Vaccinium as Potential Therapy for Diabetes and Microvascular Complications
Abstract
:1. Introduction
2. Materials and Methods
3. Research Status of Vaccinium in Treating Diabetes Mellitus and Its Microvascular Complications
4. Vaccinium
4.1. General
4.2. Chemical Profile
4.3. Bioactivity
5. Effects of Oxidative Stress and Inflammation on Diabetes and Its Microvascular Complications
5.1. Abnormalities of Glucose and Lipid Metabolism
5.2. Diabetic Kidney Disease
5.3. Diabetic Retinopathy
6. Experimental Study on Diabetes Mellitus and Diabetic Microvascular Complications Treatment with Vaccinium Extract
6.1. Regulation of Glucose and Lipid Metabolism Disorders
6.2. Treating DR and DKD
7. Clinical Evidence for the Effect of Vaccinium on Diabetes and Diabetic Microvascular Complications
7.1. Effect of Vaccinium on Type 2 Diabetes Mellitus Treatment
7.2. Research for the Treatment of DR and DKD
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Misra, A.; Gopalan, H.; Jayawardena, R.; Hills, A.P.; Soares, M.; Reza-Albarrán, A.A.; Ramaiya, K.L. Diabetes in developing countries. J. Diabetes 2019, 11, 522–539. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2022, 65, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Gui, D.; Zheng, L.; Zhai, R.; Wang, F.; Wang, N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J. Diabetes Res. 2017, 2017, 1839809. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Barrett, E.J.; Liu, Z.; Khamaisi, M.; King, G.L.; Klein, R.; Klein, B.E.K.; Hughes, T.M.; Craft, S.; Freedman, B.I.; Bowden, D.W.; et al. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2017, 102, 4343–4410. [Google Scholar] [CrossRef]
- Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; et al. Trends in Chronic Kidney Disease in China. N. Engl. J. Med. 2016, 375, 905–906. [Google Scholar] [CrossRef]
- Burrows, N.R.; Hora, I.; Geiss, L.S.; Gregg, E.W.; Albright, A. Incidence of End-Stage Renal Disease Attributed to Diabetes Among Persons with Diagnosed Diabetes—United States and Puerto Rico, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1165–1170. [Google Scholar] [CrossRef]
- Sagoo, M.K.; Gnudi, L. Diabetic Nephropathy: An Overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar] [CrossRef]
- Sabanayagam, C.; Banu, R.; Chee, M.L.; Lee, R.; Wang, Y.X.; Tan, G.; Jonas, J.B.; Lamoureux, E.L.; Cheng, C.Y.; Klein, B.E.K.; et al. Incidence and progression of diabetic retinopathy: A systematic review. Lancet Diabetes Endocrinol. 2019, 7, 140–149. [Google Scholar] [CrossRef]
- Sabanayagam, C.; Chee, M.L.; Banu, R.; Cheng, C.Y.; Lim, S.C.; Tai, E.S.; Coffman, T.; Wong, T.Y. Association of Diabetic Retinopathy and Diabetic Kidney Disease With All-Cause and Cardiovascular Mortality in a Multiethnic Asian Population. JAMA Netw. Open. 2019, 2, e191540. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Wang, B.; Friedman, D.S.; Hao, J.; Zhang, Y.; Hu, A.; Wang, N. Diabetic Retinopathy, Visual Impairment, and the Risk of Six-Year Death: A Cohort Study of a Rural Population in China. Ophthalmic Res. 2021, 64, 983–990. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. Tannins and vascular complications of Diabetes: An update. Phytomedicine 2019, 56, 229–245. [Google Scholar] [CrossRef]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L.; Hummer, K.; Lawas, L.M.F.; Leisner, C.P.; Li, C.; et al. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. Hortic. Res. 2022, 9, uhac083. [Google Scholar] [CrossRef] [PubMed]
- Bläsing, D. A Review of Vaccinium Research and the Vaccinium Industry of the Federal Republic of Germany. Acta Hortic. 1989, 241, 101–109. [Google Scholar] [CrossRef]
- Sater, H.M.; Bizzio, L.N.; Tieman, D.M.; Muñoz, P.D. A Review of the Fruit Volatiles Found in Blueberry and Other Vaccinium Species. J. Agric. Food Chem. 2020, 68, 5777–5786. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.J. Anti-Inflammatory Activity of Bilberry (Vaccinium myrtillus L.). Curr. Issues Mol. Biol. 2022, 44, 4570–4583. [Google Scholar] [CrossRef] [PubMed]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef]
- Hasanloo, T.; Jafarkhani Kermani, M.; Dalvand, Y.A.; Rezazadeh, S. A Complete Review on the Genus Vaccinium and Iranian Ghareghat. J. Med. Plants 2019, 18, 46–65. [Google Scholar] [CrossRef]
- Sapian, S.; Taib, I.S.; Katas, H.; Latip, J.; Zainalabidin, S.; Hamid, Z.A.; Anuar, N.N.M.; Budin, S.B. The Role of Anthocyanin in Modulating Diabetic Cardiovascular Disease and Its Potential to Be Developed as a Nutraceutical. Pharmaceuticals 2022, 15, 1344. [Google Scholar] [CrossRef] [PubMed]
- Ştefănescu Braic, R.; Vari, C.; Imre, S.; Huţanu, A.; Fogarasi, E.; Todea, T.; Groşan, A.; Eşianu, S.; Laczkó-Zöld, E.; Dogaru, M. Vaccinium Extracts as Modulators in Experimental Type 1 Diabetes. J. Med. Food 2018, 21, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Vaneková, Z.; Rollinger, J.M. Bilberries: Curative and Miraculous—A Review on Bioactive Constituents and Clinical Research. Front. Pharmacol. 2022, 13, 909914. [Google Scholar] [CrossRef]
- Thibado, S.P.; Thornthwaite, J.T.; Ballard, T.K.; Goodman, B.T. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Mol. Clin. Oncol. 2018, 8, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Satoh, Y.; Ishihara, K. Investigation of the antimicrobial activity of Bilberry (Vaccinium myrtillus L.) extract against periodontopathic bacteria. J. Oral. Biosci. 2020, 62, 169–174. [Google Scholar] [CrossRef]
- Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS ONE 2017, 12, e0178627. [Google Scholar] [CrossRef]
- Wilson, T.; Luebke, J.L.; Morcomb, E.F.; Carrell, E.J.; Leveranz, M.C.; Kobs, L.; Schmidt, T.P.; Limburg, P.J.; Vorsa, N.; Singh, A.P. Glycemic responses to sweetened dried and raw cranberries in humans with type 2 diabetes. J. Food Sci. 2010, 75, H218–H223. [Google Scholar] [CrossRef]
- Chan, S.W.; Chu, T.T.W.; Choi, S.W.; Benzie, I.F.F.; Tomlinson, B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother. Res. 2021, 35, 3236–3245. [Google Scholar] [CrossRef]
- Ulbricht, C.; Basch, E.; Basch, S.; Bent, S.; Boon, H.; Burke, D.; Costa, D.; Falkson, C.; Giese, N.; Goble, M.; et al. An evidence-based systematic review of bilberry (Vaccinium myrtillus) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2009, 6, 162–200. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Ștefănescu, R.; Laczkó-Zöld, E.; Ősz, B.E.; Vari, C.E. An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics 2022, 15, 16. [Google Scholar] [CrossRef]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Szabo, K.; Mocan, A.; Crişan, G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef]
- Rodriguez-Bonilla, L.; Williams, K.A.; Rodríguez Bonilla, F.; Matusinec, D.; Maule, A.; Coe, K.; Wiesman, E.; Diaz-Garcia, L.; Zalapa, J. The Genetic Diversity of Cranberry Crop Wild Relatives, Vaccinium macrocarpon Aiton and V. oxycoccos L., in the US, with Special Emphasis on National Forests. Plants 2020, 9, 1446. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.; Caldas, A.P.S.; da Silva, B.P.; Hermsdorff, H.H.M.; Alfenas, R.C.G. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1816–1828. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Gonçalves da Silva, T.; Flores, T.R. Effects of blueberry and cranberry on type 2 diabetes parameters in individuals with or without diabetes: A systematic review and meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1093–1109. [Google Scholar] [CrossRef]
- Bujor, O.C.; Tanase, C.; Popa, M.E. Phenolic Antioxidants in Aerial Parts of Wild Vaccinium Species: Towards Pharmaceutical and Biological Properties. Antioxidants 2019, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, T.; Litts, C.; Horgan, G.; Zhang, X.; Hoggard, N.; Russell, W.; de Roos, B. Efficacy of Bilberry and Grape Seed Extract Supplement Interventions to Improve Glucose and Cholesterol Metabolism and Blood Pressure in Different Populations-A Systematic Review of the Literature. Nutrients 2021, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef]
- Chan, S.W.; Tomlinson, B. Effects of Bilberry Supplementation on Metabolic and Cardiovascular Disease Risk. Molecules 2020, 25, 1653. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; Pellenz, F.M.; de Souza, B.M.; Crispim, D. Blueberry Consumption and Changes in Obesity and Diabetes Mellitus Outcomes: A Systematic Review. Metabolites 2022, 13, 19. [Google Scholar] [CrossRef]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2011, 29, 116–122. [Google Scholar] [CrossRef]
- Zoja, C.; Benigni, A.; Remuzzi, G. The Nrf2 pathway in the progression of renal disease. Nephrol. Dial. Transplant. 2014, 29 (Suppl. S1), i19–i24. [Google Scholar] [CrossRef]
- Tan, S.M.; de Haan, J.B. Combating oxidative stress in diabetic complications with Nrf2 activators: How much is too much? Redox Rep. 2014, 19, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Uruno, A.; Yagishita, Y.; Yamamoto, M. The Keap1-Nrf2 system and diabetes mellitus. Arch. Biochem. Biophys. 2015, 566, 76–84. [Google Scholar] [CrossRef]
- Cheng, H.; Harris, R.C. Renal endothelial dysfunction in diabetic nephropathy. Cardiovasc. Hematol. Disord. Drug. Targets 2014, 14, 22–33. [Google Scholar] [CrossRef]
- Capellini, V.K.; Celotto, A.C.; Baldo, C.F.; Olivon, V.C.; Viaro, F.; Rodrigues, A.J.; Evora, P.R. Diabetes and vascular disease: Basic concepts of nitric oxide physiology, endothelial dysfunction, oxidative stress and therapeutic possibilities. Curr. Vasc. Pharmacol. 2010, 8, 526–544. [Google Scholar] [CrossRef]
- Santiago, A.R.; Boia, R.; Aires, I.D.; Ambrósio, A.F.; Fernandes, R. Sweet Stress: Coping With Vascular Dysfunction in Diabetic Retinopathy. Front. Physiol. 2018, 9, 820. [Google Scholar] [CrossRef]
- Lindblom, R.; Higgins, G.; Coughlan, M.; de Haan, J.B. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev. Diabet. Stud. 2015, 12, 134–156. [Google Scholar] [CrossRef]
- Miranda-Díaz, A.G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J. Diabetes Res. 2016, 2016, 7047238. [Google Scholar] [CrossRef] [PubMed]
- Santilli, F.; Cipollone, F.; Mezzetti, A.; Chiarelli, F. The role of nitric oxide in the development of diabetic angiopathy. Horm. Metab. Res. 2004, 36, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Shikata, K.; Makino, H. Microinflammation in the pathogenesis of diabetic nephropathy. J. Diabetes Investig. 2013, 4, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.A.; Gomez-Guerrero, C.; Mas, S.; Sanz, A.B.; Lorenzo, O.; Ruiz-Ortega, M.; Opazo, L.; Mezzano, S.; Egido, J. Targeting inflammation in diabetic nephropathy: A tale of hope. Expert. Opin. Investig. Drugs 2018, 27, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Garibotto, G.; Carta, A.; Picciotto, D.; Viazzi, F.; Verzola, D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J. Nephrol. 2017, 30, 719–727. [Google Scholar] [CrossRef]
- Akpoveso, O.P.; Ubah, E.E.; Obasanmi, G. Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants 2023, 12, 123. [Google Scholar] [CrossRef]
- Pérez-Morales, R.E.; Del Pino, M.D.; Valdivielso, J.M.; Ortiz, A.; Mora-Fernández, C.; Navarro-González, J.F. Inflammation in Diabetic Kidney Disease. Nephron 2019, 143, 12–16. [Google Scholar] [CrossRef]
- Tavafi, M. Diabetic nephropathy and antioxidants. J. Nephropathol. 2013, 2, 20–27. [Google Scholar] [CrossRef]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed. Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Krishan, P.; Chakkarwar, V.A. Diabetic nephropathy: Aggressive involvement of oxidative stress. J. Pharm. Educ. Res. 2011, 2, 35. [Google Scholar]
- Khazim, K.; Gorin, Y.; Cavaglieri, R.C.; Abboud, H.E.; Fanti, P. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am. J. Physiol. Renal Physiol. 2013, 305, F691–F700. [Google Scholar] [CrossRef] [PubMed]
- Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef] [PubMed]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Lin, M.; Yiu, W.H.; Wu, H.J.; Chan, L.Y.; Leung, J.C.; Au, W.S.; Chan, K.W.; Lai, K.N.; Tang, S.C. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. 2012, 23, 86–102. [Google Scholar] [CrossRef]
- Ma, J.; Wu, H.; Zhao, C.Y.; Panchapakesan, U.; Pollock, C.; Chadban, S.J. Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. Int. J. Clin. Exp. Pathol. 2014, 7, 481–495. [Google Scholar]
- Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Bock, F.; Al-Dabet, M.M.; Gadi, I.; Kohli, S.; Nazir, S.; Ghosh, S.; Ranjan, S.; Wang, H.; Madhusudhan, T.; et al. Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy. J. Am. Soc. Nephrol. 2016, 27, 2270–2275. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Cox, E.J.; Neumiller, J.J.; Tuttle, K.R. Incretin drugs in diabetic kidney disease: Biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 2021, 17, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.W.; Neal, B.; Perkovic, V.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Fabbrini, E.; Sun, T.; Li, Q.; et al. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 2018, 137, 323–334. [Google Scholar] [CrossRef]
- Zac-Varghese, S.; Winocour, P. Managing diabetic kidney disease. Br. Med. Bull. 2018, 125, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Stitt, A.W.; Lois, N.; Medina, R.J.; Adamson, P.; Curtis, T.M. Advances in our understanding of diabetic retinopathy. Clin. Sci. 2013, 125, 1–17. [Google Scholar] [CrossRef]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef]
- Lin, K.Y.; Hsih, W.H.; Lin, Y.B.; Wen, C.Y.; Chang, T.J. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J. Diabetes Investig. 2021, 12, 1322–1325. [Google Scholar] [CrossRef]
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 2016, 51, 156–186. [Google Scholar] [CrossRef]
- Kollias, A.N.; Ulbig, M.W. Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch. Arztebl. Int. 2010, 107, 75–83; quiz 84. [Google Scholar] [CrossRef]
- Biswas, S.; Feng, B.; Chen, S.; Liu, J.; Aref-Eshghi, E.; Gonder, J.; Ngo, V.; Sadikovic, B.; Chakrabarti, S. The Long Non-Coding RNA HOTAIR Is a Critical Epigenetic Mediator of Angiogenesis in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2021, 62, 20. [Google Scholar] [CrossRef]
- Capitão, M.; Soares, R. Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J. Cell. Biochem. 2016, 117, 2443–2453. [Google Scholar] [CrossRef]
- Praidou, A.; Androudi, S.; Brazitikos, P.; Karakiulakis, G.; Papakonstantinou, E.; Dimitrakos, S. Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr. Diabetes Rev. 2010, 6, 304–312. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Chen, Z.; Xiong, Y.; Zhou, T.; Tao, W.; Xu, F.; Yang, H.; Ylä-Herttuala, S.; et al. MicroRNA-15b Targets VEGF and Inhibits Angiogenesis in Proliferative Diabetic Retinopathy. J. Clin. Endocrinol. Metab. 2020, 105, 3404–3415. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Xu, G.T.; Zhang, J.F. Inflammation in diabetic retinopathy: Possible roles in pathogenesis and potential implications for therapy. Neural Regen. Res. 2023, 18, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Joussen, A.M.; Poulaki, V.; Le, M.L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb J. 2004, 18, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, M.; Drawnel, F.; Fauser, S. The role of inflammation in diabetic eye disease. Semin. Immunopathol. 2019, 41, 427–445. [Google Scholar] [CrossRef]
- Dong, N.; Xu, B.; Wang, B.; Chu, L. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Mol. Vis. 2013, 19, 1734–1746. [Google Scholar]
- Wong, T.Y.; Cheung, C.M.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef]
- Madsen-Bouterse, S.A.; Zhong, Q.; Mohammad, G.; Ho, Y.S.; Kowluru, R.A. Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free. Radic. Res. 2010, 44, 313–321. [Google Scholar] [CrossRef]
- Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xu, X.; Bi, H.; Zhu, Q.; Wu, J.; Xia, X.; Qiushi, R.; Ho, P.C. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: The role of reactive oxygen species in diabetic retinopathy. Exp. Eye Res. 2006, 83, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Miller, C.M.; Kern, T.S. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free. Radic. Biol. Med. 2003, 35, 1491–1499. [Google Scholar] [CrossRef]
- Tan, T.E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2022, 13, 1077669. [Google Scholar] [CrossRef]
- Wubben, T.J.; Johnson, M.W. Anti-Vascular Endothelial Growth Factor Therapy for Diabetic Retinopathy: Consequences of Inadvertent Treatment Interruptions. Am. J. Ophthalmol. 2019, 204, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Zehden, J.A.; Mortensen, X.M.; Reddy, A.; Zhang, A.Y. Systemic and Ocular Adverse Events with Intravitreal Anti-VEGF Therapy Used in the Treatment of Diabetic Retinopathy: A Review. Curr. Diab Rep. 2022, 22, 525–536. [Google Scholar] [CrossRef]
- Podsędek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Shahwan, M.; Alhumaydhi, F.; Ashraf, G.M.; Hasan, P.M.Z.; Shamsi, A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int. J. Biol. Macromol. 2022, 206, 567–579. [Google Scholar] [CrossRef]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Takács, I.; Szekeres, A.; Takács, Á.; Rakk, D.; Mézes, M.; Polyák, Á.; Lakatos, L.; Gyémánt, G.; Csupor, D.; Kovács, K.J.; et al. Wild Strawberry, Blackberry, and Blueberry Leaf Extracts Alleviate Starch-Induced Hyperglycemia in Prediabetic and Diabetic Mice. Planta Med. 2020, 86, 790–799. [Google Scholar] [CrossRef]
- Anhê, F.F.; Pilon, G.; Roy, D.; Desjardins, Y.; Levy, E.; Marette, A. Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes 2016, 7, 146–153. [Google Scholar] [CrossRef]
- Grace, M.H.; Ribnicky, D.M.; Kuhn, P.; Poulev, A.; Logendra, S.; Yousef, G.G.; Raskin, I.; Lila, M.A. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 2009, 16, 406–415. [Google Scholar] [CrossRef]
- Chen, K.; Wei, X.; Zhang, J.; Pariyani, R.; Jokioja, J.; Kortesniemi, M.; Linderborg, K.M.; Heinonen, J.; Sainio, T.; Zhang, Y.; et al. Effects of Anthocyanin Extracts from Bilberry (Vaccinium myrtillus L.) and Purple Potato (Solanum tuberosum L. var. ‘Synkeä Sakari’) on the Plasma Metabolomic Profile of Zucker Diabetic Fatty Rats. J. Agric. Food Chem. 2020, 68, 9436–9450. [Google Scholar] [CrossRef] [PubMed]
- Eid, H.M.; Ouchfoun, M.; Brault, A.; Vallerand, D.; Musallam, L.; Arnason, J.T.; Haddad, P.S. Lingonberry (Vaccinium vitis-idaea L.) Exhibits Antidiabetic Activities in a Mouse Model of Diet-Induced Obesity. Evid. Based Complement. Alternat. Med. 2014, 2014, 645812. [Google Scholar] [CrossRef] [PubMed]
- Al Hamimi, S.; Heyman-Lindén, L.; Plaza, M.; Turner, C.; Berger, K.; Spégel, P. Alterations in the plasma metabolite profile associated with improved hepatic function and glycemia in mice fed lingonberry supplemented high-fat diets. Mol. Nutr. Food Res. 2017, 61, 1600442. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A.; Zielińska-Wasielica, J.; Olkowicz, M. Inhibitory effects of lingonberry (Vaccinium vitis-idaea L.) fruit extract on obesity-induced inflammation in 3T3-L1 adipocytes and RAW 264.7 macrophages. J. Funct. Foods 2019, 54, 371–380. [Google Scholar] [CrossRef]
- Suzuki, R.; Tanaka, M.; Takanashi, M.; Hussain, A.; Yuan, B.; Toyoda, H.; Kuroda, M. Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the insulin pathway. Nutr. Metab. 2011, 8, 14. [Google Scholar] [CrossRef]
- Kowalska, K.; Olejnik, A.; Szwajgier, D.; Olkowicz, M. Inhibitory activity of chokeberry, bilberry, raspberry and cranberry polyphenol-rich extract towards adipogenesis and oxidative stress in differentiated 3T3-L1 adipose cells. PLoS ONE 2017, 12, e0188583. [Google Scholar] [CrossRef]
- Niesen, S.; Göttel, C.; Becker, H.; Bakuradze, T.; Winterhalter, P.; Richling, E. Fractionation of Extracts from Black Chokeberry, Cranberry, and Pomegranate to Identify Compounds That Influence Lipid Metabolism. Foods 2022, 11, 570. [Google Scholar] [CrossRef]
- Pemmari, T.; Hämäläinen, M.; Ryyti, R.; Peltola, R.; Moilanen, E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int. J. Mol. Sci. 2022, 23, 1021. [Google Scholar] [CrossRef]
- Kowalska, K.; Dembczyński, R.; Gołąbek, A.; Olkowicz, M.; Olejnik, A. ROS Modulating Effects of Lingonberry (Vaccinium vitis-idaea L.) Polyphenols on Obese Adipocyte Hypertrophy and Vascular Endothelial Dysfunction. Nutrients 2021, 13, 885. [Google Scholar] [CrossRef]
- Prior, R.L.; Wilkes, S.E.; Rogers, R.T.; Khanal, R.C.; Wu, X.; Howard, L.R. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem. 2010, 58, 3970–3976. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Abdullah; Deng, L.; Zhao, M.; Tang, J.; Liu, T.; Zhang, H.; Feng, F. Probiotic-fermented blueberry juice prevents obesity and hyperglycemia in high fat diet-fed mice in association with modulating the gut microbiota. Food Funct. 2020, 11, 9192–9207. [Google Scholar] [CrossRef]
- Vendrame, S.; Zhao, A.; Merrow, T.; Klimis-Zacas, D. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat. J. Med. Food 2015, 18, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Khanal, R.C.; Rogers, T.J.; Wilkes, S.E.; Howard, L.R.; Prior, R.L. Effects of dietary consumption of cranberry powder on metabolic parameters in growing rats fed high fructose diets. Food Funct. 2010, 1, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.; Bharat, D.; Wankhade, U.D.; Kim, J.S.; Cutler, B.R.; Denetso, C.; Gholami, S.; Nelson, S.; Bigley, J.; Johnson, A.; et al. Dietary Blueberry Ameliorates Vascular Complications in Diabetic Mice Possibly through NOX4 and Modulates Composition and Functional Diversity of Gut Microbes. Mol. Nutr. Food Res. 2022, 66, e2100784. [Google Scholar] [CrossRef]
- Nair, A.R.; Elks, C.M.; Vila, J.; Del Piero, F.; Paulsen, D.B.; Francis, J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: Potential mechanism of TLR4-MAPK signaling pathway. PLoS ONE 2014, 9, e111976. [Google Scholar] [CrossRef]
- Anhê, F.F.; Roy, D.; Pilon, G.; Dudonné, S.; Matamoros, S.; Varin, T.V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E.; et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015, 64, 872–883. [Google Scholar] [CrossRef]
- Medina-Larqué, A.S.; Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, É.; Marette, A.; Roy, D.; Jacques, H.; Desjardins, Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front. Immunol. 2022, 13, 871080. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, J.; Han, X.; Gao, Y.; Chen, Q.; Huang, W.; Zhan, J.; Huang, D.; You, Y. Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet-Fed Mice through Increased Thermogenesis. J. Nutr. 2020, 150, 2131–2138. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, S.; Bijalwan, V.; Kumar, V.; Khare, P.; Baboota, R.K.; Singh, P.; Boparai, R.K.; Singh, J.; Kondepudi, K.K.; et al. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur. J. Nutr. 2018, 57, 2897–2911. [Google Scholar] [CrossRef]
- Mykkänen, O.T.; Huotari, A.; Herzig, K.H.; Dunlop, T.W.; Mykkänen, H.; Kirjavainen, P.V. Wild blueberries (Vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS ONE 2014, 9, e114790. [Google Scholar] [CrossRef]
- Feshani, A.M.; Kouhsari, S.M.; Mohammadi, S. Vaccinium arctostaphylos, a common herbal medicine in Iran: Molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J. Ethnopharmacol. 2011, 133, 67–74. [Google Scholar] [CrossRef]
- Brader, L.; Overgaard, A.; Christensen, L.P.; Jeppesen, P.B.; Hermansen, K. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of Zucker diabetic fatty rats. Rev. Diabet. Stud. 2013, 10, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Madduma Hewage, S.; Prashar, S.; Debnath, S.C.; Karmin, O.; Siow, Y.L. Inhibition of Inflammatory Cytokine Expression Prevents High-Fat Diet-Induced Kidney Injury: Role of Lingonberry Supplementation. Front. Med. 2020, 7, 80. [Google Scholar] [CrossRef]
- Ryyti, R.; Pemmari, A.; Peltola, R.; Hämäläinen, M.; Moilanen, E. Effects of Lingonberry (Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021, 13, 3693. [Google Scholar] [CrossRef]
- Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 2010, 140, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Keirsey, K.I.; Kirkland, R.; Grunewald, Z.I.; Fischer, J.G.; de La Serre, C.B. Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet-Fed Rats. J. Nutr. 2018, 148, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Morissette, A.; Kropp, C.; Songpadith, J.P.; Junges Moreira, R.; Costa, J.; Mariné-Casadó, R.; Pilon, G.; Varin, T.V.; Dudonné, S.; Boutekrabt, L.; et al. Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E965–E980. [Google Scholar] [CrossRef] [PubMed]
- Seymour, E.M.; Tanone, I.I.; Urcuyo-Llanes, D.E.; Lewis, S.K.; Kirakosyan, A.; Kondoleon, M.G.; Kaufman, P.B.; Bolling, S.F. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food 2011, 14, 1511–1518. [Google Scholar] [CrossRef]
- Nunes, S.; Viana, S.D.; Preguiça, I.; Alves, A.; Fernandes, R.; Teodoro, J.S.; Matos, P.; Figueirinha, A.; Salgueiro, L.; André, A.; et al. Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients 2021, 13, 4192. [Google Scholar] [CrossRef]
- Elks, C.M.; Terrebonne, J.D.; Ingram, D.K.; Stephens, J.M. Blueberries improve glucose tolerance without altering body composition in obese postmenopausal mice. Obesity 2015, 23, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Gao, Y.; Guo, X.; Zhang, M.; Gong, L. Blackberry and Blueberry Anthocyanin Supplementation Counteract High-Fat-Diet-Induced Obesity by Alleviating Oxidative Stress and Inflammation and Accelerating Energy Expenditure. Oxid. Med. Cell. Longev. 2018, 2018, 4051232. [Google Scholar] [CrossRef]
- Ryyti, R.; Hämäläinen, M.; Peltola, R.; Moilanen, E. Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS ONE 2020, 15, e0232605. [Google Scholar] [CrossRef]
- Vuong, T.; Benhaddou-Andaloussi, A.; Brault, A.; Harbilas, D.; Martineau, L.C.; Vallerand, D.; Ramassamy, C.; Matar, C.; Haddad, P.S. Antiobesity and antidiabetic effects of biotransformed blueberry juice in KKA(y) mice. Int. J. Obes. 2009, 33, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Jiang, Z.; Yin, J.; Long, H.; Zheng, X. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. Int. J. Food Sci. Nutr. 2016, 67, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, D.; Liu, Y.; Wang, D.; Liu, J.; Ji, B. The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. J. Sci. Food Agric. 2015, 95, 936–944. [Google Scholar] [CrossRef]
- Li, R.; Ye, Z.; Yang, W.; Xu, Y.J.; Tan, C.P.; Liu, Y. Blueberry Anthocyanins from Commercial Products: Structure Identification and Potential for Diabetic Retinopathy Amelioration. Molecules 2022, 27, 7475. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Li, P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis. J. Pharmacol. Sci. 2022, 150, 31–40. [Google Scholar] [CrossRef]
- Song, Y.; Huang, L.; Yu, J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J. Neuroimmunol. 2016, 301, 1–6. [Google Scholar] [CrossRef]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. Oxid. Med. Cell. Longev. 2018, 2018, 1862462. [Google Scholar] [CrossRef]
- Vorob’eva, I.V.; Vorob’eva, I.V. Current data on the role of anthocyanosides and flavonoids in the treatment of eye diseases. Vestn. Oftalmol. 2015, 131, 104–110. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.S.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Vaccinium myrtillus extract prevents or delays the onset of diabetes—Induced blood-retinal barrier breakdown. Int. J. Food Sci. Nutr. 2015, 66, 236–242. [Google Scholar] [CrossRef]
- Stevens, M.; Neal, C.R.; Craciun, E.C.; Dronca, M.; Harper, S.J.; Oltean, S. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy. PLoS ONE 2019, 14, e0212910. [Google Scholar] [CrossRef] [PubMed]
- Di Cerbo, A.; Iannitti, T.; Guidetti, G.; Centenaro, S.; Canello, S.; Cocco, R. A nutraceutical diet based on Lespedeza spp., Vaccinium macrocarpon and Taraxacum officinale improves spontaneous feline chronic kidney disease. Physiol. Rep. 2018, 6, e13737. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Lu, Y.P.; Tang, D.; Hu, B.; Zhang, Z.Y.; Wu, H.W.; Fan, L.J.; Cai, K.W.; Tang, C.; Zhang, Y.Q.; et al. Anthocyanin improves kidney function in diabetic kidney disease by regulating amino acid metabolism. J. Transl. Med. 2022, 20, 510. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhai, Q.; Li, Y.; Cao, M.; Xu, Y.; Zhao, K.; Wang, T. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomed. Pharmacother. 2018, 103, 1223–1230. [Google Scholar] [CrossRef]
- Du, C.; Shi, Y.; Ren, Y.; Wu, H.; Yao, F.; Wei, J.; Wu, M.; Hou, Y.; Duan, H. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. Drug. Des. Devel Ther. 2015, 9, 5099–5113. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.; Romecín, P.; García-Guillén, A.I.; Wangesteen, R.; Vargas-Tendero, P.; Paredes, M.D.; Atucha, N.M.; García-Estañ, J. Flavonoids in Kidney Health and Disease. Front. Physiol. 2018, 9, 394. [Google Scholar] [CrossRef]
- Basu, A.; Feng, D.; Planinic, P.; Ebersole, J.L.; Lyons, T.J.; Alexander, J.M. Dietary Blueberry and Soluble Fiber Supplementation Reduces Risk of Gestational Diabetes in Women with Obesity in a Randomized Controlled Trial. J. Nutr. 2021, 151, 1128–1138. [Google Scholar] [CrossRef]
- Stote, K.; Corkum, A.; Sweeney, M.; Shakerley, N.; Kean, T.; Gottschall-Pass, K. Postprandial Effects of Blueberry (Vaccinium angustifolium) Consumption on Glucose Metabolism, Gastrointestinal Hormone Response, and Perceived Appetite in Healthy Adults: A Randomized, Placebo-Controlled Crossover Trial. Nutrients 2019, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Stote, K.S.; Wilson, M.M.; Hallenbeck, D.; Thomas, K.; Rourke, J.M.; Sweeney, M.I.; Gottschall-Pass, K.T.; Gosmanov, A.R. Effect of Blueberry Consumption on Cardiometabolic Health Parameters in Men with Type 2 Diabetes: An 8-Week, Double-Blind, Randomized, Placebo-Controlled Trial. Curr. Dev. Nutr. 2020, 4, nzaa030. [Google Scholar] [CrossRef] [PubMed]
- Mirfeizi, M.; Mehdizadeh Tourzani, Z.; Mirfeizi, S.Z.; Asghari Jafarabadi, M.; Rezvani, H.R.; Afzali, M. Controlling type 2 diabetes mellitus with herbal medicines: A triple-blind randomized clinical trial of efficacy and safety. J. Diabetes 2016, 8, 647–656. [Google Scholar] [CrossRef] [PubMed]
- de Mello, V.D.; Lankinen, M.A.; Lindström, J.; Puupponen-Pimiä, R.; Laaksonen, D.E.; Pihlajamäki, J.; Lehtonen, M.; Uusitupa, M.; Tuomilehto, J.; Kolehmainen, M.; et al. Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes. Mol. Nutr. Food Res. 2017, 61, 1700019. [Google Scholar] [CrossRef]
- Hoggard, N.; Cruickshank, M.; Moar, K.M.; Bestwick, C.; Holst, J.J.; Russell, W.; Horgan, G. A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. J. Nutr. Sci. 2013, 2, e22. [Google Scholar] [CrossRef] [PubMed]
- Schell, J.; Betts, N.M.; Foster, M.; Scofield, R.H.; Basu, A. Cranberries improve postprandial glucose excursions in type 2 diabetes. Food Funct. 2017, 8, 3083–3090. [Google Scholar] [CrossRef]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef]
- Wilson, T.; Meyers, S.L.; Singh, A.P.; Limburg, P.J.; Vorsa, N. Favorable glycemic response of type 2 diabetics to low-calorie cranberry juice. J. Food Sci. 2008, 73, H241–H245. [Google Scholar] [CrossRef]
- Shidfar, F.; Heydari, I.; Hajimiresmaiel, S.J.; Hosseini, S.; Shidfar, S.; Amiri, F. The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp(a), and Paraoxonase-1 activity in type 2 diabetic male patients. J. Res. Med. Sci. 2012, 17, 355–360. [Google Scholar]
- Kianbakht, S.; Abasi, B.; Dabaghian, F.H. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: A randomized controlled trial. Forsch. Komplementmed 2013, 20, 17–22. [Google Scholar] [CrossRef]
- Yang, L.; Ling, W.; Yang, Y.; Chen, Y.; Tian, Z.; Du, Z.; Chen, J.; Xie, Y.; Liu, Z.; Yang, L. Role of Purified Anthocyanins in Improving Cardiometabolic Risk Factors in Chinese Men and Women with Prediabetes or Early Untreated Diabetes-A Randomized Controlled Trial. Nutrients 2017, 9, 1104. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr. 2015, 145, 742–748. [Google Scholar] [CrossRef] [PubMed]
- de Mello, V.D.; Schwab, U.; Kolehmainen, M.; Koenig, W.; Siloaho, M.; Poutanen, K.; Mykkänen, H.; Uusitupa, M. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: The Sysdimet study. Diabetologia 2011, 54, 2755–2767. [Google Scholar] [CrossRef]
- Qin, Y.; Xia, M.; Ma, J.; Hao, Y.; Liu, J.; Mou, H.; Cao, L.; Ling, W. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr. 2009, 90, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef]
- Scharrer, A.; Ober, M. Anthocyanosides in the treatment of retinopathies (author’s transl). Klin. Monbl Augenheilkd. 1981, 178, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Perossini, M.; Guidi, G.; Chiellini, S.; Siravo, D. Diabetic and hypertensive retinopathy therapy with Vaccinium myrtillus anthocyanosides (Tegens). A double blind placebo-controlled clinical trial. Ann. Ottalmol. Clin. Ocul. 1987, 113, 1173. [Google Scholar]
- Kim, E.S.; Yu, S.-Y.; Kwon, S.J.; Kwon, O.W.; Kim, S.-Y.; Kim, T.W.; Ahn, J.K.; Oum, B.S.; Lew, Y.J.; Lee, J.E.; et al. Clinical Evaluation of Patients with Nonproliferative Diabetic Retinopathy Following Medication of Anthocyanoside: Multicenter Study. J. Korean Ophthalmol. Soc. 2008, 49, 1629–1633. [Google Scholar] [CrossRef]
- Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; Barbano, L.; Ziccardi, L.; Varano, M.; Parisi, V. Effects of Macuprev(®) Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study Along 6 Months of Follow-Up. Adv. Ther. 2019, 36, 2493–2505. [Google Scholar] [CrossRef]
- Savickiene, N.; Dagilyte, A.; Lukosius, A.; Zitkevicius, V. Importance of biologically active components and plants in the prevention of complications of diabetes mellitus. Medicina 2002, 38, 970–975. [Google Scholar] [PubMed]
- Sasso, F.C.; Pafundi, P.C.; Gelso, A.; Bono, V.; Costagliola, C.; Marfella, R.; Sardu, C.; Rinaldi, L.; Galiero, R.; Acierno, C.; et al. High HDL cholesterol: A risk factor for diabetic retinopathy? Findings from NO BLIND study. Diabetes Res. Clin. Pract. 2019, 150, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; González-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef]
- Kelly, J.T.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.J.; Campbell, K.L.; Strippoli, G.F. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017, 12, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.E.; Bowden, R.G. Ameliorating Chronic Kidney Disease Using a Whole Food Plant-Based Diet. Nutrients 2020, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; McMacken, M.; Kalantar-Zadeh, K. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am. J. Kidney Dis. 2021, 77, 287–296. [Google Scholar] [CrossRef]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Grams, M.E.; Coresh, J.; Rebholz, C.M. Plant-Based Diets and Incident CKD and Kidney Function. Clin. J. Am. Soc. Nephrol. 2019, 14, 682–691. [Google Scholar] [CrossRef]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef]
- Nair, A.R.; Mariappan, N.; Stull, A.J.; Francis, J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Food Funct. 2017, 8, 4118–4128. [Google Scholar] [CrossRef]
- Lee, I.T.; Chan, Y.C.; Lin, C.W.; Lee, W.J.; Sheu, W.H. Effect of cranberry extracts on lipid profiles in subjects with Type 2 diabetes. Diabet. Med. 2008, 25, 1473–1477. [Google Scholar] [CrossRef]
- Hsia, D.S.; Zhang, D.J.; Beyl, R.S.; Greenway, F.L.; Khoo, C. Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. Br. J. Nutr. 2020, 124, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Yang, B.; Venojärvi, M.; Viikari, J.; Kallio, H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011, 65, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Rosales, T.K.O.; Hassimotto, N.M.A.; Lajolo, F.M.; Fabi, J.P. Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants 2022, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
Species | Geographical Sources | Anthocyanins | Other Flavonoids |
---|---|---|---|
V. myrtillus (bilberry) [19,30] | Central and northern parts of Europe | cyanidin 3-galactoside, cyanidin 3-glucoside, cyanidin 3-arabinoside, delphinidin 3-galactoside, delphinidin 3-arabinoside, delphinidin 3-glucoside, malvidin 3-galactoside, malvidin 3-arabinoside, malvidin 3-glucoside, petunidin 3-galactoside, petunidin 3-arabinoside, petunidin 3-acetylglucoside, petunidin 3-glucoside, peonidin 3-galactoside, peonidin 3-arabinoside, cyanidin 3-xyloside, cyanidin 5-glucoside, cyanidin 3,5-diglucoside, cyanidin 3-(6″-O-2-rhamnopyranpsyl-2″-O-β-xylopranosyl-β-glucopyranoside), cyanidin 3-sambubioside, delphinidin 3-sambuobiside, peonidin-3-glycoside | myricetin 3-glucoside, myricetin 3-arabinoside, myricetin3-rhamnoside, quercetin 3-arabinoside, quercetin 3-rhamnoside, quercetin 3-galactoside, quercetin 3-glucoside, quercetin 3-rutinoside, apigenin, chrysoeriol, myricetin, myricetin-3-xyloside, quercetin 3-glucuronide, quercetin 3-xyloside, isorhamnetin 3-glucoside, isorhamnetin 3-xyloside isorhamnetin, laricitrin, syringetin, luteolin, kaempferol isorhamnetin 3-galactoside, myricetin 3-glucuronide, laricitrin 3-glucoside, syringetin 3-glucoside, kaempferol 3-glucoside, myricetin 3-galactoside, |
V. corymbosum (blueberry) [19,32,33] | Parts of Asia and North America | delphinidin 3-galactoside, delphinidin 3-glucoside, cyanidin 3-galactoside, delphinidin 3-arabinoside, cyanidin 3-glucoside, petunidin 3-galactoside cyanidin 3-arabinoside, petunidin 3-glucoside, peonidin 3-galactoside, petunidin 3-arabinoside malvidin 3-galactoside, malvidin 3-glucoside peonidin 3-arabinoside, malvidin 3-arabinoside, delphinidin 3-acetylglucoside, petunidin 3-acetylglucoside, malvidin 3-acetylglucoside, petunidin 3-glucoside | myricetin 3-galactoside, myricetin 3-glucoside, myricetin 3-rhamnoside, quercetin 3-galactoside, quercetin 3-glucoside, quercetin 3-xylosylglucuronide, quercetin 3-glucosylxyloside, quercetin 3-rutinoside, quercetin 3-acetylrhamnoside, quercetin 3-xyloside |
V. vitis idaea (lingonberry) [30,34] | North Eurasia and North America | cyanidin 3-glucoside, delphinidin 3-glucoside, cyanidin 3-arabinoside, peonidin 3-arabinoside, peonidin 3-glucoside, peonidin 3-galactoside, delphinidin 3-arabinoside, delphinidin 3-galactoside, petunidin 3-galactoside, petunidin 2-glucoside, malvidin 3-galactoside, malvidin 3-glucoside | kaempferol, quercetin, myricetin, rutin myricetin 3-glucoside, quercetin 3-glucoside, quercetin 3-galactoside, quercetin 3-arabinoside, quercetin 3-xyloside, kaempferol 3-rhamnoside, quercetin 3-rhamnoside, isorhamnetin 3-galactoside, isorhamnetin 3-glucoside, syringetin 3-glucoside, kaempferol 3-glucoside |
V. macrocarpon (cranberry) [33,35] | Eastern US and Canada | cyanidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-glucoside, peonidin-3-galactoside, peonidin-3-arabinoside, pelargonidin-3-galactoside, pelargonidin-3-arabinoside, malvidin-3-galactoside, malvidin-3-arabinoside delphinidin-3-arabinoside, petunidin-3-galactoside | kaempferol-3-glucoside, quercetin-3-galactoside, quercetin-3-arabinoside, quercetin-3-rhamnoside |
Animal | Intervention | Duration | Results | |
---|---|---|---|---|
Takács et al. 2020 [100] | Normal (control), obese, prediabetic, and streptozotocin-induced diabetic mice | Wild strawberry (Fragaria vesca), blackberry (Rubus fruticosus), and European blueberry (Vaccinium myrtillus) leaf extracts | / | Inhibit α-glucosidase and α-amylase enzyme activity in vitro, attenuated the starch-induced rise of blood glucose levels. |
Mykkänen et al. 2014 [122] | C57BL mice fed with a high-fat diet (HFD) | The effects of 5% or 10% (w/w) of whole bilberries (BB) | 3 months | Prevented ameliorated type 1 pro-inflammatory responsiveness, blood pressure |
Feshani et al. 2011 [123] | Alloxan-diabetic male Wistar rats | Fruit of Vaccinium arctostaphylos L. (Ericaceae) | 3 weeks | Decreased postprandial blood glucose and TG, increased erythrocyte superoxide dismutase, GPX, and catalase. |
Prior et al. 2010 [112] | Male C57BL/6J mice (25 days of age) fed with HFD or LFD (low-fat diet) | Blueberry juice or purified blueberry ANT (0.2 or 1.0 mg/mL) in the drinking water | 72 days | Blueberry juice was not as effective as the low dose of ANT in the drinking water in preventing obesity. |
Zhong et al. 2020 [113] | HFD-fed mice | BBJ, and FBJ with homemade probiotic starter or CFBJ | 17 weeks | All decreased fat accumulation and LDL-C levels. BBJ and FBJ treatments regulated the liver mRNA and protein expression levels involved in lipid and glucose metabolism. |
Anhê et al. 2015 [118] | C57BL/6J mice were fed either a chow or a high fat/high sucrose diet | Daily either with vehicle (water) or cranberry extract (200 mg/kg) | 8 weeks | Cranberry extract reduced weight gain and visceral obesity, improve insulin sensitivity, lowered intestinal TG content, increased the proportion of the mucin-degrading bacterium Akkermansia. |
Brader et al. 2013 [124] | Male Zucker Diabetic Fatty (ZDF) rats | A control, bilberry-enriched, blackcurrant-enriched, or fiber-enriched diet | 8 weeks | Bilberry enrichment ameliorated total and LDL but not HDL |
Eid et al. 2014 [104] | C57BL/6 mice fed a HFD | Lingonberry extract to HFD at three different concentrations (125, 250, and 500 mg/Kg) | 8 weeks | Decreased glycemia and strongly tended to decrease insulin levels, improved hepatic steatosis by decreasing hepatic TG levels and significantly activated liver AMPK and Akt pathways. |
Al Hamimi et al. 2017 [105]. | C57BL/6J fed a HFD | Control, two of which containing lingonberries (L1D and L2D) from different sources, | / | Glycemia was improved only in mice fed L1D, both L1D and L2D liver function was improved, and inflammation reduced. Increased phosphatidylcholines and lysophosphatidylcholines, decreased serine and sphingomyelins |
Madduma Hewage et al. 2020 [125] | Mice (C57BL/6J) fed a HFD | Dietary supplementation of lingonberry | 12 weeks | Decreased BUN, KIM-1, NGAL, NF-κB, MCP-1, TNF-α, IL-6. |
Vendrame et al. 2015 [114] | The obese Zucker rat (OZR) | Fed an 8% enriched wild blueberry diet or a control (C) diet | 8 weeks | Decreased plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4), compared to control diet. |
Ryyti et al. 2021 [126] | C57BL/6N male mice | Fed with either a high-fat (HF) or low-fat (LF) diet or HF diet supplemented with air-dried lingonberry powder (HF + LGB). | 6 weeks | Lingonberry supplementation prevented the effect of HF diet on an array of genes, such a Mogat1, Plin4, Igfbp2, Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10, Cdkn1a, Tubb2a, and Tubb6. |
Khanal et al. 2010 [115] | Rats fed a high fructose diet | Dietary treatments were control (starch based), high fructose (HF), and HF containing either 3.3, 6.6, or 33 g cranberry powder/kg diet. | / | Fed with cranberry powder decreased plasma glucose and triglycerides, lower fasting plasma insulin. |
Chen et al. 2020 [103] | ZDF rats | Fed with the nonacylated anthocyanin extract from bilberries (NAAB) or the acylated anthocyanin extract from purple potatoes (AAPP) | Daily doses of 25 and 50 mg/kg body weight for 8 weeks | NAAB reduced fasting plasma glucose level, the levels of branched-chain amino acids and improved lipid profiles. |
Pemmari et al. 2022 [110] | HFD-induced mouse model of obesity | Air-dried bilberry powder | / | The bilberry supplementation was unable to modify the weight gain, prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14, prevented the increase in serum cholesterol, glucose, and insulin levels. |
Petersen et al. 2022 [116] | Seven-week-old diabetic db/db mice | Standard diet (db/db) or a diet supplemented with 3.8% freeze-dried blueberry (db/db + BB) | 10 weeks | Blueberry supplementation reduces NOX4 and IκKβ, increases commensal microbes. |
Takikawa et al. 2010 [127] | T2D mice | The effect of dietary bilberry extract (BBE) | / | Ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase (AMPK). |
Medina-Larqué et al. 2022 [119] | C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet | Cranberry polyphenols (CP), agavins (AG), CP + AG | 9 weeks | Both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity. |
Zhou et al. 2020 [120] | Male C57BL/6J mice fed with normal diet or HFD | Cranberry polyphenolic extract | 16 weeks | CPE reduced but did not normalize HFD-induced body weight gain. |
Singh et al. 2018 [121] | Male Swiss albino mice were fed normal chow or HFD | Administered either cranberry extract (CRX) (200 mg/kg) alone or in combination with isomalto-oligosaccharides (IMOs) (1 g/kg) | / | Combination of CRX and IMOs prevented systemic and tissue inflammation, glucose intolerance, and systemic obesity-associated metabolic changes in adipose tissue and liver. |
Nair et al. 2014 [117] | Five-week-old lean and obese Zucker rats (LZR and OZR) | Fed a blueberry-enriched diet or an isocaloric control diet | 15 weeks | Blueberry (BB) protects by inhibiting TLR4. |
Lee et al. 2018 [128] | Twenty-four male Wistar rats | Fed low-fat (LF; 10% fat), HF or HF with 10% by weight blueberry powder diets | 8 weeks | Increase Gammaproteobacteria abundance. Ileal villus height, tumor necrosis factor α (Tnfa) and interleukin 1β (Il1b) gene expression normalized by blueberry supplementation. improved markers of insulin sensitivity. |
Morissette et al. 2020 [129] | Sixty-eight C57BL/6 male mice | Balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract | 12 weeks | PAC-treated mice were leaner, improved insulin responses during OGTT. |
Seymour et al. 2011 [130] | Zucker Fatty and Zucker Lean rats | Fed a HFD or LFD containing 2% (wt/wt) freeze-dried whole highbush blueberry powder | / | The addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve, reduced abdominal fat mass. |
Nunes et al. 2021 [131] | Hypercaloric diet-induced prediabetic rat model | Blueberry juice (BJ) | 14 weeks | Counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, alleviated hepatic steatosis and mitochondrial dysfunction. |
Elks et al. 2015 [132] | Four-week-old female C57BL/6J mice after induction of menopause | Fed a high-fat diet or the same diet supplemented with 4% blueberries (BB) powder | 12 weeks | BB supplementation prevents the glucose intolerance and hepatic steatosis, and these effects are independent of body weight. |
Wu et al. 2018 [133] | HFD fed C57BL/6 mice | LFD, HFD, or HFD plus orlistat, and blackberry anthocyanins (BLA) or blueberry anthocyanins (BBA) in their daily food | 12 weeks | Reduced serum and hepatic lipid levels and increased hepatic superoxide dismutase and GPx, activities, attenuated expression of tumor necrosis factor TNF-α, interleukin-6, and nuclear factor-kappaB genes. |
Ryyti et al. 2020 [134] | Thirty male C57BL/6N mice | Receive LF, HF and lingonberry-supplemented high-fat (HF + LGB) diet | 6 weeks | Lingonberry supplementation prevented adverse changes blood cholesterol and glucose levels, restrained proinflammatory adipocytokine leptin, increase serum amyloid A. |
Vuong et al. 2009 [135] | KKA(y) mice | Biotransformed blueberry juice (BJ) | / | BJ decreases hyperglycemia, in part by reversing adiponectin levels, protects young pre-diabetic mice from developing obesity and diabetes. |
Wu et al. 2016 [136] | HFD induced obese male C57BL/6 mice | Blueberry anthocyanin (BA) at doses of 50, 100, and 200 mg/kg | 8 weeks | BA at high doses reduced body weight, low and middle doses did not affect. A high dose could effectively decrease serum glucose, attenuate epididymal adipocytes, improve lipid profiles, and significantly down-regulate expression levels of TNFα, IL-6 PPARγ, and FAS genes. |
Animal/Cell | Intervention | Duration | Results | |
---|---|---|---|---|
Wang et al. 2015 [137] | Visible light-induced damage in human retinal pigment epithelial (RPE) cells | Four ACNs, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu) from blueberry, blackberry and strawberry | / | Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity, Cy-3-glu and Mv-3-glu decrease VEGF, Cy-3-glu and Pg-3-glu inhibited the increase in β-galactosidase. |
Li et al. 2022 [138] | HG-treated ARPE-19 cells | 10 μM Cy-3-glu (blueberry extracts from northeast China) | / | Cy-3-glu ameliorating oxidative stress-induced BRB damage via the Nrf2 pathways. |
Wang et al. 2022 [139]. | Human retinal pigment epithelium cell line ARPE-19 cells were exposed to high concentration glucose (H-Glu) with 25 mM for 24 h | Blueberry anthocyanin extract (BAE) | The increase of apoptosis, ROS level and ERS in ARPE-19 cells induced by H-Glu was notably restored by BAE. | |
Song et al. 2016 [140] | Intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) was used to induce a rat diabetes model. | Blueberry anthocyanins at 20, 40, and 80 mg/kg were given orally | 12 weeks | Blueberry anthocyanins prevent diabetes-induced weight loss and increased blood glucose, increased GSH and GPx, decreased MDA, ROS, VEGF and IL-1β, increased the mRNA levels of Nrf2 and HO-1. |
Huang et al. 2018 [141] | high glucose- (HG-) induced injury in human retinal capillary endothelial cells (HRCECs) | Blueberry anthocyanin extract and its predominant constituents, malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal), | 24 h | All increased cell viability, SOD he enzyme activity of catalase; decreased ROS. |
Kim et al. 2015 [143] | streptozotocin-induced diabetic rats | Bilberries extract (100 mg/kg) | 6 weeks | Bilberries extract did not affect the blood glucose levels and body weight; reduced the fluorescein leakage; decreased markers of diabetic retinopathy, such as retinal VEGF expression and degradation of zonula occludens-1, occludin, and claudin-5. |
Stevens et al. 2019 [144] | a model of type II DN. Diabetic db/db mice | Administered DIAVIT in their drinking water | 14 weeks | DIAVIT prevented albuminuria and glomerular water permeability; alters VEGF-A splicing in type II DN, rescuing the DN phenotype. |
Di Cerbo et al. 2018 [145] | 34 client-owned, neutered cats with II-III CKD | Control diet (n = 17) or a nutraceutical diet (n = 17, contain 0.0371% cranberry) | 90 days | creatinine, blood urea nitrogen, total proteins, aspartate aminotransferase, urine turbidity score, color score, and total proteins decreased in cats that received the ND. |
Li et al. 2022 [146] | 6-week-old male C57BLKS/J-Leprdb/Leprdb mice | 10 mg/kg Cyanidin-3-O-glucoside per day by oral gavage | 12 weeks | The fasting blood glucose level, perimeter of glomerular lesions, perimeter of glomerular lesions and kidney function (Cystatin C, urine creatinine) alleviated after ANT treatment compared to untreated; upregulated taurine, hypotaurine metabolism pathway tryptophan metabolism and tyrosine metabolism. |
Qin et al. 2018 [147] | DN in db/db mice | Cyanidin 3-glucoside | / | Cyanidin 3-glucoside reduced body weight, the levels of blood urea nitrogen (BUN), serum creatinine, urinary albumin content and albumin/creatinine ratio (ACR);reduced the surface area of Bowman’s capsule, glomerular tuft, Bowman’s space, and decreased renal expression of collagen IV, fibronectin, transforming growth factor β 1 (TGFβ1), matrix metalloprotein 9 (MMP9) and α-smooth muscle actin (α-SMA), the Lee’s index, perirenal white adipose tissue weight, and high levels of blood and renal triglyceride and cholesterol, reduced systemic levels and renal expression of TNFɑ, IL-1ɑ, and monocyte chemotactic protein-1 (MCP-1); increased GSH; decreased GSSG level. |
Du et al. 2015 [148] | High-glucose (HG)-stimulated HK-2 cells | ANTs:cyanidin-3-O-β-glucoside chloride [C3G] or cyanidin chloride [Cy] | Enhanced cholesterol efflux and ABCA1 expression; increased peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptor alpha (LXRα) expression and decreased the HG-induced expression of the proinflammatory cytokines intercellular adhesion molecule-1 (ICAM1), monocyte chemoattractant protein-1 (MCP1), and transforming growth factor-β1 (TGFβ1), as well as NFκB activation, blocking cholesterol deposition and inhibiting the LXRα pathway-induced inflammatory response. |
Sample | Age (y) | Intervention | Duration | Results | |
---|---|---|---|---|---|
Basu et al. 2021 [150] | 34 women at high risk of developing GDM | 27 ± 5 | 280 g whole blueberries and 12 g soluble fiber daily or standard prenatal care | 18 weeks | Lower maternal weight gain, C-reactive protein, and blood glucose based on GCT in intervention group, compared to the control group. |
Mirfeizi et al. 2016 [153] | 105 T2DM patients | 30–65 | Bilberry supplements 1 g or placebo daily | 90 days | Reduced FBG, 2 h blood postprandial glucose and homeostasis model assessment of insulin resistance (HOMA-IR) scores in the bilberry group, compared with placebo group. |
De Mello et al. 2017 [154] | 47 individuals with metabolic syndrome | 25–60 | 200 g of bilberry purée and 40 g of dried bilberries (altogether eq. 400 g of fresh bilberries) or control | 8 weeks | Significant increase in fasting serum hippuric acid in intervention group, compared to the control group. |
Wilson et al. 2010 [27] | 13 noninsulin- dependent diabetics | 61.6 ± 2.3 | Sweetened dried cranberries (40 g, 113 cal, 1.8 g fiber, 10 g polydextrose) | / | Favorable glycemic and insulinemic response in intervention group. |
Chan. et al. 2021 [28] | 20 T2DM patients | 55.8 ± 9.5 | Bilberry supplementation (1.4 g of extract) or placebo daily | 4 weeks | Tendency of improved glycemic control in intervention group, compared to the placebo group. |
Stote et al. 2019 [151] | 17 healthy adults | 22–65 | 140 g of whole blueberries or placebo daily | / | Significant increase in pancreatic polypeptide (PP) concentrations in intervention group, compared to the placebo group. |
Schell et al. 2017 [156] | 25 T2DM patients | 56 ± 6 | Fast-food style high-fat breakfast (70 g fat, 974 kcal) with or without cranberries (40 g). | / | Lower postprandial increases of glucose at 2 and 4 h in the cranberry group, compared to control group. |
Kianbakht. et al. 2013 [160] | 37 T2DM patients | 40–60 | 1050 mg of Caucasian whortleberry fruit hydroalcoholic extract or placebo daily, in combination with anti-hyperglycemic drugs | 2 months | Lower blood levels of fasting glucose, 2 h postprandial glucose, and HbA1c in intervention group, compared to the placebo group. |
Novotny et al. 2015 [157] | 56 individuals | 25–65 | 480 mL of low-calorie cranberry juice or placebo daily | 8 weeks | Reduced circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP in intervention group, compared to the placebo group. |
Hoggard et al. 2013 [155] | 8 male volunteers with T2D | 62 ± 5 | A single capsule of 0.47 g standardized bilberry extract (36% (w/w) anthocyanins) (eq. 50 g of fresh bilberries) or placebo followed by a polysaccharide drink (eq. 75 g glucose) | / | Reduced postprandial glycaemia and insulin levels in intervention group, compared to the placebo group. |
Wilson et al. 2008 [158] | 12 T2DM patients | 65.3 ± 2.3 | Unsweetened low-calorie cranberry juice (LCCBJ; 19 Cal/240 mL) and control | / | Favorable metabolic response in intervention group, compared to the control group. |
Shidfar et al. 2012 [159] | 58 male volunteers with T2D | 54.8 ± 9.1 | 240 mL of cranberry juice or placebo daily | 12 weeks | Significant decrease in serum glucose and apo B; and significant increase in serum apoA-1 and PON-1 activity in intervention group, compared to the placebo group. |
Yang et al. 2017 [161] | 160 participants with prediabetes or early untreated diabetes | 40–75 | Purified anthocyanins (320 mg/day) or placebo | 12 weeks | Reduced HbA1c, low-density lipoprotein-c, apolipoprotein A-1, apolipoprotein B in intervention group, compared to the placebo group. |
Li et al. 2015 [162] | 58 diabetic patients | 56–67 | 160 mg of anthocyanins twice daily or placebo | 24 weeks | Decreased serum LDL cholesterol, triglycerides, apolipoprotein B, and apo C-III; increased HDL cholesterol; higher total radical-trapping antioxidant parameter and ferric ion reducing antioxidant power values; lower fasting plasma glucose, homeostasis model assessment for insulin resistance index, and elevated serum adiponectin and b-hydroxybutyrate in intervention group, compared to the placebo group. |
Stote et al. 2020 [152] | 58 male volunteers with T2D | 51–75 | 22 g freeze-dried blueberries or placebo daily | 8 weeks | Lower hemoglobin A1c, fructosamine, triglycerides, aspartate transaminase, and alanine transaminase levels in intervention group, compared to the placebo group. |
Sample | Age (y) | Intervention | Duration | Results | |
---|---|---|---|---|---|
Curtis et al. 2019 [178] | 115 adults with MetS | 63 ± 7 | Blueberries (75 g or 150 g) or placebo daily | 6 months | Improvements in vascular function, lipid status, and underlying NO bioactivity in intervention group, compared to the placebo group. |
Nair et al. 2017 [179] | 27 adults with metabolic syndrome | / | Blueberries (45 g freeze-dried) or placebo daily | 6 weeks | Decreased superoxide and total ROS in whole blood and monocytes; increased myeloid DC; decreased monocyte gene expression of TNFα, IL-6, TLR4 and reduced serum GMCSF in intervention group, compared to the placebo group. |
Hsia et al. 2020 [181] | 35 individuals with obesity and with elevated fasting glucose or impaired glucose tolerance | / | 450 mL of low-energy cranberry beverage or placebo daily | 8 weeks | Levels of 8-isoprostane (biomarker of lipid peroxidation) decreased in the cranberry group but increased in the placebo group. |
Lehtonen et al. 2011 [182] | 110 female overweight and obese women | 44.2 ± 6.2 | Bilberry diets (equivalent to an average daily dose of 100 g fresh bilberries) | 33–35 days | Decrease in waist circumference, weight, and Vascular cell adhesion molecule (VCAM). |
Lee et al. 2008 [180] | 30 T2D subjects taking oral glucose-lowering drugs | 65 ± 1 | Three capsules (500 mg/capsule) of cranberry extracts or placebo daily | 12 weeks | Reduced atherosclerotic cholesterol profiles, including LDL-C, total cholesterol, and total: HDL cholesterol ratio in intervention group, compared to placebo group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Luo, Y.; Wang, Q.; Zhang, Y.; Li, Z.; He, R.; Chen, X.; Dong, Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients 2023, 15, 2031. https://doi.org/10.3390/nu15092031
Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, Chen X, Dong Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients. 2023; 15(9):2031. https://doi.org/10.3390/nu15092031
Chicago/Turabian StyleHuang, Hui, Yayong Luo, Qian Wang, Yihan Zhang, Zhongxia Li, Ruikun He, Xiangmei Chen, and Zheyi Dong. 2023. "Vaccinium as Potential Therapy for Diabetes and Microvascular Complications" Nutrients 15, no. 9: 2031. https://doi.org/10.3390/nu15092031
APA StyleHuang, H., Luo, Y., Wang, Q., Zhang, Y., Li, Z., He, R., Chen, X., & Dong, Z. (2023). Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients, 15(9), 2031. https://doi.org/10.3390/nu15092031