Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Study Setting and Design
2.3. Data and Sample Collection
2.4. Determination of Complete Blood Count and Cytokine Concentrations
2.5. Statistical Analysis
3. Results
3.1. Parasitic Infection, Anthropometric Measurements, Nutritional Indicators, Clinical Signs and Symptoms, Complete Blood Counts, Inflammatory Markers and Cytokines Stratified by Sex, Age Groups and Location of the School
3.2. Association of Cytokine Concentrations with Parasitic Infections, Clinical Signs and Symptoms
3.3. Association of Cytokine Concentrations with Undernutrition and Micronutrient Deficiency
3.4. Association between Cytokine Concentrations and Other Risk Factors
4. Discussion
4.1. Association of Cytokine Concentrations with Parasitic Infections, Clinical Signs and Symptoms
4.2. Association of Cytokine Concentrations with Undernutrition, Micronutrient Deficiency and Inflammatory Markers
4.3. Association between Cytokine Concentrations and Other Risk Factors
4.4. Parasitic Infections, Clinical Signs and Symptoms, Complete Blood Counts and Inflammatory Markers
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrant, R.L.; DeBoer, M.D.; Moore, S.R.; Scharf, R.J.; Lima, A.A.M. The impoverished gut—A triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, S.; Burchard, G.D.; Mantel, C.; Cramer, J.P.; Kaiser, S.; Kubo, M.; Otchwemah, R.N.; Bienzle, U.; Mockenhaupt, F.P. Malaria, anemia, and malnutrition in african children--defining intervention priorities. J. Infect. Dis. 2006, 194, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, L.S. Helminth parasites, a major factor in malnutrition. World Health Forum. 1994, 15, 169–172. [Google Scholar] [PubMed]
- Jensen, S.K.G.; Berens, A.E.; Nelson, C.A., 3rd. Effects of poverty on interacting biological systems underlying child development. Lancet Child Adolesc. Health 2017, 1, 225–239. [Google Scholar] [CrossRef]
- The World Bank. Poverty Overview: Development News, Research, Data. 2022. Available online: http://www.worldbank.org/en/topic/poverty (accessed on 22 February 2023).
- Ngure, F.M.; Reid, B.M.; Humphrey, J.H.; Mbuya, M.N.; Pelto, G.; Stoltzfus, R.J. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: Making the links. Ann. N. Y. Acad. Sci. 2014, 1308, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Campbell, O.M.; Benova, L.; Gon, G.; Afsana, K.; Cumming, O. Getting the basic rights-the role of water, sanitation and hygiene in maternal and reproductive health: A conceptual framework. Trop. Med. Int. Health 2015, 20, 252–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yuan, Y.; Tao, Y.; Wang, W. Effects of vitamin A deficiency on mucosal immunity and response to intestinal infection in rats. Nutrition 2011, 27, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Girdwood, R.H. Vitamin B12 and folic acid in the megaloblastic anaemias. Edinb. Med. J. 1951, 58, 309–335. [Google Scholar]
- Dardenne, M. Zinc and immune function. Eur. J. Clin. Nutr. 2002, 56 (Suppl. S3), S20–S23. [Google Scholar] [CrossRef] [Green Version]
- Gurung, P.; Kanneganti, T.D. Immune responses against protozoan parasites: A focus on the emerging role of Nod-like receptors. Cell. Mol. Life Sci. 2016, 73, 3035–3051. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, C.; Dominguez, V.; Garzon, T.; Rascon, R. Immunity to Protozoa. eLS 2018, 1–13. [Google Scholar]
- McSorley, H.J.; Maizels, R.M. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 2012, 25, 585–608. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat. Rev. Immunol. 2015, 15, 271–282. [Google Scholar] [CrossRef]
- Palmeirim, M.S.; Mrimi, E.C.; Minja, E.G.; Samson, A.J.; Keiser, J. A cross-sectional survey on parasitic infections in schoolchildren in a rural Tanzanian community. Acta Trop. 2021, 213, 105737. [Google Scholar] [CrossRef] [PubMed]
- Mrimi, E.C.; Palmeirim, M.S.; Minja, E.G.; Long, K.Z.; Keiser, J. Malnutrition, anemia, micronutrient deficiency and parasitic infections among schoolchildren in rural Tanzania. PLoS Negl. Trop. Dis 2022, 16, e0010261. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntigui, C.N.M.M.; Oyegue-Liabagui, S.L.; Kouna, L.C.; Imboumy, K.R.; Tegomo, N.P.T.; Okouga, A.P.; Ontoua, S.; Lekana-Douki, J.-B. Inflammatory cytokine responses in children with asymptomatic malaria infection living in rural, semi-urban and urban areas in south-eastern Gabon. Clin. Exp. Immunol. 2021, 206, 395–409. [Google Scholar] [CrossRef]
- Cox, F.E.; Liew, E.Y. Centrefold: T-cell subsets and cytokines in parasitic infections. Parasitol. Today 1992, 8, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.J.; Macdonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2002, 2, 499–511. [Google Scholar] [CrossRef]
- Fairfax, K.; Nascimento, M.; Huang, S.C.-C.; Everts, B.; Pearce, E.J. Th2 responses in schistosomiasis. Semin. Immunopathol. 2012, 34, 863–871. [Google Scholar] [CrossRef]
- Anthony, R.M.; Rutitzky, L.I.; Urban, J.F., Jr.; Stadecker, M.J.; Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 2007, 7, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.L.; Loke, P. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection. Immunity 2017, 47, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdan, P.M.; Lamberton, P.H.L.; Fenwick, A.; Addiss, D.G. Soil-transmitted helminth infections. Lancet 2018, 391, 252–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-transmitted helminth infections: Ascariasis, trichuriasis, and hookworm. Lancet 2006, 367, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L.; Sack, B.K.; Baldwin, M.; Vaughan, A.M.; Kappe, S.H. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 2014, 7, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, L.; Villaquiran, J.; Ferreira, A.; Schellekens, H.; Nussenzweig, R.; Nussenzweig, V. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 1987, 330, 664–666. [Google Scholar] [CrossRef]
- Ferreira, A.; Schofield, L.; Enea, V.; Schellekens, H.; van der Meide, P.; Collins, W.E.; Nussenzweig, R.S.; Nussenzweig, V. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 1986, 232, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Stroup, S.E.; Houpt, E.R. Persistence of Entamoeba histolytica infection in CBA mice owes to intestinal IL-4 production and inhibition of protective IFN-gamma. Mucosal Immunol. 2008, 1, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Schaible, U.E.; Kaufmann, S.H. Malnutrition and infection: Complex mechanisms and global impacts. PLoS Med. 2007, 4, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, D.L. The potentiating effects of malnutrition on child mortality: Epidemiologic evidence and policy implications. Nutr. Rev. 1994, 52, 409–415. [Google Scholar] [CrossRef]
- Rodríguez, L.; González, C.; Flores, L.; Jiménez-Zamudio, L.; Graniel, J.; Ortiz-Muñiz, R. Assessment by flow cytometry of cytokine production in malnourished children. Clin. Diagn. Lab. Immunol. 2005, 12, 502–507. [Google Scholar] [CrossRef] [Green Version]
- Carreiro, A.L.; Dhillon, J.; Gordon, S.; Higgins, K.A.; Jacobs, A.G.; McArthur, B.M.; Redan, B.W.; Rivera, R.L.; Schmidt, L.R.; Mattes, R.D. The Macronutrients, Appetite, and Energy Intake. Annu. Rev. Nutr. 2016, 36, 73–103. [Google Scholar] [CrossRef] [Green Version]
- Yakoob, M.Y.; Lo, C.W. Nutrition (Micronutrients) in Child Growth and Development: A Systematic Review on Current Evidence, Recommendations and Opportunities for Further Research. J. Dev. Behav. Pediatr. 2017, 38, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Rytter, M.J.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition–A systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Martínez, H.; Rodríguez, L.; Nájera, O.; Cruz, D.; Miliar, A.; Domínguez, A.; Sánchez, F.; Graniel, J.; González-Torres, M.C. Expression of cytokine mRNA in lymphocytes of malnourished children. J. Clin. Immunol. 2008, 28, 593–599. [Google Scholar] [CrossRef]
- Monk, J.M.; Steevels, T.A.M.; Hillyer, L.M.; Woodward, B. Constitutive, but not Challenge-Induced, Interleukin-10 Production is Robust in Acute Pre-Pubescent Protein and Energy Deficits: New Support for the Tolerance Hypothesis of Malnutrition-Associated Immune Depression Based on Cytokine Production in vivo. Int. J. Environ. Res. Public Heal. 2011, 8, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantorna, M.T.; Nashold, F.E.; Hayes, C.E. Vitamin A deficiency results in a priming environment conducive for Th1 cell development. Eur. J. Immunol. 1995, 25, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M.; Haskell, M.J.; Raqib, R.; Stephensen, C.B. Markers of innate immune function are associated with vitamin a stores in men. J. Nutr. 2009, 139, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotez, P.J.; Bundy, D.A.; Beegle, K.; Brooker, S.; Drake, L.; de Silva, N.; Montresor, A.; Engels, D.; Jukes, M.; Chitsulo, L.; et al. Helminth Infections: Soil-Transmitted Helminth Infections and Schistosomiasis, in Disease Control Priorities in Developing Countries, 2nd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Bundy, D.A.P.; Cooper, E.S.; Thompson, D.E.; Didier, J.M.; Simmons, I. Effect of age and initial infection intensity on the rate of reinfection with Trichuris trichiura after treatment. Parasitology 1988, 97 Pt 3, 469–476. [Google Scholar] [CrossRef]
- Hochepied, T.; Berger, F.G.; Baumann, H.; Libert, C. Alpha(1)-acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev. 2003, 14, 25–34. [Google Scholar] [CrossRef] [PubMed]
Girls | Boys | p-Value | 6–10 Years Children | 11–12 Years Children | p-Value | Most Rural Schools | Least Rural Schools | p-Value | |
---|---|---|---|---|---|---|---|---|---|
Total number of children | 53 | 60 | 71 | 41 | 65 | 48 | |||
Parasitic infection a | |||||||||
Infected, n | 34 | 41 | 0.64 | 48 | 27 | 0.85 | 47 | 28 | 0.12 |
Not infected, n | 19 | 19 | 23 | 14 | 18 | 20 | |||
Anthropometric measurements | |||||||||
Height (cm), mean ± SD | 131.06 ± 11.41 | 126.83 ± 9.06 | 124.14 ± 8.39 | 136.78 ± 8.52 | 127.51 ± 9.11 | 130.65 ± 11.84 | |||
Weight (kg), mean ± SD | 26.84 ± 6.52 | 126.83 ± 4.40 | 23.04 ± 3.58 | 30.45 ± 5.25 | 25.75 ± 4.90 | 25.75 ± 6.41 | |||
Nutritional indicators | |||||||||
Stunted, n (%) | 13 (11.71) | 15 (13.51) | 0.96 | 13 (11.71) | 15 (13.51) | 0.04 | 23 (20.72) | 5 (4.51) | 0.003 |
Wasted, n (%) | 9 (8.11) | 12 (10.81) | 0.68 | 13 (11.71) | 8 (7.21) | 0.90 | 9 (8.11) | 12 (10.81) | 0.11 |
Underweight, n (%) | 7 (9.86) | 6 (8.45) | 0.41 | 13 (18.31) | 0 | * | 9 (12.68) | 4 (5.63) | 0.35 |
Clinical signs and symptoms b | |||||||||
Headache, n | |||||||||
Yes | 7 | 8 | 0.98 | 9 | 6 | 0.77 | 58 | 40 | 0.36 |
No | 46 | 52 | 62 | 35 | 7 | 8 | |||
Abdominal pain, n | |||||||||
Yes | 15 | 17 | 1.00 | 19 | 13 | 0.58 | 16 | 32 | 0.31 |
No | 38 | 43 | 52 | 28 | 49 | 16 | |||
Nausea, n | |||||||||
Yes | 7 | 2 | 0.113 c | 4 | 5 | 0.219 | 7 | 2 | 0.35 c |
No | 46 | 58 | 67 | 36 | 58 | 46 | |||
Complete blood count (cells/μL) | |||||||||
WBC, mean ± SD (×103) | 5.22 ± 1.62 | 5.84 ± 1.36 | 0.03 | 5.80 ± 1.59 | 5.13 ± 1.30 | 0.02 | 5.74 ± 1.38 | 5.28 ± 1.66 | 0.12 |
RBC, mean ± SD (×106) | 4.84 ± 0.74 | 4.87 ± 0.61 | 0.80 | 4.80 ± 0.56 | 4.98 ± 0.82 | 0.20 | 4.8 ± 0.50 | 4.93 ± 0.85 | 0.37 |
Lymphocytes, mean ± SD (×103) | 2.49 ± 0.64 | 2.6 ± 0.74 | 0.38 | 2.62 ± 0.74 | 2.43 ± 0.62 | 0.15 | 2.68 ± 0.68 | 2.37 ± 0.69 | 0.02 |
Neutrophils, mean ± SD (×103) | 2.25 ± 1.17 | 2.61 ± 0.94 | 0.07 | 2.62 ± 1.14 | 2.16 ± 0.87 | 0.02 | 2.51 ± 1.01 | 2.35 ± 1.14 | 0.43 |
Inflammatory markers (mg/L) | |||||||||
CRP, median (IQR) | 0.95 (0.50–1.93) | 0.95 (0.50–2.70) | 0.53 | 0.85 (0.50–2.33) | 1.00 (0.60–2.30) | 0.28 | 1.00 (0.50–2.30) | 0.80 (0.50–2.43) | 0.59 |
AGP, median (IQR) | 0.59 (0.46–0.74) | 0.63 (0.47–0.87) | 0.38 | 0.59 (0.46–0.87) | 0.61 (0.48–0.82) | 0.99 | 0.61 (0.47–0.89) | 0.59 (0.47–0.77) | 0.39 |
Cytokines (pg/mL) | |||||||||
IFNγ, median (IQR) | 7.26 (4.56–19.14) | 7.18 (5.41–11.63) | 0.43 | 7.23 (4.88–12.33) | 6.79 (4.72–12.03) | 0.60 | 5.79 (4.22–8.57) | 9.29 (6.71–20.68) | <0.001 |
IL-4, median (IQR) | 2.20 (1.52–3.02) | 1.92 (1.27–2.82) | 0.30 | 2.20 (1.48–3.13) | 1.69 (1.13–2.36) | 0.01 | 2.02 (1.29–2.82) | 2.07 (1.49–3.03) | 0.60 |
Variables | Parasitic Infection a | p-Value | |
---|---|---|---|
Not Infected Children | Infected Children | ||
Complete blood counts (cells/μL) | |||
WBC, mean ± SD (×103) | 5.54 ± 1.45 | 5.55 ± 1.55 | 0.97 |
RBC, mean ± SD (×106) | 4.98 ± 0.88 | 4.80 ± 0.53 | 0.24 |
Lymphocytes, mean ± SD (×103) | 2.50 ± 0.60 | 2.58 ± 0.75 | 0.55 |
Neutrophils, mean ± SD (×103) | 2.52 ± 1.13 | 2.40 ± 1.04 | 0.61 |
Inflammatory markers (mg/L) | |||
CRP, median (IQR) | 0.65 (0.65–2.51) | 0.485 (0.22–1.20) | |
High CRP concentration (%) | 2 (2.41) | 6 (7.23) | 0.82 b |
AGP, median (IQR) | 0.61 (0.50–0.85) | 0.60 (0.46–0.82) | |
High AGP concentration (%) | 3 (3.13) | 8 (8.33) | 0.85 b |
Cytokines (pg/mL) | |||
IL-4, median (IQR) | 2.01 (1.45–2.63) | 2.09 (2.09–3.03) | 0.71 |
IFNγ, median (IQR) | 6.88 (4.38–12.38) | 7.28 (4.86–11.94) | 0.69 |
Variables | Crude Coefficient (95% CI) | p-Value | Adjusted Coefficient (95% CI) | p-Value |
---|---|---|---|---|
Stunted | −0.06 (−0.28, 0.17) | 0.60 | 0.25 (0.04, 0.47) | 0.02 |
S. mansoni infection | −0.003 (−0.23, 0.23) | 1.00 | 0.27 (0.07, 0.46) | 0.01 |
Macrocytic anaemia | 0.13 (−0.19, 0.45) | 0.40 | 0.23 (−0.09, 0.54) | 0.15 |
Microcytic anaemia | 0.20 (−0.27, 0.67) | 0.40 | 0.35 (−0.06, 0.76) | 0.09 |
Low ferritin concentration | 0.27 (0.03, 0.51) | 0.03 | 0.23 (−0.02, 0.48) | 0.07 |
Low transferrin Concentration | 0.20 (−0.12, 0.52) | 0.20 | 0.15 (−0.16, 0.45) | 0.34 |
Vitamin B12 deficiency | −0.34 (−0.72, 0.05) | 0.09 | −0.28 (−0.64, 0.07) | 0.11 |
Poor housing quality | 0.02 (−0.20, 0.24) | 0.90 | 0.25 (0.04, 0.47) | 0.02 |
Nausea | 0.18 (−0.20, 0.57) | 0.40 | 0.74 (0.38, 1.10) | <0.001 |
Poorer SES—middle | −0.16 (−0.46,0.15) | 0.30 | −0.16 (−0.46, 0.15) | 0.31 |
Poorest SES—poor | −0.02 (−0.32, 0.28) | 0.90 | −0.14 (−0.46, 0.18) | 0.38 |
Male schoolchildren | −0.10 (−0.31, 0.11) | 0.40 | 0.03 (−0.15, 0.22) | 0.72 |
High AGP concentration | −0.04 (−0.35, 0.27) | 0.80 | −0.21 (−0.51, 0.09) | 0.17 |
High CRP concentration | 0.04 (−0.30, 0.39) | 0.80 | 0.45 (0.07, 0.83) | 0.02 |
Most remote school | −0.024 (−0.24, 0.19) | 0.800 | 0.04 (−0.15, 0.24) | 0.64 |
Age | −0.10 (−0.16, −0.05) | <0.001 | −0.14 (−0.20, −0.08) | <0.001 |
Variables | Crude Coefficient (95% CI) | p-Value | Adjusted Coefficient (95% CI) | p-Value |
---|---|---|---|---|
S. mansoni infection | 0.30 (−0.02, 0.62) | 0.06 | 0.35 (−0.03, 0.72) | 0.07 |
P. falciparum infection | 0.17 (−0.26, 0.60) | 0.40 | 0.64 (0.17, 1.10) | 0.01 |
E. histolytica/E. dispar/E. moshkovskii infection | −0.32 (−0.62, −0.01) | 0.04 | −0.44 (−0.85, −0.02) | 0.04 |
Macrocytic anaemia | 0.28 (−0.16, 0.71) | 0.20 | 0.54 (−0.05, 1.13) | 0.07 |
Microcytic anaemia | 0.47 (−0.18, 1.11) | 0.20 | 0.40 (−0.42, 1.22) | 0.33 |
At least one micronutrient deficiency | −0.19 (−0.61, 0.24) | 0.40 | −0.46 (−0.95, 0.03) | 0.06 |
Vitamin A deficiency | 0.29 (0.001, 0.58) | 0.05 | 0.45 (0.06, 0.85) | 0.03 |
No toilet facility | −0.04 (−0.49, 0.42) | 0.90 | 0.43 (−0.23, 1.09) | 0.20 |
Poorer socioeconomic status | −0.61 (−1.0, −0.20) | 0.004 | −0.67 (−1.25, −0.09) | 0.03 |
Poorest socioeconomic status | −0.62 (−1.0, −0.22) | 0.003 | −0.38 (−0.95, 0.20) | 0.20 |
Male schoolchildren | −0.11 (−0.41, 0.18) | 0.40 | −0.21 (−0.57, 0.15) | 0.24 |
High AGP concentrations | 0.17 (−0.33, 0.67) | 0.50 | 0.46 (−0.10, 1.02) | 0.10 |
High CRP concentrations | 0.75 (0.17, 1.3) | 0.01 | 0.37 (−0.34, 1.08) | 0.30 |
Most remote schools | −0.60 (−0.88, −0.33) | <0.001 | −0.51 (−0.88, −0.15) | 0.01 |
Age | −0.07 (−0.16, 0.01) | 0.10 | 0.01 (−0.11, 0.12) | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrimi, E.C.; Palmeirim, M.S.; Minja, E.G.; Long, K.Z.; Keiser, J. Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study. Nutrients 2023, 15, 1916. https://doi.org/10.3390/nu15081916
Mrimi EC, Palmeirim MS, Minja EG, Long KZ, Keiser J. Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study. Nutrients. 2023; 15(8):1916. https://doi.org/10.3390/nu15081916
Chicago/Turabian StyleMrimi, Emmanuel C., Marta S. Palmeirim, Elihaika G. Minja, Kurt Z. Long, and Jennifer Keiser. 2023. "Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study" Nutrients 15, no. 8: 1916. https://doi.org/10.3390/nu15081916
APA StyleMrimi, E. C., Palmeirim, M. S., Minja, E. G., Long, K. Z., & Keiser, J. (2023). Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study. Nutrients, 15(8), 1916. https://doi.org/10.3390/nu15081916