Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality
Abstract
:1. Introduction
2. Methods
3. Specific Foods and Cancer Mortality
3.1. Red Meat
3.2. Dietary Fiber
3.3. Nuts
3.4. Whole Grains
3.5. Fruits and Vegetables
3.6. Other Foods
3.7. A Grain of Salt
4. Exercise and Cancer Mortality
4.1. Cardiorespiratory Fitness
4.2. Other Metrics of Physical Health: Strength and Physical Activity
5. Obesity
6. After Thoughts: Lifestyle Interventions after a Diagnosis of Cancer
7. Discussion
Limitations
8. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef]
- World Cancer Research Fund. American Institute for Cancer Research: Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project. Report 2018. Available online: dietandcancerreport.org (accessed on 12 January 2023).
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.F.; Tomten, H.; Haggarty, P.; Løvø, A.; Hustvedt, B.E. Validation of energy intake estimated from a food frequency questionnaire: A doubly labelled water study. Eur. J. Clin. Nutr. 2003, 57, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okubo, H.; Sasaki, S.; Rafamantanantsoa, H.H.; Ishikawa-Takata, K.; Okazaki, H.; Tabata, I. Validation of self-reported energy intake by a self-administered diet history questionnaire using the doubly labeled water method in 140 Japanese adults. Eur. J. Clin. Nutr. 2008, 62, 1343–1350. [Google Scholar] [CrossRef]
- Sawaya, A.L.; Tucker, K.; Tsay, R.; Willett, W.; Saltzman, E.; Dallal, G.E.; Roberts, S.B. Evaluation of four methods for determining energy intake in young and older women: Comparison with doubly labeled water measurements of total energy expenditure. Am. J. Clin. Nutr. 1996, 63, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, J.P.A. The Challenge of Reforming Nutritional Epidemiologic Research. JAMA 2018, 320, 969–970. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Brooke, B.S.; Schwartz, T.A.; Pawlik, T.M. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021, 156, 787–788. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G.; Pan, A.; Hu, F.B. Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutr. 2016, 19, 893–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Je, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch. Cardiovasc. Dis. 2016, 109, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Subar, A.F.; Hollenbeck, A.; Schatzkin, A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 2011, 171, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Hshieh, T.T.; Petrone, A.B.; Gaziano, J.M.; Djoussé, L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am. J. Clin. Nutr. 2015, 101, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Tong, X.; Xu, J.Y.; Han, S.F.; Wan, Z.X.; Qin, J.B.; Qin, L.Q. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, G.C.; Qin, Z.Z.; Tong, X.; Li, D.P.; Qin, L.Q. Poultry and Fish Consumption in Relation to Total Cancer Mortality: A Meta-Analysis of Prospective Studies. Nutr. Cancer 2018, 70, 204–212. [Google Scholar] [CrossRef]
- Kappeler, R.; Eichholzer, M.; Rohrmann, S. Meat consumption and diet quality and mortality in NHANES III. Eur. J. Clin. Nutr. 2013, 67, 598–606. [Google Scholar] [CrossRef]
- Lu, W.; Chen, H.; Niu, Y.; Wu, H.; Xia, D.; Wu, Y. Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutr. J. 2016, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Zargarzadeh, N.; Mousavi, S.M.; Santos, H.O.; Aune, D.; Hasani-Ranjbar, S.; Larijani, B.; Esmaillzadeh, A. Legume Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2023, 14, 64–76. [Google Scholar] [CrossRef] [PubMed]
- van den Brandt, P.A. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur. J. Epidemiol. 2019, 34, 351–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, S.M.; Zargarzadeh, N.; Rigi, S.; Persad, E.; Pizarro, A.B.; Hasani-Ranjbar, S.; Larijani, B.; Willett, W.C.; Esmaillzadeh, A. Egg Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-analysis of Prospective Studies. Adv. Nutr. 2022, 13, 1762–1773. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, F.; Mao, L.; Zhu, F.; Zhang, Y.; Chen, X.; Jiao, J.; Zhang, Y. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLoS Med. 2021, 18, e1003508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, R.; Wang, B.; Zhao, C.; Zhu, B.; Tian, X. The Dose-Response Associations of Sugar-Sweetened Beverage Intake with the Risk of Stroke, Depression, Cancer, and Cause-Specific Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2022, 14, 777. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Li, Y.; Pan, A.; De Koning, L.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef]
- Schmid, D.; Leitzmann, M.F. Cardiorespiratory fitness as predictor of cancer mortality: A systematic review and meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.W.; Cortese, G.M.; LaMonte, M.J.; Blair, S.N. Cardiorespiratory fitness, different measures of adiposity, and cancer mortality in men. Obesity 2007, 15, 3140–3149. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.W.; Finley, C.E.; McAuley, P.A.; Frierson, G.M. Cardiorespiratory fitness, different measures of adiposity, and total cancer mortality in women. Obesity 2011, 19, 2261–2267. [Google Scholar] [CrossRef]
- López-Bueno, R.; Andersen, L.L.; Koyanagi, A.; Núñez-Cortés, R.; Calatayud, J.; Casaña, J.; Del Pozo Cruz, B. Thresholds of handgrip strength for all-cause, cancer, and cardiovascular mortality: A systematic review with dose-response meta-analysis. Ageing Res. Rev. 2022, 82, 101778. [Google Scholar] [CrossRef]
- Li, T.; Wei, S.; Shi, Y.; Pang, S.; Qin, Q.; Yin, J.; Deng, Y.; Chen, Q.; Wei, S.; Nie, S.; et al. The dose-response effect of physical activity on cancer mortality: Findings from 71 prospective cohort studies. Br. J. Sport. Med. 2016, 50, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity with Survival Outcomes in Patients with Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef]
- Pepin, A.; Stanhope, K.L.; Imbeault, P. Are Fruit Juices Healthier Than Sugar-Sweetened Beverages? A Review. Nutrients 2019, 11, 1006. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red meat consumption and mortality: Results from 2 prospective cohort studies. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Flint, A.J.; Qi, Q.; van Dam, R.M.; Sampson, L.A.; Rimm, E.B.; Holmes, M.D.; Willett, W.C.; Hu, F.B.; Sun, Q. Association between dietary whole grain intake and risk of mortality: Two large prospective studies in US men and women. JAMA Intern. Med. 2015, 175, 373–384. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; Cross, A.J.; Graubard, B.I.; Leitzmann, M.F.; Schatzkin, A. Meat intake and mortality: A prospective study of over half a million people. Arch. Intern. Med. 2009, 169, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat consumption and mortality--results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef]
- Whiteman, D.; Muir, J.; Jones, L.; Murphy, M.; Key, T. Dietary questions as determinants of mortality: The OXCHECK experience. Public Health Nutr. 1999, 2, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; McLerran, D.F.; Rolland, B.; Chen, Y.; Grant, E.J.; Vedanthan, R.; Inoue, M.; Tsugane, S.; Gao, Y.T.; Tsuji, I.; et al. Meat intake and cause-specific mortality: A pooled analysis of Asian prospective cohort studies. Am. J. Clin. Nutr. 2013, 98, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.C.; Norat, T.; Murphy, N.; Olsen, A.; Tjønneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Perquier, F.; Dartois, L.; Kaaks, R.; et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2012, 96, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Xu, M.; Lee, A.; Cho, S.; Qi, L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, N.F.; Frederiksen, K.; Christensen, J.; Skeie, G.; Lund, E.; Landberg, R.; Johansson, I.; Nilsson, L.M.; Halkjær, J.; Olsen, A.; et al. Whole-grain products and whole-grain types are associated with lower all-cause and cause-specific mortality in the Scandinavian HELGA cohort. Br. J. Nutr. 2015, 114, 608–623. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.F.; Wang, C.R.; Hao, F.B.; Peng, Y.; Wu, J.J.; Sun, W.P.; Hu, J.J.; Zhong, G.C. Egg consumption and risks of all-cause and cause-specific mortality: A dose-response meta-analysis of prospective cohort studies. Nutr. Rev. 2022, 80, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Jiang, Y.W.; Chen, J.X.; Xia, P.F.; Pan, A. Association of Consumption of Sugar-Sweetened Beverages or Artificially Sweetened Beverages with Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2021, 12, 374–383. [Google Scholar] [CrossRef]
- Davidson, K.; McNaughton, L. Deep Water Running Training and Road Running Training Improve Vo2 max in Untrained Women. J. Strength Cond. Res. 2000, 14, 191–195. [Google Scholar] [CrossRef]
- Aspenes, S.T.; Nilsen, T.I.; Skaug, E.A.; Bertheussen, G.F.; Ellingsen, Ø.; Vatten, L.; Wisløff, U. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med. Sci. Sport. Exerc. 2011, 43, 1465–1473. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Chen, Z.; Lee, Y.N.; Sorayya, A.; Kokkinos, P.; Nead, K.T.; Chester, C.; Myers, J. Cardiorespiratory Fitness, Adiposity, and Cancer Mortality in Men. Obesity 2017, 25 (Suppl. S2), S66–S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evenson, K.R.; Stevens, J.; Cai, J.; Thomas, R.; Thomas, O. The effect of cardiorespiratory fitness and obesity on cancer mortality in women and men. Med. Sci. Sport. Exerc. 2003, 35, 270–277. [Google Scholar] [CrossRef]
- Kampert, J.B.; Blair, S.N.; Barlow, C.E.; Kohl, H.W., 3rd. Physical activity, physical fitness, and all-cause and cancer mortality: A prospective study of men and women. Ann. Epidemiol. 1996, 6, 452–457. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Pukkala, E.; Rauramaa, R.; Mäkikallio, T.H.; Toriola, A.T.; Kurl, S. Cardiorespiratory fitness, lifestyle factors and cancer risk and mortality in Finnish men. Eur. J. Cancer 2010, 46, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Sawada, S.S.; Muto, T.; Tanaka, H.; Lee, I.M.; Paffenbarger, R.S., Jr.; Shindo, M.; Blair, S.N. Cardiorespiratory fitness and cancer mortality in Japanese men: A prospective study. Med. Sci. Sport. Exerc. 2003, 35, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Izquierdo, M.; Pérez de Rojas, J.; Martínez-Ruiz, V.; Pérez-Gómez, B.; Sánchez, M.J.; Khan, K.S.; Jiménez-Moleón, J.J. Obesity as a Risk Factor for Prostate Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of 280,199 Patients. Cancers 2021, 13, 4169. [Google Scholar] [CrossRef]
- Gupta, A.; Das, A.; Majumder, K.; Arora, N.; Mayo, H.G.; Singh, P.P.; Beg, M.S.; Singh, S. Obesity is Independently Associated with Increased Risk of Hepatocellular Cancer-related Mortality: A Systematic Review and Meta-Analysis. Am. J. Clin. Oncol. 2018, 41, 874–881. [Google Scholar] [CrossRef]
- Majumder, K.; Gupta, A.; Arora, N.; Singh, P.P.; Singh, S. Premorbid Obesity and Mortality in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016, 14, 355–368; quiz e332. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: A systematic review and meta-analysis. Cancer Prev. Res. 2011, 4, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The energy balance model of obesity: Beyond calories in, calories out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.D.; Chen, W.Y.; Feskanich, D.; Kroenke, C.H.; Colditz, G.A. Physical activity and survival after breast cancer diagnosis. JAMA 2005, 293, 2479–2486. [Google Scholar] [CrossRef] [Green Version]
- Meyerhardt, J.A.; Giovannucci, E.L.; Holmes, M.D.; Chan, A.T.; Chan, J.A.; Colditz, G.A.; Fuchs, C.S. Physical activity and survival after colorectal cancer diagnosis. J. Clin. Oncol. 2006, 24, 3527–3534. [Google Scholar] [CrossRef]
- Kenfield, S.A.; Stampfer, M.J.; Giovannucci, E.; Chan, J.M. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J. Clin. Oncol. 2011, 29, 726–732. [Google Scholar] [CrossRef]
- Schmid, D.; Leitzmann, M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: A systematic review and meta-analysis. Ann. Oncol. 2014, 25, 1293–1311. [Google Scholar] [CrossRef]
- Ibrahim, E.M.; Al-Homaidh, A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med. Oncol. 2011, 28, 753–765. [Google Scholar] [CrossRef]
- Cao, C.; Friedenreich, C.M.; Yang, L. Association of Daily Sitting Time and Leisure-Time Physical Activity with Survival Among US Cancer Survivors. JAMA Oncol. 2022, 8, 395–403. [Google Scholar] [CrossRef]
- Brown, J.C.; Ma, C.; Shi, Q.; Fuchs, C.S.; Meyer, J.; Niedzwiecki, D.; Zemla, T.; Couture, F.; Kuebler, P.; Kumar, P.; et al. Physical Activity in Stage III Colon Cancer: CALGB/SWOG 80702 (Alliance). J. Clin. Oncol. 2023, 41, 243–254. [Google Scholar] [CrossRef]
- Groarke, J.D.; Payne, D.L.; Claggett, B.; Mehra, M.R.; Gong, J.; Caron, J.; Mahmood, S.S.; Hainer, J.; Neilan, T.G.; Partridge, A.H.; et al. Association of post-diagnosis cardiorespiratory fitness with cause-specific mortality in cancer. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Jochems, S.H.J.; Van Osch, F.H.M.; Bryan, R.T.; Wesselius, A.; van Schooten, F.J.; Cheng, K.K.; Zeegers, M.P. Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: A systematic review of current epidemiological literature. BMJ Open 2018, 8, e014530. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of diet on mortality and cancer recurrence among cancer survivors: A systematic review and meta-analysis of cohort studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M.A.; Sato, K.; Niedzwiecki, D.; Ye, X.; Saltz, L.B.; Mayer, R.J.; Mowat, R.B.; Whittom, R.; Hantel, A.; Benson, A.; et al. Sugar-sweetened beverage intake and cancer recurrence and survival in CALGB 89803 (Alliance). PLoS ONE 2014, 9, e99816. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, M.D.; Lu, C.; Tutnauer, J.; Hartman, T.E.; Hwang, S.K.; Murphy, C.J.; Pauli, C.; Morris, R.; Taylor, S.; Bosch, K.; et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 2019, 363, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Pekmezi, D.W.; Demark-Wahnefried, W. Updated evidence in support of diet and exercise interventions in cancer survivors. Acta Oncol. 2011, 50, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L.; Bandera, E.V.; Hamilton, K.K.; Grant, B.; McCullough, M.; et al. Nutrition and physical activity guidelines for cancer survivors. CA A Cancer J. Clin. 2012, 62, 243–274. [Google Scholar] [CrossRef] [Green Version]
- Van Blarigan, E.L.; Meyerhardt, J.A. Role of physical activity and diet after colorectal cancer diagnosis. J. Clin. Oncol. 2015, 33, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Kohler, L.N.; Garcia, D.O.; Harris, R.B.; Oren, E.; Roe, D.J.; Jacobs, E.T. Adherence to Diet and Physical Activity Cancer Prevention Guidelines and Cancer Outcomes: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Wang, S.; Liu, J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2015, 59, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Dai, C.; Zhou, L.; Li, Y.; Liu, K.; Deng, Y.J.; Li, N.; Zheng, Y.; Hao, Q.; Yang, S.; et al. Meta-analysis of the association between nut consumption and the risks of cancer incidence and cancer-specific mortality. Aging 2020, 12, 10772–10794. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Qie, R.; Shi, X.; Yang, Y.; Lu, J.; Hu, F.; Zhang, M.; Zhang, Z.; Hu, D.; Zhao, Y. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: Dose-response meta-analysis of cohort studies. Br. J. Sport. Med. 2022, 56, 733–739. [Google Scholar] [CrossRef]
- Van Dillen, S.M.; Noordman, J.; van Dulmen, S.; Hiddink, G.J. Examining the content of weight, nutrition and physical activity advices provided by Dutch practice nurses in primary care: Analysis of videotaped consultations. Eur. J. Clin. Nutr. 2014, 68, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lifestyle Factor Associated with Cancer Mortality | Hazard Ratio (95% CI) | Hazard Ratio Relative to _______ | Examples of Lifestyle Intervention to Derive Associated Cancer Mortality Benefit |
---|---|---|---|
Unprocessed Red Meat [12] | HR = 1.03 (0.95–1.13) | per daily serving | Reduction by: 1 large strip of bacon (~13 g/slice); 1 hot dog (45 g/frank); 2 slices of salami, bologna (~14 g/slice), per day. |
Processed Red Meat [12] | HR = 1.08 (1.06–1.11) * | per daily serving | One fewer 3-ounce steak (~85 g) per day. |
Total Red Meat [12] | HR = 1.12 (1.10–1.14) | per daily serving | One fewer of any combination of the examples given in the processed and unprocessed red meats sections per day. |
Fiber [13] | HR = 0.86 (0.79–0.93) | High vs. low (~25+ g/day vs. ~10 g/day [14]) | A daily meal plan of: a cup of oatmeal (5 g fiber) topped with a half cup of raspberries (4 g fiber) for breakfast plus an orange (3 g fiber) and a large handful (20 nuts) of almonds (3 g fiber) for lunch plus one cup of chopped broccoli (5 g fiber) over a cup of quinoa (5 g fiber) for dinner. |
Fiber [13] | HR = 0.94 (0.91–0.97) | per 10 g/day | An additional: 1 cup of canned baked beans; 2½ cups of Brussel sprouts; 3 large bananas; 5 slices of whole wheat bread, per day. |
Nuts [15] | HR = 0.86 (0.75–0.98) | High vs. low (Roughly > 5 servings per week vs. roughly < 1 serving per month/never [16,17]) | An additional: 115 almonds, 90 cashews, 70 walnuts, 95 pecans, 245 pistachios per week. |
Whole Grains [18] | HR = 0.82 (0.69–0.96) | per 50 g/day | An additional **: ⅔ cups of old-fashioned oats †; ¾ cup cooked quinoa (¼ uncooked) †; 3 slices of 100% whole wheat bread ‡; 3 cups of Cheerios ‡, per day. |
Vegetables [19] | HR = 0.99 (0.97–1.01) | per daily serving | N/A |
Fruit [19] | HR = 0.99 (0.97–1.00) | per daily serving | N/A |
Fish [20] | HR = 0.99 (0.94–1.05) | High vs. low (roughly 3×/week vs. <1×/month [21]) | N/A |
Poultry [20] | HR = 0.96 (0.93–1.00) | High vs. low (roughly 2×/week vs. <1×/month [21]) | N/A |
Total Dairy [22] | HR = 0.99 (0.92–1.07) | High vs. low (roughly ≥2×/day vs. <0.5/day) | N/A |
Legumes [23] | HR = 0.85 (0.72–1.01) | High vs. low (roughly 27.8 g/day vs. 0 g/day [24]) | N/A |
Eggs [25] | HR = 1.20 (1.04–1.39) | High vs. low (roughly half an egg/day vs. ≤3 egg/month [26]) | Decreasing egg consumption from 12 medium-sized eggs, or 4 omelets, per month to about 3 medium-sized eggs, or one omelet, per month. |
SSBs ◊ [27] | HR = 1.06 (1.01–1.12) | High vs. low (≥2 SSBs/day vs. <1 SSB/month [28]) | Decreasing consumption of two 12-ounce cans of soda (~80 g of sugar) per day to less than one 12-ounce can per month. |
CRF [29] | HR = 0.55 (0.47–0.65) | High vs. low (~13 METs vs. ~8.5 METs for men; ~12 METs vs. ~7 METs for women [30,31]) | Training a man who can sustain 6–7 min ® of ~12 min per mile pace (5 mph) to sustain 6–7 min of ~6-min per mile (10 mph); Training a woman who can sustain 6–7 min of ~13:20 min per mile pace (4.5 mph) to sustain 6–7 min of ~7:15-min per mile (8.3 mph). |
CRF [29] | HR = 0.80 (0.67–0.97) | Moderate vs. low (~11 METs vs. ~8.5 METs for men; ~9 METs vs. ~7 METs for women [30,31]) | Training a man who can sustain 6–7 min of ~12 min per mile pace (5 mph) to sustain 6–7 min of ~10-min per mile (6 mph); Training a woman who can sustain 6–7 min of ~13:20 min per mile pace (4.5 mph) to sustain 6–7 min of ~11:30-min per mile (5.2 mph). |
Hand grip [32] | HR = 1.27 (1.01–1.59) | Lowest third vs. highest third | Grip strength of roughly < 20 kg vs. >30 kg; this is the force exerted on a hand dynamometer. |
Hand grip [32] | HR = 1.12 (1.03–1.23) | Lowest third vs. middle third | Grip strength of roughly < 20 kg vs. roughly 20–30 kg; this is the force exerted on a hand dynamometer. |
Physical Activity € [33] | HR = 0.83 (0.79–0.87) | High vs. low (very roughly ≥ 25 MET-hours per week vs. little to no MET-hours per week) ¥ | ~1 h per day (7 h over a week) of walking at a moderate pace (3 mph); running at 10 min-per-mile pace for 30 min 5x/week; playing 2 rounds of golf per week (using a golf cart); 4 h per week of resistance training (lifting weights) plus 2 h per week of gardening plus 1 h of playing tennis. |
Physical Activity € [33] | HR = 0.88 (0.82–0.95) | 5 MET-hours per week vs. little to no MET-hours per week ¥ | ~1 h of a leisurely bike ride per week; gardening about two hours per week; ~2 h per week of casual walking. |
Obesity [34] | HR = 1.17 (1.12–1.23) | Obese (BMI ≥ 30) vs. non-obese (BMI < 30) | A 5′ 9” man, weighing 220 pounds (BMI 32.5), who loses 25 pounds (BMI 28.8). A 5′ 4” female, weighing 190 pounds (BMI 32.6), who loses 20 pounds (BMI 29.2). |
Epidemiological Factor | N | Follow-Up | Age | Adjusted Hazard Ratio (Second Quintile Compared to Lowest) | Raw NNT * (Second Quintile Compared to Lowest) | Interpretation of NNT | Adjusted Hazard Ratio (Highest Quintile Compared to Lowest) | Raw NNT * (Highest Quintile Compared to Lowest) | Interpretation of NNT |
---|---|---|---|---|---|---|---|---|---|
Total Red meat [36] | 37,698 | Up to 22 years | 40–75 (range) | 1.05 (0.94–1.18) † | 110 in favor of 0.62 servings per day vs. 0.22 servings per day | 110 men would have to eat 1 more small slice of bacon per day, over roughly 2 decades, to avoid one cancer death. | 1.24 (1.09–1.40) † | 73 in favor of 0.22 servings per day vs. 2.36 per day | 73 men would have to avoid 2 small slices of bacon for breakfast and one 3-ounce steak for diner per day, over roughly two decades, to avoid one cancer death. |
Fiber [14] | 219,123 | 9 years (mean) | 50–71 (62, mean) | 0.98 (0.91–1.04) † | 94 in favor of 16.4 g/day vs. 12.6 g/day | 94 men would need to increase their fiber intake by one medium sized apple per day, over 9 years, to avoid one cancer death. | 0.83 (0.76–0.92) † | 42 in favor of 29.4 g/day vs. 12.6 g/day | 42 men would have to increase their fiber intake by roughly 15 g (1 cup of lentils or 6 cups of broccoli) per day, over 9 years, to prevent one cancer death. |
Nuts [16] | 20,742 | 9.6 years (mean) | 66.6 (mean) | 0.91 (0.77–1.08) ‡ | 120 in favor of 1–3 servings per week vs. <1 serving per week | 120 men would need to increase their nut consumption by ~20 walnuts per day, over 10 years, to avoid one cancer death. | 0.87 (0.66–1.15) ‡ | 124 in favor of ≥5 servings per week versus <1 serving per week | 124 men would need to increase their nut consumption by ~70 walnuts per week, over 10 years, to avoid one cancer death. |
Whole Grains [37] | 51,529 | Up to 24 years | 53.2 (mean) | 1.01 (0.92–1.11) ‡ | 46 ◊ in favor of ~14 g/day vs. 5.8 g/day | 46 men would have to consume two-thirds of a cup of Cheerios per day over 24 years to avoid one cancer death. | 0.95 (0.86–1.05) ‡ | 34 ◊ in favor of 52.6 g/day vs. 5.8 g/day | 34 men would have to consume a little more than half a cup of oatmeal per day over 24 years to avoid one cancer death. |
CRF [30] | 38,410 | 17.2 years (mean) | 43.8 (mean) | 0.71 (0.60–0.85) † | 63 in favor of 10.2 maximal METs vs. 8.4 maximal METs | If 63 men, who can currently run 12-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 10-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 17 years. | 0.53 (0.43–0.67) † | 35 in favor of 14.9 maximal METs vs. 8.4 maximal METs | If 35 men, who can currently run 12-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 6-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 17 years. |
Obesity [38] | 107,030 | 16 years | 57 (mean) | 1.11 (1.05–1.18) ¥ | 144 in favor of normal weight (BMI 18.5–24.9) vs. overweight (BMI 25.0–29.9) | If 144 men who are 5′ 9” and weigh 190 pounds lose 30 pounds, one cancer death will be prevented over 16 years (note: a 160-pound man at the same height has a BMI of 23.6). | 1.38 (1.24–1.52) ¥ | 45 in favor of normal weight (BMI 18.5–24.9) vs. obese (BMI 30.0–34.9) | If 45 men who are 5′ 9” and weigh 220 pounds (BMI 32.5) lose 60 pounds, one cancer death will be prevented over 16 years (note: a 160-pound man at the same height has a BMI of 23.6). |
Epidemiological Factor | N | Follow-Up | Age | Adjusted Hazard Ratio (Second Quintile Compared to Lowest) | Raw NNT * (Second Quintile Compared to Lowest) | Interpretation of NNT | Adjusted Hazard Ratio (Highest Quintile Compared to Lowest) | Raw NNT * (Highest Quintile Compared to Lowest) | Interpretation of NNT |
---|---|---|---|---|---|---|---|---|---|
Total Red meat [36] | 83,644 | Up to 28 years | 34–59 (range) | 1.05 (0.97–1.14) † | 132 in favor of 1.04 servings per day vs. 0.53 per day | 132 women would have to eat 1 more slice of bacon per day, over roughly 2 decades, to avoid one cancer death. | 1.17 (1.08–1.24) † | 85 in favor of 0.53 servings per day vs. 3.10 per day | 85 women would have to avoid 2 pieces of salami for lunch and one 3-ounce steak for diner, per day, over roughly two decades, to avoid one cancer death. |
Fiber [14] | 168,999 | 9 years (mean) | 50–71 (62, mean) | 0.93 (0.85–1.01) ‡ | 69 in favor of 14.3 g/day vs. 10.8 g/day | 69 women would need to increase their fiber intake by one medium sized apple per day, over 9 years, to avoid one cancer death. | 0.96 (0.85–1.08) ‡ | 63 in favor of 25.8 g/day vs. 10.8 g/day | 63 women would have to increase their fiber intake by roughly 15 g (1 cup of lentil or 6 cups of broccoli) per day, over 9 years, to prevent one cancer death. |
Whole grains [37] | 121,700 | Up to 26 years | 50.2 (mean) | 1.02 (0.94–1.10) ‡ | 53 ◊ in favor of ~10 g/day vs. 4.3 g/day | 53 women would have to consume roughly two-thirds of a cup of Cheerios per day for 26 years to prevent one cancer death. | 0.99 (0.91–1.07) ‡ | 41 in favor of 35.6 g/day vs. 4.3 g/day | 41 women would have to consume a little over one third of a cup of oatmeal per day over 26 years to prevent one cancer death. |
CRF [31] | 14,256 | 15.2 years (mean) | 43.8 (mean) | 0.89 (0.67–1.18) ¥ | 61 in favor of moderate vs. low CRF (8.9 METs vs. 7.0) | If 61 women, who can currently run 12:30-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 11:30-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 15 years. | 0.68 (0.47–0.97) ¥ | 40 in favor of high vs. low CRF (11.4 METs vs. 7.0) | If 40 women, who can currently run 12:30-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 8:20-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 15 years. |
Obesity [38] | 276,564 | 16 years | 57 (mean) | 1.14 (1.09–1.18) † | 170 in favor of normal weight (BMI 18.5–24.9) vs. overweight (BMI 25.0–29.9) | If 170 women who are 5′ 4” and weigh 160 pounds (BMI 37.5) lose 25 pounds, one cancer death will be prevented over 16 years (note: a 140-pound woman at the same height has a BMI of 24.0). | 1.33 (1.25–1.41) † | 70 in favor of normal weight (BMI 18.5–24.9) vs. obese (BMI 30.0–34.9) | If 70 women who are 5′ 4” and weigh 190 pounds (BMI 37.5) lose 50 pounds, one cancer death will be prevented over 16 years (note: a 140-pound woman at the same height has a BMI of 24.0). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougherty, T.P.; Meyer, J.E. Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients 2023, 15, 2038. https://doi.org/10.3390/nu15092038
Dougherty TP, Meyer JE. Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients. 2023; 15(9):2038. https://doi.org/10.3390/nu15092038
Chicago/Turabian StyleDougherty, Timothy P., and Joshua E. Meyer. 2023. "Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality" Nutrients 15, no. 9: 2038. https://doi.org/10.3390/nu15092038
APA StyleDougherty, T. P., & Meyer, J. E. (2023). Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients, 15(9), 2038. https://doi.org/10.3390/nu15092038