M.; de Zoysa, J.R.; Howard, K.; Wang, J.; Lu, C.; et al. Quality of Life in Caregivers of Patients Randomized to Standard-Versus Extended-Hours Hemodialysis. Kidney Int. Rep. 2021, 6, 1058–1065. [Google Scholar] [CrossRef]
- Çelik, G.; Annagur, B.B.; Yılmaz, M.; Demir, T.; Kara, F. Are sleep and life quality of family caregivers affected as much as those of hemodialysis patients? Gen. Hosp. Psychiatry 2012, 34, 518–524. [Google Scholar] [CrossRef]
- Ayman, K. Advances in Hemodialysis Techniques. In Hemodialysis; Hiromichi, S., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Fleming, G.M. Renal replacement therapy review. Organogenesis 2011, 7, 2–12. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Ristić-Medić, D.; Krstić, Đ.; Rovčanin, B.; Radjen, S.; Terzić, B.; Manojlović, D. Circulatory Imbalance of Essential and Toxic Trace Elements in Pre-dialysis and Hemodialysis Patients. Biol. Trace Elem. Res. 2022, 200, 3117–3125. [Google Scholar] [CrossRef]
- Kiziltas, H.; Ekin, S.; Erkoc, R. Trace element status of chronic renal patients undergoing hemodialysis. Biol. Trace Elem. Res. 2008, 124, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hasanato, R.M. Assessment of trace elements in sera of patients undergoing renal dialysis. Saudi Med. J. 2014, 35, 365–370. [Google Scholar]
- Koca, T.; Berber, A.; Koca, H.B.; Demir, T.A.; Koken, T. Effects of hemodialysis period on levels of blood trace elements and oxidative stress. Clin. Exp. Nephrol. 2010, 14, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Amin, M.N.; Das, A.; Khan, A.K.M.J.H.; Sohel, M.; Ahmed, J.; Islam, M.M.; Hossain, M.S.; Rahman, M.M.; Nesa, M.L.; et al. Increased lipid peroxidation, depleted non-enzymatic antioxidant, and variability in trace elements concentration in serum are correlated with Bangladeshi end-stage renal disease population. Health Sci. Rep. 2021, 4, e348. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Bello, A.; Field, C.J.; Gill, J.S.; Hemmelgarn, B.R.; Holmes, D.T.; Jindal, K.; Klarenbach, S.W.; Manns, B.J.; et al. Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study. Am. J. Kidney Dis. 2017, 70, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Hemmelgarn, B.; Klarenbach, S.; Field, C.; Manns, B.; Thadhani, R.; Gill, J. Trace elements in hemodialysis patients: A systematic review and meta-analysis. BMC Med. 2009, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugam, L.; Green, S.R.; Radhakrishnan, H.; Kadavanu, T.M.; Ramachandrappa, A.; Tiwari, S.R.; Rajkumar, A.L.; Govindasamy, E. Trace elements in chronic haemodialysis patients and healthy individuals-A comparative study. J. Clin. Diagn. Res. 2016, 10, OC14–OC17. [Google Scholar] [CrossRef]
- Prodanchuk, M.; Makarov, O.; Pisarev, E.; Sheiman, B.; Kulyzkiy, M. Disturbances of trace element metabolism in ESRD patients receiving hemodialysis and hemodiafiltration. Cent. Eur. J. Urol. 2013, 66, 472–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O’Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 2018, 33, iii35–iii40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 3081856. [Google Scholar] [CrossRef]
- Iorember, F.M. Malnutrition in Chronic Kidney Disease. Front. Pediatr. 2018, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, A.; Selgas, R.; Diéz, J.J.; Bajo, M.A.; Codoceo, R.; Alvarez, V. Anorexia in end-stage renal disease: Pathophysiology and treatment. Expert Opin. Pharmacother. 2001, 2, 1825–1838. [Google Scholar] [CrossRef]
- Bossola, M.; Di Stasio, E.; Viola, A.; Leo, A.; Carlomagno, G.; Monteburini, T.; Cenerelli, S.; Santarelli, S.; Boggi, R.; Miggiano, G.; et al. Dietary intake of trace elements, minerals, and vitamins of patients on chronic hemodialysis. Int. Urol. Nephrol. 2014, 46, 809–815. [Google Scholar] [CrossRef]
- Berger, M.M.; Broman, M.; Forni, L.; Ostermann, M.; De Waele, E.; Wischmeyer, P.E. Nutrients and micronutrients at risk during renal replacement therapy: A scoping review. Curr. Opin. Crit. Care 2021, 27, 367–377. [Google Scholar] [CrossRef]
- Covic, A.; Gusbeth-Tatomir, P. Trace elements in end-stage renal disease—Unfamiliar territory to be revealed. BMC Nephrol. 2009, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Milne, D.B.; Sims, R.L.; Ralston, N.V. Manganese content of the cellular components of blood. Clin. Chem. 1990, 36, 450–452. [Google Scholar] [CrossRef] [PubMed]
- deSilva, P.E. Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br. J. Ind. Med. 1981, 38, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.; Gajewska, K.; Duro, M.; Costa, F.; Pinto, E. Trace element imbalances in patients undergoing chronic hemodialysis therapy—Report of an observational study in a cohort of Portuguese patients. J. Trace Elem. Med. Biol. 2020, 62, 126580. [Google Scholar] [CrossRef] [PubMed]
- Goullé, J.-P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Sci. Int. 2005, 153, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Oruc, M.; Mercan, S.; Bakan, S.; Kose, S.; Ikitimur, B.; Trabulus, S.; Altiparmak, M.R. Do trace elements play a role in coronary artery calcification in hemodialysis patients? Int. Urol. Nephrol. 2022, 55, 173–182. [Google Scholar] [CrossRef]
- Akcan, E.; Özkurt, S.; Sahin, G.; Yalcin, A.U.; Adapinar, B. The relation between brain MRI findings and blood manganese levels in renal transplantation, hemodialysis, and peritoneal dialysis patients. Int. Urol. Nephrol. 2018, 50, 173–177. [Google Scholar] [CrossRef]
- Gómez de Oña, C.; Martínez-Morillo, E.; Gago González, E.; Vidau Argüelles, P.; Fernández Merayo, C.; Álvarez Menéndez, F.V. Variation of trace element concentrations in patients undergoing hemodialysis in the north of Spain. Scand. J. Clin. Lab. Invest. 2016, 76, 492–499. [Google Scholar] [CrossRef]
- Ninić, A.; Sopić, M.; Munjas, J.; Spasojević-Kalimanovska, V.; Kotur-Stevuljević, J.; Bogavac-Stanojević, N.; Ivanišević, J.; Simić-Ogrizović, S.; Kravljača, M.; Jelić-Ivanović, Z. Association Between Superoxide Dismutase Isoenzyme Gene Expression and Total Antioxidant Status in Patients with an End-Stage Renal Disease. Balk. Med. J. 2018, 35, 431–436. [Google Scholar] [CrossRef]
- Ari, E.; Kaya, Y.; Demir, H.; Asicioglu, E.; Keskin, S. The correlation of serum trace elements and heavy metals with carotid artery atherosclerosis in maintenance hemodialysis patients. Biol. Trace Elem. Res. 2011, 144, 351–359. [Google Scholar] [CrossRef]
- Guo, C.H.; Wang, C.L.; Chen, P.C.; Yang, T.C. Linkage of some trace elements, peripheral blood lymphocytes, inflammation, and oxidative stress in patients undergoing either hemodialysis or peritoneal dialysis. Perit. Dial. Int. 2011, 31, 583–591. [Google Scholar] [CrossRef]
- Bhogade, R.B.; Suryakar, A.N.; Joshi, N.G. Effect of hemodialysis on serum copper and zinc levels in renal failure patients. Eur. J. Gen. Med. 2013, 10, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Balsano, C.; Porcu, C.; Sideri, S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018, 10, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
- Damiano, S.; Sozio, C.; La Rosa, G.; Guida, B.; Faraonio, R.; Santillo, M.; Mondola, P. Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. Int. J. Mol. Sci. 2020, 21, 6606. [Google Scholar] [CrossRef]
- Kalousová, M.; Kuběna, A.A.; Koštířová, M.; Vinglerová, M.; Ing, O.M.; Dusilová-Sulková, S.; Tesař, V.; Zima, T. Lower retinol levels as an independent predictor of mortality in long-term hemodialysis patients: A prospective observational cohort study. Am. J. Kidney Dis. 2010, 56, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, E.K.; Kapitsinou, P.; Pergola, P.E.; Kovesdy, C.P.; Jalal, D.I. Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treatment. J. Am. Soc. Nephrol. 2020, 31, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, M.; Piacenza, F.; Basso, A.; Giacconi, R.; Costarelli, L.; Mocchegiani, E. Serum copper to zinc ratio: Relationship with aging and health status. Mech. Ageing Dev. 2015, 151, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Voutilainen, A.; Kurl, S.; Laukkanen, J.A. Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1924–1935. [Google Scholar] [CrossRef]
- Laine, J.T.; Tuomainen, T.-P.; Salonen, J.T.; Virtanen, J.K. Serum copper-to-zinc-ratio and risk of incident infection in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Eur. J. Epidemiol. 2020, 35, 1149–1156. [Google Scholar] [CrossRef]
- Stepien, M.; Jenab, M.; Freisling, H.; Becker, N.-P.; Czuban, M.; Tjønneland, A.; Olsen, A.; Overvad, K.; Boutron-Ruault, M.-C.; Mancini, F.R.; et al. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis 2017, 38, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Hamasaki, H.; Kawashima, Y.; Yanai, H. Serum Zn/Cu Ratio Is Associated with Renal Function, Glycemic Control, and Metabolic Parameters in Japanese Patients with and without Type 2 Diabetes: A Cross-sectional Study. Front. Endocrinol. 2016, 7, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Xu, J.; Jiang, R.; Yao, B.; Di, J. Association between serum copper, zinc and their ratio and handgrip strength among adults: A study from National Health and Nutrition Examination Survey (NHANES) 2011–2014. Environ. Sci. Pollut. Res. Int. 2023, 30, 29100–29109. [Google Scholar] [CrossRef] [PubMed]
- Reina de la Torre, M.L.; Navarro-Alarcón, M.; del Moral, L.M.; López, G.d.l.S.H.; Palomares-Bayo, M.; Oliveras López, M.J.; Blanca Herrera, R.M.; Agil, A. Serum Zn levels and Cu/Zn ratios worsen in hemodialysis patients, implying increased cardiovascular risk: A 2-year longitudinal study. Biol. Trace Elem. Res. 2014, 158, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2012, 16, 705–743. [Google Scholar] [CrossRef] [Green Version]
- Zargari, M.; Sedighi, O. Influence of Hemodialysis on Lipid Peroxidation, Enzymatic and Non-Enzymatic Antioxidant Capacity in Chronic Renal Failure Patients. Nephrourol. Mon. 2015, 7, e28526. [Google Scholar] [CrossRef] [Green Version]
- Ozden, M.; Maral, H.; Akaydın, D.; Cetınalp, P.; Kalender, B. Erythrocyte glutathione peroxidase activity, plasma malondialdehyde and erythrocyte glutathione levels in hemodialysis and CAPD patients. Clin. Biochem. 2002, 35, 269–273. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, M.; Shi, Z.; Li, S.; Jiang, K.; Zhao, Y. Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data. Nutrients 2022, 14, 2695. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B12 status in health and disease: A critical review. Diagnosis of deficiency and insufficiency—Clinical and laboratory pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef]
- Nexo, E.; Hoffmann-Lücke, E. Holotranscobalamin, a marker of vitamin B-12 status: Analytical aspects and clinical utility. Am. J. Clin. Nutr. 2011, 94, 359s–365s. [Google Scholar] [CrossRef] [Green Version]
- Bévier, A.; Novel-Catin, E.; Blond, E.; Pelletier, S.; Parant, F.; Koppe, L.; Fouque, D. Water-Soluble Vitamins and Trace Elements Losses during On-Line Hemodiafiltration. Nutrients 2022, 14, 3454. [Google Scholar] [CrossRef]
- Herrmann, W.; Obeid, R.; Schorr, H.; Geisel, J. Functional vitamin B12 deficiency and determination of holotranscobalamin in populations at risk. Clin. Chem. Lab. Med. 2003, 41, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Kuhlmann, M.; Kirsch, C.M.; Herrmann, W. Cellular Uptake of Vitamin B12 in Patients with Chronic Renal Failure. Nephron Clin. Pract. 2005, 99, c42–c48. [Google Scholar] [CrossRef] [PubMed]
- Turnlund, J.R.; Keyes, W.R.; Peiffer, G.L. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men at five intakes of dietary molybdenum. Am. J. Clin. Nutr. 1995, 62, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Broman, M.; Bryland, A.; Carlsson, O. Trace elements in patients on continuous renal replacement therapy. Acta Anaesthesiol. Scand. 2017, 61, 650–659. [Google Scholar] [CrossRef]
- Hartwig, A. Cadmium and cancer. Met. Ions Life Sci. 2013, 11, 491–507. [Google Scholar] [CrossRef]
- Palaneeswari, M.S.; Sam Rajan, P.M.A.; Silambanan, S.; Jothimalar. Blood arsenic and cadmium concentrations in end-stage renal disease patients who were on maintenance haemodialysis. J. Clin. Diagn. Res. 2013, 7, 809–813. [Google Scholar] [CrossRef]
- Sivrikaya, A.; Menevşe, E.; Altintepe, L.; Tiftik, A.M. The Relations between Levels of Cadmium and Thyroid Parameters in Hemodialysis Patients. J. Clin. Anal. Med. 2013, 4, 1–4. [Google Scholar] [CrossRef]
- Chen, B.; Lamberts, L.V.; Behets, G.J.; Zhao, T.; Zhou, M.; Hou, X.; Guan, G.; D’Haese, P.C.; Liu, G. Selenium, lead, and cadmium levels in renal failure patients in China. Biol. Trace Elem. Res. 2009, 131, 1–12. [Google Scholar] [CrossRef]
- Kaya, Y.; Ari, E.; Demir, H.; Gecit, I.; Beytur, A.; Kaspar, C. Serum cadmium levels are independently associated with endothelial function in hemodialysis patients. Int. Urol. Nephrol. 2012, 44, 1487–1492. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Piscator, M.; Nordberg, M. On the distribution of cadmium in blood. Acta Pharmacol. Toxicol. 1971, 30, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Zalups, R.K.; Ahmad, S. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 2003, 186, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.; Nordberg, G.F. Toxicological aspects of metallothionein. Cell. Mol. Biol. 2000, 46, 451–463. [Google Scholar] [PubMed]
- Nordberg, G.F.; Nogawa, K.; Nordberg, M.; Friberg, L.T. Cadmium. In Handbook on the Toxicology of Metals, 3rd ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T., Eds.; Academic Press: Burlington, ON, Canada, 2007; pp. 445–486. [Google Scholar]
- Nordberg, G.F.; Kjellstrom, T.; Nordberg, M. Kinetics and metabolism. In Cd and Health: A Toxicological and Epidemiological Appraisal. Vol I: Exposure, Dose and Metabolism, 1st ed.; Friberg, L.T., Carl-Gustaf, E., Kjellstrom, T., Nordberg, G.F., Eds.; CRC Press: Boca Raton, FL, USA, 1985; pp. 103–178. [Google Scholar]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Subha Palaneeswari, M.; Abraham Sam Rajan, P.M.; Silambanan, S.; Jothimalar. Blood lead in end-stage renal disease (ESRD) patients who were on maintainence haemodialysis. J. Clin. Diagn. Res. 2012, 6, 1633–1635. [Google Scholar] [CrossRef]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Tasnim, N.; Dutta, P.; Nayeem, J.; Masud, P.; Ferdousi, A.; Ghosh, A.S.; Hossain, M.; Rajia, S.; Kubra, K.T.; Sakibuzzaman, M.; et al. Osteoporosis, an Inevitable Circumstance of Chronic Kidney Disease: A Systematic Review. Cureus 2021, 13, e18488. [Google Scholar] [CrossRef]
- Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K.; Lafage-Proust, M.-H.; Prieto-Alhambra, D.; Torres, P.U.; Cannata-Andia, J.; European Renal Osteodystrophy workgroup; et al. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D. Nephrol. Dial. Transplant. 2020, 36, 42–59. [Google Scholar] [CrossRef]
- Silbergeld, E.K.; Schwartz, J.; Mahaffey, K. Lead and osteoporosis: Mobilization of lead from bone in postmenopausal women. Environ. Res. 1988, 47, 79–94. [Google Scholar] [CrossRef]
- Brrow, F.; Bargiul, S. Estimation of nickel levels in blood serum among hemodialysis patients in Syria. Res. J. Pharm. Technol. 2021, 14, 1507–1510. [Google Scholar] [CrossRef]
- Uluisik, I.; Karakaya, H.C.; Koc, A. The importance of boron in biological systems. J. Trace Elem. Med. Biol. 2018, 45, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Timmer, R.T.; Sands, J.M. Lithium Intoxication. J. Am. Soc. Nephrol. 1999, 10, 666–674. [Google Scholar] [CrossRef]
- Sunderman, F.W.; Aitio, A.; Morgan, L.G.; Norseth, T. Biological Monitoring of Nickel. Toxicol. Ind. Health 1986, 2, 17–78. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety & Inter-Organization Programme for the Sound Management of Chemicals. Strontium and Strontium Compounds; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Kołodziejska, B.; Stępień, N.; Kolmas, J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int. J. Mol. Sci. 2021, 22, 6564. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- Scharfetter, H.; Krachler, M.; Wirnsberger, G.H.; Holzer, H.; Hutten, H. Kinetic modeling of rubidium during hemodialysis. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No.97CH36136), Chicago, IL, USA, 30 October–2 November 1997; Volume 2135, pp. 2135–2137. [Google Scholar]
- Canavese, C.; Decostanzi, E.; Bergamo, D.; Sabbioni, E.; Stratta, P. Rubidium, salami and depression. You cannot have everything in life. Blood Purif. 2008, 26, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, S.T.; Hamidian, M.R.; Madani, A.; Ataei, N.; Mohseni, P.; Roudbari, M.; Haddadi, M. Serum zinc and copper levels in children with chronic renal failure. Pediatr. Nephrol. 2006, 21, 1153–1156. [Google Scholar] [CrossRef]
- Guo, C.H.; Wang, C.L. Effects of zinc supplementation on plasma copper/zinc ratios, oxidative stress, and immunological status in hemodialysis patients. Int. J. Med. Sci. 2013, 10, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wiebe, N.; Thompson, S.; Kinniburgh, D.; Klarenbach, S.W.; Walsh, M.; Bello, A.K.; Faruque, L.; Field, C.; Manns, B.J.; et al. Trace element supplementation in hemodialysis patients: A randomized controlled trial. BMC Nephrol. 2015, 16, 52. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, R.; Xu, Q.; Xu, S.; Zuo, S.; Qiu, J.; Zhong, X.; Tan, R.; Liu, Y. High Blood Cu/Zn Ratio is Associated with Nutritional Risk in Patients Undergoing Maintenance Hemodialysis. Biol. Trace Elem. Res. 2022, 200, 4977–4987. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Liu, M.; Liu, Y.; Xu, S.; Zhong, X.; Qiu, J.; Qin, D.; Tan, R.; Liu, Y. Association Between the Blood Copper-Zinc (Cu/Zn) Ratio and Anemia in Patients Undergoing Maintenance Hemodialysis. Biol. Trace Elem. Res. 2022, 200, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
Trace Element | Haemodialysis | Controls | Hedges’ g (95% CI) | p-Value |
---|---|---|---|---|
Li | 2.66 (1.92) [0.55–8.71] | 1.07 (0.81) [0.25–3.43] | 1.37 (1.00–1.75) | <0.001 |
B | 133 (62) [45–405] | 46 (23) [10–105] | 2.31 (1.89–2.71) | <0.001 |
Mn | 8.4 (2.3) [4.1–14.9] | 7.6 (1.5) [4.5–11.0] | 0.35 (0.02–0.67) | 0.025 |
Co | 0.188 (0.062) [0.057–0.366] | 0.226 (0.049) [0.146–0.364] | −0.75 (−1.09–−0.40) | <0.001 |
Ni | 1.82 (0.46) [0.91–2.98] | 1.53 (0.69) [0.71–3.25] | 0.71 (0.38–1.04) | <0.001 |
Cu | 843 (138) [592–1200] | 955 (167) [512–1365] | −0.72 (−1.05–−0.39) | <0.001 |
Zn | 5360 (755) [3764–7341] | 5767 (2249) [2254–9756] | −0.04 (−0.35–0.28) | 0.347 |
Se | 123 (19) [75–169] | 138 (20) [92–184] | −0.76 (−1.09–−0.43) | <0.001 |
Rb | 1142 (221) [635–1604] | 2457 (670) [1087–3993] | −2.97 (−3.42–−2.51) | <0.001 |
Sr | 29.9 (4.0) [21.6–40.4] | 17.6 (6.7) [7.3–35.2] | 2.40 (1.99–2.82) | <0.001 |
Mo | 2.48 (1.32) [0.07–5.84] | 0.80 (0.26) [0.30–1.50] | 1.53 (1.16–1.90) | <0.001 |
Cd | 1.00 (0.32) [0.38–1.86] | 0.299 (0.136) [0.094–0.655] | 3.31 (2.81–3.81) | <0.001 |
Pb | 100 (24) [42–158] | 21.1 (14.2) [5.8–77.8] | 4.13 (3.57–4.68) | <0.001 |
Trace Element | Haemodialysis | Controls | Hedges’ g (95% CI) | p-Value |
---|---|---|---|---|
Li | 2.89 (1.75) [0.70–7.92] | 1.19 (0.76) [0.25–2.94] | 1.56 (0.96–2.15) | <0.001 |
B | 89 (42) [22–211] | 34 (17) [15–64] | 1.88 (1.28–2.47) | <0.001 |
Mn | 0.40 (0.10) [0.22–0.65] | 0.52 (0.11) [0.36–0.76] | −1.16 (−1.72–−0.58) | <0.001 |
Co | 0.23 (0.11) [0.12–0.72] | 0.130 (0.037) [0.094–0.214] | 1.67 (1.09–2.26) | <0.001 |
Ni | 2.80 (0.95) [0.90–5.50] | 1.09 (0.25) [0.78–1.58] | 1.90 (1.25–2.53) | <0.001 |
Cu | 671 (150) [341–1046] | 812 (139) [621–1070] | −0.93 (−1.49–−0.40) | <0.001 |
Zn | 448 (84) [271–658] | 681 (114) [475–876] | −2.59 (−3.23–−1.95) | <0.001 |
Se | 62 (13) [32–90] | 82 (15) [58–103] | −1.43 (−1.99–−0.87) | <0.001 |
Rb | 87 (24) [34–146] | 115 (19) [89–145] | −1.14 (−1.71–−0.57) | <0.001 |
Sr | 29.0 (4.4) [19.7–39.8] | 22.3 (7.6) [10.5–36.0] | 1.32 (0.76–1.88) | 0.003 |
Mo | 3.20 (1.48) [0.16–6.79] | 0.61 (0.42) [0.026–1.35] | 1.87 (1.27–2.45) | <0.001 |
Cd | 0.038 (0.016) [0.008–0.080] | 0.013 (0.005) [0.008–0.018] | 2.64 (1.97–3.27) | <0.001 |
Pb | 0.287 (0.149) [0.025–0.755] | 0.096 (0.083) [0.021–0.317] | 2.55 (1.88–3.20) | <0.001 |
Cu/Zn | 1.54 (0.43) [0.76–2.54] | 1.22 (0.25) [0.77–1.65] | 0.80 (0.26–1.34) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, R.; Gennaro, D.; Duro, M.; Pinto, E.; Almeida, A. Further Evidence on Trace Element Imbalances in Haemodialysis Patients—Paired Analysis of Blood and Serum Samples. Nutrients 2023, 15, 1912. https://doi.org/10.3390/nu15081912
Azevedo R, Gennaro D, Duro M, Pinto E, Almeida A. Further Evidence on Trace Element Imbalances in Haemodialysis Patients—Paired Analysis of Blood and Serum Samples. Nutrients. 2023; 15(8):1912. https://doi.org/10.3390/nu15081912
Chicago/Turabian StyleAzevedo, Rui, Davide Gennaro, Mary Duro, Edgar Pinto, and Agostinho Almeida. 2023. "Further Evidence on Trace Element Imbalances in Haemodialysis Patients—Paired Analysis of Blood and Serum Samples" Nutrients 15, no. 8: 1912. https://doi.org/10.3390/nu15081912
APA StyleAzevedo, R., Gennaro, D., Duro, M., Pinto, E., & Almeida, A. (2023). Further Evidence on Trace Element Imbalances in Haemodialysis Patients—Paired Analysis of Blood and Serum Samples. Nutrients, 15(8), 1912. https://doi.org/10.3390/nu15081912