Reference Range of Vitamin K Evaluating Indicators in Chinese Childbearing Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection and Sample Detection
2.3. Variables and Statistic Analysis
3. Results
3.1. Basic Information
3.2. Concentration of Vitamin K in Serum
3.3. Concentration of Vitamin K-Related Indicators in Serum
3.4. Reference Range for Vitamin K Evaluating Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsugawa, N.; Shiraki, M. Vitamin K Nutrition and Bone Health. Nutrients 2020, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Halder, M.; Petsophonsakul, P.; Akbulut, A.C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 896. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Cianciolo, G.; Brandi, M.L.; Ferrari, S.; Nickolas, T.L.; Tripepi, G.; Plebani, M.; Zaninotto, M.; Iervasi, G.; La Manna, G.; et al. Vitamin K and Osteoporosis. Nutrients 2020, 12, 3625. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.J.; van der A, D.L.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary Phylloquinone and Menaquinones Intakes and Risk of Type 2 Diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef]
- Shea, M.K.; Booth, S.L. Vitamin K, Vascular Calcification, and Chronic Kidney Disease: Current Evidence and Unanswered Questions. Curr. Dev. Nutr. 2019, 3, nzz077. [Google Scholar] [CrossRef]
- Fusaro, M.; Gallieni, M.; Rizzo, M.A.; Stucchi, A.; Delanaye, P.; Cavalier, E.; Moyses, R.M.A.; Jorgetti, V.; Iervasi, G.; Giannini, S.; et al. Vitamin K plasma levels determination in human health. Clin. Chem. Lab. Med. 2016, 55, 789–799. [Google Scholar] [CrossRef]
- Card, D.J.; Gorska, R.; Harrington, D.J. Laboratory assessment of vitamin K status. J. Clin. Pathol. 2020, 73, 70–75. [Google Scholar] [CrossRef]
- Tanaka, N.; Arima, K.; Nishimura, T.; Tomita, Y.; Mizukami, S.; Okabe, T.; Abe, Y.; Kawashiri, S.-Y.; Uchiyama, M.; Honda, Y.; et al. Vitamin K deficiency, evaluated with higher serum ucOC, was correlated with poor bone status in women. J. Physiol. Anthr. 2020, 39, 9. [Google Scholar] [CrossRef]
- Holden, R.M.; Morton, A.R.; Garland, J.S.; Pavlov, A.; Day, A.G.; Booth, S.L. Vitamins K and D Status in Stages 3–5 Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 590–597. [Google Scholar] [CrossRef]
- Riphagen, I.J.; Keyzer, C.A.; Drummen, N.E.A.; De Borst, M.H.; Beulens, J.W.J.; Gansevoort, R.T.; Geleijnse, J.M.; Muskiet, F.A.J.; Navis, G.; Visser, S.T.; et al. Prevalence and Effects of Functional Vitamin K Insufficiency: The PREVEND Study. Nutrients 2017, 9, 1334. [Google Scholar] [CrossRef]
- Tsugawa, N.; Shiraki, M.; Suhara, Y.; Kamao, M.; Tanaka, K.; Okano, T. Vitamin K status of healthy Japanese women: Age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am. J. Clin. Nutr. 2006, 83, 380–386. [Google Scholar] [CrossRef]
- Bunyaratavej, N.; Soontrapa, S.; Rojanasthin, S.; Kitimanon, N.; Lektrakul, S. Level of undercarboxylated osteocalcin in reproductive Thai females. J. Med. Assoc. Thail. 2005, 88 (Suppl. S5), S37–S39. [Google Scholar] [PubMed]
- Theuwissen, E.; Magdeleyns, E.J.; Braam, L.A.J.L.M.; Teunissen, K.J.; Knapen, M.H.; Binnekamp, I.A.G.; van Summeren, M.J.H.; Vermeer, C. Vitamin K status in healthy volunteers. Food Funct. 2014, 5, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Pilkey, R.M.; Morton, A.R.; Boffa, M.B.; Noordhof, C.; Day, A.G.; Su, Y.; Miller, L.M.; Koschinsky, M.L.; Booth, S.L. Subclinical Vitamin K Deficiency in Hemodialysis Patients. Am. J. Kidney Dis. 2007, 49, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Sohn, C. Relationship between vitamin K status, bone mineral density, and hs-CRP in young Korean women. Nutr. Res. Pract. 2010, 4, 507–514. [Google Scholar] [CrossRef] [PubMed]
- China CDC. Workbook of China Adult Chronic Disease and Nutrition Surveillance; China CDC: Beijing, China, 2015; Unpublished Work.
- Solberg, H.E. International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section. Expert Panel on Theory of Reference Values (EPTRV). Approved recommendation (1987) on the theory of reference values. Part 5. Statistical treatment of collected reference values. Determination of reference limits. Clin. Chim. Acta 1987, 170, S13–S32. [Google Scholar]
- Liu, Y.-P.; Gu, Y.-M.; Thijs, L.; Knapen, M.H.J.; Salvi, E.; Citterio, L.; Petit, T.; Carpini, S.D.; Zhang, Z.; Jacobs, L.; et al. Inactive matrix Gla protein is causally related to adverse health outcomes: A Mendelian randomization study in a Flemish population. Hypertension 2015, 65, 463–470. [Google Scholar] [CrossRef]
- Sadowski, J.A.; Hood, S.J.; Dallal, G.E.; Garry, P.J. Phylloquinone in plasma from elderly and young adults: Factors influencing its concentration. Am. J. Clin. Nutr. 1989, 50, 100–108. [Google Scholar] [CrossRef]
- Sogabe, N.; Tsugawa, N.; Maruyama, R.; Kamao, M.; Kinoshita, H.; Okano, T.; Hosoi, T.; Goseki-Sone, M. Nutritional effects of gamma-glutamyl carboxylase gene polymorphism on the correlation between the vitamin K status and gamma-carboxylation of osteocalcin in young males. J. Nutr. Sci. Vitaminol. 2007, 53, 419–425. [Google Scholar] [CrossRef]
- Fusaro, M.; Noale, M.; Viola, V.; Galli, F.; Tripepi, G.; Vajente, N.; Plebani, M.; Zaninotto, M.; Guglielmi, G.; Miotto, D.; et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J. Bone Miner. Res. 2012, 27, 2271–2278. [Google Scholar] [CrossRef]
- Soontrapa, S.; Soontrapa, S.; Bunyaratavej, N. Serum concentration of undercarboxylated osteocalcin and the risk of osteo-porosis in thai elderly women. J. Med. Assoc. Thail. 2005, 88 (Suppl. S5), S29–S32. [Google Scholar]
- Kim, S.-M.; Kim, K.-M.; Kim, B.-T.; Joo, N.-S.; Kim, K.-N.; Lee, D.-J. Correlation of Undercarboxylated Osteocalcin (ucOC) Concentration and Bone Density with Age in Healthy Korean Women. J. Korean Med. Sci. 2010, 25, 1171–1175. [Google Scholar] [CrossRef]
- Cranenburg, E.C.M.; Koos, R.; Schurgers, L.J.; Magdeleyns, E.J.; Schoonbrood, T.H.M.; Landewé, R.B.; Brandenburg, V.M.; Bekers, O.; Vermeer, C. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb. Haemost. 2010, 104, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Vermeer, C.; Magdeleyns, E.J.; Schurgers, L.J.; Beulens, J.W. Circulating matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 2013, 24, 624–628. [Google Scholar] [CrossRef]
- Griffin, T.P.; Islam, M.N.; Wall, D.; Ferguson, J.; Griffin, D.G.; Griffin, M.D.; O Shea, P.M. Plasma dephosphorylated-uncarboxylated Matrix Gla-Protein (dp-ucMGP): Reference intervals in Caucasian adults and diabetic kidney disease biomarker potential. Sci. Rep. 2019, 9, 18452. [Google Scholar] [CrossRef]
- Ko, D.-H.; Hyun, J.; Kim, H.S.; Park, M.-J.; Kim, J.-S.; Park, J.-Y.; Shin, D.H.; Cho, H.C. Analytical and Clinical Performance Evaluation of the Abbott Architect PIVKA Assay. Ann. Clin. Lab. Sci. 2018, 48, 75–80. [Google Scholar] [PubMed]
- Yan, C.; Hu, J.; Yang, J.; Chen, Z.; Li, H.; Wei, L.; Zhang, W.; Xing, H.; Sang, G.; Wang, X.; et al. Serum ARCHITECT PIVKA-II reference interval in healthy Chinese adults: Sub-analysis from a prospective multicenter study. Clin. Biochem. 2018, 54, 32–36. [Google Scholar] [CrossRef]
- Ryu, M.R.; Kang, E.S.; Park, H.D. Performance evaluation of serum PIVKA-II measurement using HISCL-5000 and a method comparison of HISCL-5000, LUMIPULSE G1200, and ARCHITECT i2000. J. Clin. Lab. Anal. 2019, 33, e22921. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, B.; Li, Z.; Wei, Q.; Ren, L. PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer 2021, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- Klapkova, E.; Cepova, J.; Dunovska, K.; Prusa, R. Determination of vitamins K1, MK-4, and MK-7 in human serum of postmenopausal women by HPLC with fluorescence detection. J. Clin. Lab. Anal. 2018, 32, e22381. [Google Scholar] [CrossRef]
- Caluwé, R.; Verbeke, F.; De Vriese, A.S. Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients. Nephrol. Dial. Transplant. 2018, 35, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Kamao, M.; Suhara, Y.; Tsugawa, N.; Uwano, M.; Yamaguchi, N.; Uenishi, K.; Ishida, H.; Sasaki, S.; Okano, T. Vitamin K Content of Foods and Dietary Vitamin K Intake in Japanese Young Women. J. Nutr. Sci. Vitaminol. 2007, 53, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Karamzad, N.; Faraji, E.; Adeli, S.; Carson-Chahhoud, K.; Azizi, S.; Gargari, B.P. Effects of MK-7 Supplementation on Glycemic Status, Anthropometric Indices and Lipid Profile in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2239–2249. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Inaba, N.; Yamashita, T. MK-7 and Its Effects on Bone Quality and Strength. Nutrients 2020, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, N.; Ajgaonkar, S.; Saha, P.; Gurav, P.; Pandey, A.; Basudkar, V.; Gada, Y.; Panda, S.; Jadhav, S.; Mehta, D.; et al. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front. Pharmacol. 2022, 13, 896920. [Google Scholar] [CrossRef]
- McKeown, N.M.; Jacques, P.F.; Gundberg, C.M.; Peterson, J.W.; Tucker, K.L.; Kiel, D.P.; Wilson, P.W.F.; Booth, S.L. Dietary and Nondietary Determinants of Vitamin K Biochemical Measures in Men and Women. J. Nutr. 2002, 132, 1329–1334. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Dissel, P.E.P.; Spronk, H.M.H.; Soute, B.A.M.; Dhore, C.R.; Cleutjens, J.P.M.; Vermeer, C. Role of vitamin K and vitamin K-dependent proteins in vascular calcification. Z. Kardiol. 2001, 90 (Suppl. S3), 57–63. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef]
- Jespersen, T.; Møllehave, L.; Thuesen, B.; Skaaby, T.; Rossing, P.; Toft, U.; Jørgensen, N.R.; Corfixen, B.; Jakobsen, J.; Frimodt-Møller, M.; et al. Uncarboxylated matrix Gla-protein: A biomarker of vitamin K status and cardiovascular risk. Clin. Biochem. 2020, 83, 49–56. [Google Scholar] [CrossRef]
- Dahlberg, S.; Nilsson, C.U.; Kander, T.; Schott, U. Detection of subclinical vitamin K deficiency in neurosurgery with PIVKA-II. Scand. J. Clin. Lab. Investig. 2017, 77, 267–274. [Google Scholar] [CrossRef]
- Jang, T.; Dai, C. Cutoff values of protein induced by vitamin K absence or antagonist II for diagnosing hepatocellular car-cinoma. Medicine (Baltimore) 2022, 101, e30936. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Yang, R.; Yu, X.; Yu, L.; Ma, F.; Li, H.; Wang, X.; Li, P. Extraction and Determination of Vitamin K1 in Foods by Ultrasound-Assisted Extraction, SPE, and LC-MS/MS. Molecules 2020, 25, 839. [Google Scholar] [CrossRef] [PubMed]
Concentrations | VK1 | MK-4 | MK-7 | |||
---|---|---|---|---|---|---|
CV (%) | Recovery Rate (%) | CV (%) | Recovery Rate (%) | CV (%) | Recovery Rate (%) | |
low concentration | 4.38 | 99.35 | 5.50 | 99.60 | 8.93 | 100.72 |
medium concentration | 4.72 | 101.43 | 4.10 | 105.27 | 9.11 | 102.96 |
high concentration | 5.53 | 95.99 | 4.13 | 100.59 | 7.45 | 102.56 |
Characteristic | P50 (P25–P75) | Characteristic | P50 (P25–P75) |
---|---|---|---|
Age (years) | 37.49 (29.34–44.12) | Hb (g/L) | 138.27 (132.09–144.22) |
BMI (kg/m2) | 21.50 (20.19–22.73) | UA (μmol/L) | 236.40 (201.00–269.60) |
SBP (mmHg) | 115.67 (109.00–122.33) | TC (mmol/L) | 4.19 (3.77–4.60) |
DBP (mmHg) | 71.67 (67.00–76.67) | TG (mmol/L) | 0.72 (0.56–0.95) |
FG (mmol/L) | 4.92 (4.61–5.21) | LDL-C (mmol/L) | 2.37 (2.04–2.70) |
HbA1c (%) | 4.70 (4.40–5.10) | HDL-C (mmol/L) | 1.40 (1.25–1.56) |
Characteristic | N (%) | VK1 | MK-4 | MK-7 | |||
---|---|---|---|---|---|---|---|
ng/mL | p | ng/mL | p | ng/mL | p | ||
Total | 631 | 0.82 (0.54–1.31) | 0.06 (0.03–0.10) | 0.55 (0.36–0.82) | |||
Age (years) | 0.016 | 0.779 | 0.023 | ||||
18–29 | 171 (27.10) | 0.73 (0.46–1.20) b | 0.06 (0.03–0.12) | 0.51 (0.38–0.76) ab | |||
30–39 | 200 (31.70) | 0.80 (0.56–1.33) ab | 0.05 (0.03–0.09) | 0.50 (0.33–0.78) b | |||
40–49 | 260 (41.20) | 0.88 (0.59–1.43) a | 0.06 (0.03–0.10) | 0.61 (0.39–0.88) a | |||
Residence | 0.846 | 0.792 | <0.001 | ||||
Urban | 237 (37.56) | 0.81 (0.58–1.31) | 0.06 (0.03–0.10) | 0.49 (0.35–0.73) | |||
Rural | 394 (62.44) | 0.83 (0.53–1.31) | 0.05 (0.03–0.10) | 0.59 (0.39–0.93) | |||
Latitude | 0.047 | <0.001 | 0.053 | ||||
North | 280 (44.37) | 0.77 (0.52–1.27) | 0.04 (0.02–0.10) | 0.51 (0.36–0.74) | |||
South | 351 (55.63) | 0.85 (0.57–1.41) | 0.06 (0.04–0.11) | 0.57 (0.37–0.91) |
Characteristic | N (%) | ucOC (ng/mL) | OC (ng/mL) | %ucOC (%) | MGP (ng/mL) | dp-ucMGP (ng/mL) | PIVKA-II (ng/mL) |
---|---|---|---|---|---|---|---|
Total | 631 | 1.81 (1.50–2.10) | 16.26 (12.26–20.43) | 11.10 (8.46–14.77) | 1.99 (1.64–2.39) | 4.41 (3.73–4.98) | 6.26 (5.24–7.28) |
Age (years) | |||||||
18–29 | 171 (27.10) | 1.71 (1.44–2.02) a | 16.37 (12.26–20.07) b | 10.70 (8.26–14.13) | 1.92 (1.67–2.39) | 4.41 (3.69–4.93) | 6.18 (5.24–7.20) |
30–39 | 200 (31.70) | 1.88 (1.51–2.13) | 17.85 (13.35–21.52) a | 10.61 (8.07–14.20) | 1.96 (1.61–2.43) | 4.33 (3.61–4.99) | 6.12 (5.10–7.31) |
40–49 | 260 (41.20) | 1.84 (1.54–2.11) | 15.40 (11.43–20.12) c | 12.09 (9.04–15.53) a | 2.05 (1.66–2.35) | 4.40 (3.79–5.00) | 6.36 (5.30–7.29) |
Residence | |||||||
Urban | 237 (37.56) | 1.78 (1.50–2.05) | 16.05 (12.50–20.79) | 11.00 (8.07–14.77) | 1.95 (1.66–2.40) | 4.37 (3.73–5.00) | 6.15 (5.26–7.29) |
Rural | 394 (62.44) | 1.82 (1.50–2.11) | 16.39 (12.14–20.27) | 11.16 (8.62–14.77) | 2.01 (1.63–2.38) | 4.42 (3.72–4.96) | 6.31 (5.24–7.27) |
Latitude | |||||||
North | 280 (44.37) | 1.78 (1.46–2.06) | 16.06 (12.61–20.19) | 10.98 (8.39–14.24) | 2.03 (1.67–2.40) | 4.29 (3.76–4.98) | 6.12 (5.28–7.19) |
South | 351 (55.63) | 1.82 (1.54–2.13) a | 16.38 (11.97–21.01) | 11.29 (8.49–15.17) | 1.97 (1.59–2.36) | 4.46 (3.69–4.99) | 6.30 (5.19–7.32) |
Characteristic | N (%) | VK1 (ng/mL) | MK-4 (ng/mL) | MK-7 (ng/mL) | ucOC (ng/mL) | %ucOC (%) | dp-ucMGP (ng/mL) | PIVKA-II (ng/mL) |
---|---|---|---|---|---|---|---|---|
Total | 631 | 0.21–3.07 | 0.02–0.24 | 0.12–3.54 | 1.09–2.51 | 5.80–22.78 | 2.69–5.88 | 3.98–8.40 |
Age (years) | ||||||||
18–29 | 171 (27.10) | 0.20–2.95 | 0.02–0.25 | 0.13–4.32 | 1.06–2.47 | 5.94–22.79 | 2.68–5.87 | 3.85–8.21 |
30–39 | 200 (31.70) | 0.21–3.10 | 0.01–0.28 | 0.08–3.56 | 1.18–2.49 | 5.59–23.21 | 2.59–5.95 | 4.11–8.62 |
40–49 | 260 (41.20) | 0.21–3.15 | 0.02–0.24 | 0.13–3.55 | 1.09–2.54 | 6.05–22.65 | 2.76–5.77 | 3.94–8.40 |
Residence | ||||||||
Urban | 237 (37.56) | 0.25–3.07 | 0.02–0.27 | 0.08–3.55 | 1.10–2.53 | 5.76–23.14 | 2.68–5.76 | 4.00–8.40 |
Rural | 394 (62.44) | 0.20–3.10 | 0.02–0.24 | 0.13–3.65 | 1.09–2.49 | 5.89–22.28 | 2.74–5.92 | 3.92–8.47 |
Latitude | ||||||||
North | 280 (44.37) | 0.21–2.62 | 0.02–0.19 | 0.15–3.13 | 1.07–2.49 | 5.59–21.90 | 2.68–5.76 | 4.00–8.47 |
South | 351 (55.63) | 0.21–3.41 | 0.02–0.30 | 0.09–3.68 | 1.11–2.53 | 5.99–23.02 | 2.72–5.92 | 3.95–8.40 |
Authors (Years of Publication) | Country | Population | Mean Age (Years) | N | VK1 (ng/mL) | MK-4 (ng/mL) | MK-7 (ng/mL) | Reference |
---|---|---|---|---|---|---|---|---|
this study | China | healthy women | 36.95 | 631 | 0.21–3.07 | 0–0.22 | 0–3.25 | |
Sadowski et al. (1989) | USA | healthy adults, aged 20–49 years | 33.0 | 131 | 0.11–1.15 # | - | - | [19] |
healthy women | 33.0 | 77 | 0.10–1.09 # | - | - | |||
healthy adults, aged 20–92 years | - | 326 | 0.13–1.19 # | - | - | |||
Tsugawa et al. (2006) | Japan | healthy women, aged 30–49 years | 45.4 | 52 | 0.24–5.60 | 0.07 ± 0.14 | 4.96 ± 6.93 | [11] |
healthy women, aged 50–69 years | 59.6 | 208 | 0.13–8.83 | 0.10 ± 0.19 | 8.42 ± 11.44 | |||
healthy women, ≥70 years | 74.9 | 136 | 0.19–6.67 | 0.09 ± 0.15 | 4.21 ± 6.81 | |||
Sogabe et al. (2007) | Japan | healthy men | 22.6 | 60 | 0.56 ± 0.34 | 0.07 ± 0.05 | 6.97 ± 13.30 | [20] |
Fusaro et al. (2012) | Italy | healthy adults | 56.8 | 62 | 0.17–3.05 # | 0.07–2.68 # | 0.33–4.48 # | [21] |
Authors (Years of Publication) | Country | Population | Mean Age (years) | N | ucOC (ng/mL) | %ucOC (%) | dp-ucMGP (ng/mL) | PIVKA-II (ng/mL) | Reference |
this study | China | healthy women | 36.95 | 631 | 1.09–2.51 | 5.80–22.78 | 2.69–5.88 | 3.98–8.40 | |
Bunyaratavej et al. (2005) | Thailand | healthy women, aged 20–50 years | 38.5 | 357 | 2.10 ± 2.02 | - | - | - | [12] |
Soontrapa et al. (2005) | Thailand | healthy women, aged 20–50 years | 38.5 | 357 | 1.89–2.31 # | - | - | - | [22] |
Tsugawa et al. (2006) | Japan | healthy women, aged 30–49 years | 45.4 | 52 | 3.59 ± 2.17 | 26.00–82.00 | - | - | [11] |
Kim et al. (2010) | Korea | healthy women | 47.8 | 337 | 2.02 ± 1.58 | - | - | - | [23] |
Theuwissen et al. (2014) | Netherlands | healthy adults over 20 years | - | <896 | 1.50–5.00 | - | - | - | [13] |
children | <20 | <896 | 3.40–96.90 | - | - | - | |||
Cranenburg et al. (2010) | Netherlands | healthy adults, aged 20–85 years | - | 75 | - | - | 4.74 ± 1.99 | - | [24] |
Dalmeijer et al. (2013) | Netherlands | healthy women | 64.9 | 100 | - | - | 1.08–30.24 | - | [25] |
Griffin et al. (2019) | Ireland | healthy adults | - | 141 | - | - | 3.17–5.64 # | - | [26] |
Ko et al. (2018) | Korea | healthy subjects | - | 204 | - | - | - | 6.50–18.70 # | [27] |
Yan et al. (2018) | China | healthy Han women | >18 | 381 | 5.98–19.57 # | [28] | |||
Ryu et al. (2019) | Korea | healthy subjects | - | 120 | - | - | - | 6.00–23.50 | [29] |
Feng et al. (2021) | China | healthy subjects | - | 153 | - | - | - | 8.83–13.27 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Yang, L.; Feng, J.; Lu, J.; Zhang, H.; Li, W.; Hu, Y.; Yang, X. Reference Range of Vitamin K Evaluating Indicators in Chinese Childbearing Women. Nutrients 2023, 15, 1977. https://doi.org/10.3390/nu15081977
Nie S, Yang L, Feng J, Lu J, Zhang H, Li W, Hu Y, Yang X. Reference Range of Vitamin K Evaluating Indicators in Chinese Childbearing Women. Nutrients. 2023; 15(8):1977. https://doi.org/10.3390/nu15081977
Chicago/Turabian StyleNie, Shuhui, Lichen Yang, Jie Feng, Jiaxi Lu, Huidi Zhang, Weidong Li, Yichun Hu, and Xiaoguang Yang. 2023. "Reference Range of Vitamin K Evaluating Indicators in Chinese Childbearing Women" Nutrients 15, no. 8: 1977. https://doi.org/10.3390/nu15081977
APA StyleNie, S., Yang, L., Feng, J., Lu, J., Zhang, H., Li, W., Hu, Y., & Yang, X. (2023). Reference Range of Vitamin K Evaluating Indicators in Chinese Childbearing Women. Nutrients, 15(8), 1977. https://doi.org/10.3390/nu15081977