Significance of 1,25-Dihydroxyvitamin D3 on Overall Mortality in Peritoneal Dialysis Patients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Samples
2.3. Peritoneal Membrane Function
2.4. Fibrinogen Isolation and Glycoanalysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, P.-K.; Chow, K.-M.; Van de Luijtgaarden, M.-W.; Johnson, D.-W.; Jager, K.-J.; Mehrotra, R.; Naicker, S.; Pecoits-Filho, R.; Yu, X.-Q.; Lameire, N. Changes in the worldwide epidemiology of peritoneal dialysis. Nat. Rev. Nephrol. 2017, 13, 90–103. [Google Scholar] [CrossRef]
- Messa, P.; Alfieri, C.-M. Secondary and Tertiary Hyperparathyroidism. Front. Horm. Res. 2019, 51, 91–108. [Google Scholar] [CrossRef]
- Alfano, G.; Fontana, F.; Ferrari, A.; Guaraldi, G.; Mussini, C.; Magistroni, R.; Cappelli, G. Modena COVID-19 Working Group (MoCo19). Peritoneal dialysis in the time of coronavirus disease 2019. Clin. Kidney J. 2020, 13, 265–268. [Google Scholar] [CrossRef]
- Mazziotti, G.; Lavezzi, E.; Brunetti, A.; Mirani, M.; Favacchio, G.; Pizzocaro, A.; Sandri, M.-T.; Di Pasquale, A.; Voza, A.; Ciccarelli, M.; et al. Humanitas COVID-19 Task Force. Vitamin D deficiency, secondary hyperparathyroidism and respiratory insufficiency in hospitalized patients with COVID-19. J. Endocrinol. Investig. 2021, 44, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Ilie, P.-C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, D.-O.; Best, T.-J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results. JAMA Netw. Open 2020, 1, e2019722. [Google Scholar] [CrossRef] [PubMed]
- Paces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the immune system. Physiol. Res. 2020, 69, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Krötz, F.; Sohn, H.-Y.; Gloe, T.; Zahler, S.; Riexinger, T.; Schiele, T.-M.; Becker, B.-F.; Theisen, K.; Klauss, V.; Pohl, U. NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 2002, 100, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Hanff, T.-C.; Mohareb, A.-M.; Giri, J.; Cohen, J.-B.; Chirinos, J.-A. Thrombosis in COVID-19. Am. J. Hematol. 2020, 95, 1578–1589. [Google Scholar] [CrossRef]
- Baralić, M.; Gligorijević, N.; Brković, V.; Katrlík, J.; Pažitná, L.; Šunderić, M.; Miljuš, G.; Penezić, A.; Dobrijević, Z.; Laušević, M.; et al. Fibrinogen Fucosylation as a Prognostic Marker of End-Stage Renal Disease in Patients on Peritoneal Dialysis. Biomolecules 2020, 10, 1165. [Google Scholar] [CrossRef]
- Moiseiwitsch, N.; Zwennes, N.; Szlam, F.; Sniecinski, R.; Brown, A. COVID-19 patient fibrinogen produces dense clots with altered polymerization kinetics, partially explained by increased sialic acid. J. Thromb. Haemost. 2022, 20, 2909–2920. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, D.; Cai, Y.; Ma, S.; Zhao, B.; Zhao, Z.; Simmons, D. Dialysate glucose response phenotypes during peritoneal equilibration test and their association with cardiovascular death: A cohort study. Medicine 2020, 99, e20447. [Google Scholar] [CrossRef] [PubMed]
- Cnossen, T.; Smith, W.; Konings, J.; Kooman, P.; Leunissen, M.; Krediet, T. Quantification of free water transport during the peritoneal equilibration test. Perit. Dial. Int. 2009, 29, 523–527. [Google Scholar] [CrossRef]
- Baralić, M.; Pažitna, L.; Brković, V.; Laušević, M.; Gligorijević, N.; Katrlik, J.; Nedić, O.; Robajac, D. Prediction of mortality in patients on peritoneal dialysis based on the fibrinogen mannosylation. Cells 2023, 12, 351. [Google Scholar] [CrossRef]
- Jager, K.-J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant. 2019, 34, 1803–1805. [Google Scholar] [CrossRef]
- El Ghoul, B.; Daaboul, Y.; Korjian, S.; El Alam, A.; Mansour, A.; Hariri, E.; Samad, S.; Salameh, P.; Dahdah, G.; Blacher, J.; et al. Etiology of End-Stage Renal Disease and Arterial Stiffness among Hemodialysis Patients. Biomed Res. Int. 2017, 2017, 2543262. [Google Scholar] [CrossRef]
- Hemmelder, M.-H.; Noordzij, M.; Vart, P.; Hilbrands, L.-B.; Jager, K.-J.; Abrahams, A.-C.; Arroyo, D.; Battaglia, Y.; Ekart, R.; Mallamaci, F.; et al. ERACODA Collaborators. Recovery of dialysis patients with COVID-19: Health outcomes 3 months after diagnosis in ERACODA. Nephrol. Dial. Transplant. 2022, 37, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Kadkhoda, K. COVID-19: An Immunopathological View. mSphere 2020, 5, e00344-20. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, R.; Devuyst, O.; Davies, S.-J.; Johnson, D.-W. The Current State of Peritoneal Dialysis. J. Am. Soc. Nephrol. 2016, 27, 3238–3252. [Google Scholar] [CrossRef]
- Parapiboon, W.; Ponce, D.; Cullis, B. Acute peritoneal dialysis in COVID-19. Perit. Dial. Int. 2020, 40, 359–362. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, Y.; Chen, J.; Chen, Y.; Luo, P.; Liu, Q.; Yang, C.; Xiong, M.; Zhang, Y.; Liu, X.; et al. COVID-19 and chronic renal disease: Clinical characteristics and prognosis. QJM 2020, 113, 799–805. [Google Scholar] [CrossRef]
- Vallianou, N.-G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Muollo, V.; Dalla-Valle, Z.; Urbani, S.; Pellegrini, M.; El Ghoch, M.; Mazzali, G. The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients 2022, 14, 3493. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.-K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr. 2020, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Miedziaszczyk, M.; Idasiak-Piechocka, I.; Wiśniewski, O.-W.; Lacka, K. A systematic review of the pharmacotherapy of secondary hyperparathyroidism (SHPT) in grades 3–5 Chronic Kidney Disease (CKD). Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 232–239. [Google Scholar] [CrossRef]
- D’Ecclesiis, O.; Gavioli, C.; Martinoli, C.; Raimondi, S.; Chiocca, S.; Miccolo, C.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Palorini, R.; et al. Vitamin D and SARS-CoV2 infection, severity and mortality: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0268396. [Google Scholar] [CrossRef]
- Jaiswal, V.; Ishak, A.; Ang, S.P.; Pokhrel, N.B.; Shama, N.; Lnu, K.; Susan-Varghese, J.; Storozhenko, T.; Ee-Chia, J.; Naz, S.; et al. Hypovitaminosis D and cardiovascular outcomes: A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2022, 40, 101019. [Google Scholar] [CrossRef]
- Żmijewski, M.-A. Nongenomic Activities of Vitamin D. Nutrients 2022, 14, 5104. [Google Scholar] [CrossRef]
- Park, M.; Cook, A.-R.; Lim, J.-T.; Sun, Y.; Dickens, B.-L. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. J. Clin. Med. 2020, 9, 967. [Google Scholar] [CrossRef]
- Dror, A.-A.; Morozov, N.; Daoud, A.; Namir, Y.; Yakir, O.; Shachar, Y.; Lifshitz, M.; Segal, E.; Fisher, L.; Mizrachi, M.; et al. Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS ONE 2022, 17, e0263069. [Google Scholar] [CrossRef]
- Patel, M.; Mishra, S.; Barot, S.-K.; Naik, H.-S.; Browne, A.; Ahmed, Z.; Ranganathan, T.-H.; Lahori, S.; Patel, S.-V.; Gupta, S.; et al. Prophylactic and Therapeutic Role of Vitamin D Supplementation in COVID-19: A Review. Eur. J. Med. Health Sci. 2021, 3, 18–26. [Google Scholar] [CrossRef]
- Jolliffe, D.-A.; Camargo, C.-A., Jr.; Sluyter, J.-D.; Aglipay, M.; Aloia, J.-F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.-A.; Borzutzky, A.; Damsgaard, C.-T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Bassatne, A.; Basbous, M.; Chakhtoura, M.; El-Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and Vitamin D (VIVID): A systematic review and meta-analysis. Metabolism 2021, 119, 154753. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Li, H.; Fan, L.; Zhou, Q.; Fu, D.; Guo, L.; Yi, C.; Yu, X.; Mao, H. Serum Phosphorus and Albumin in Patients Undergoing Peritoneal Dialysis: Interaction and Association with Mortality. Front. Med. 2021, 8, 760394. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Whyte, C.-S.; Rastogi, A.; Ferguson, E.; Donnarumma, M.; Mutch, N.-J. The Efficacy of Fibrinogen Concentrates in Relation to Cryoprecipitate in Restoring Clot Integrity and Stability against Lysis. Int. J. Mol. Sci. 2022, 23, 2944. [Google Scholar] [CrossRef]
- Arenas-Jimenez, M.-D.; González-Parra, E.; Riera, M.; Bello, A.R.; López-Herradón, A.; Cao, H.; Hurtado, S.; Collado, S.; Ribera, L.; Barbosa, F.; et al. Mortality in Hemodialysis Patients with COVID-19, the Effect of Paricalcitol or Calcimimetics. Nutrients 2021, 13, 2559. [Google Scholar] [CrossRef]
- Akácsos-Szász, O.Z.; Pál, S.; Nyulas, K.I.; Nemes-Nagy, E.; Fárr, A.M.; Dénes, L.; Szilveszter, M.; Bán, E.G.; Tilinca, M.C.; Simon-Szabó, Z. Pathways of Coagulopathy and Inflammatory Response in SARS-CoV-2 Infection among Type 2 Diabetic Patients. Int. J. Mol. Sci. 2023, 24, 4319. [Google Scholar] [CrossRef]
- Kiebalo, T.; Holotka, J.; Habura, I.; Pawlaczyk, K. Nutritional Status in Peritoneal Dialysis: Nutritional Guidelines, Adequacy and the Management of Malnutrition. Nutrients 2020, 12, 1715. [Google Scholar] [CrossRef]
- Mehrotra, R.; Duong, U.; Jiwakanon, S.; Kovesdy, C.-P.; Moran, J.; Kopple, J.-D.; Kalantar-Zadeh, K. Serum albumin as a predictor of mortality in peritoneal dialysis: Comparisons with hemodialysis. Am. J. Kidney Dis. 2011, 58, 418–428. [Google Scholar] [CrossRef] [PubMed]
Group 1 (n = 21) | Group 2 (n = 31) | p-Value | ||
---|---|---|---|---|
Male, n (%) | 11 (52.4%) | 15 (48.4%) | 0.777 | |
BMI, mean ± SD | 23.8 ± 1.17 | 23.6 ± 4.80 | 0.877 | |
Cause of ESRD | 1 | 9 (42.9%) | 7 (22.6%) | 0.352 |
2 | 3 (14.3%) | 10 (32.2%) | ||
3 | 6 (28.5%) | 5 (16.2%) | ||
4 | 1 (4.8%) | 3 (9.7%) | ||
5 | 2 (9.5%) | 4 (12.9%) | ||
6 | 0 (0%) | 2 (6.4%) | ||
Average duration of PD (months) | 35 | 26 | 0.526 | |
Age ± SD | 59 ± 14.5 | 65 ± 12.6 | 0.107 |
Associated Diseases | Group 1 (n = 21) | Group 2 (n = 31) | p-Value |
---|---|---|---|
CVS, n (%) | 4 (19%) | 2 (5.6%) | 0.170 |
DM, n (%) | 12 (57.1%) | 8 (25.8%) | 0.023 * |
HTN, n (%) | 20 (95.2%) | 29 (93.5%) | 0.798 |
CMP, n (%) | 12 (57.1%) | 11 (35.5%) | 0.123 |
AIM, n (%) | 5 (23.8%) | 7 (22.6%) | 0.198 |
Dialysis Characteristics | Group 1 (n = 21) | Group 2 (n = 31) | p-Value |
---|---|---|---|
Number of peritonitis, n (%) | |||
0 | 11 (52.4%) | 21 (67.7%) | 0.305 |
1 | 8 (38.1%) | 6 (19.4%) | |
2 | 2 (9.5%) | 2 (6.5%) | |
4 | 0 (0%) | 2 (6.5%) | |
Kt/V, mean ± SD | 2.29 ± 0.57 | 2.38 ± 0.51 | 0.561 |
Ccr L/w, mean ± SD | 74 ± 17.7 | 82 ± 20.7 | 0.169 |
PET-gly, mean ± SD | 0.44 ± 0,99 | 0.47 ± 0.104 | 0.237 |
PET-Cr, mean ± SD | 0.66 ± 0.075 | 0.61 ± 0.124 | 0.109 |
Biochemical and Hematological Characteristics | Group 1 (n = 21) | Group 2 (n = 31) | p-Value |
---|---|---|---|
PTH ng/L, median (IQR) | 187 (265) | 615 (636) | <0.001 * |
Hb, mean ± SD | 102 ± 14.45 | 105 ± 17.39 | 0.518 |
Plt, mean ± SD | 271 ± 91.99 | 233 ± 70.96 | 0.099 |
Gly mmol/L, mean ± SD | 7.6 ± 5.73 | 6.1 ± 1.91 | 0.176 |
HbA1c %, mean ± SD | 5.8 ± 0.88 | 5.4 ± 0.55 | 0.069 |
Ur mmol/L, mean ± SD | 16.2 ± 5.95 | 17.1 ± 4.65 | 0.537 |
Cr mmol/L, mean ± SD | 667 ± 147 | 632 ± 164.7 | 0.434 |
Alb g/L, mean ± SD | 36 ± 3.99 | 38 ± 4.64 | 0.108 |
Fng g/L, mean ± SD | 4.7 ± 0.95 | 4.6 ± 0.99 | 0.671 |
Ferritin μmol/L, median (IQR) | 314 (295) | 218 (278) | 0.526 |
Lectin | Group 1 (n = 21) | Group 2 (n = 31) | p-Value |
---|---|---|---|
SNA | 1961.4 ± 444.89 | 1959.6 ± 368.14 | 0.988 |
PHA-L | 25.7 ± 14.96 | 20.0 ± 4.70 | 0.060 |
WGA | 86.2 ± 29.71 | 67.9 ± 15.3 | 0.007 * |
AAL | 667.0 ± 173.80 | 594.0 ± 148.9 | 0.117 |
PhoSL | 627.4 ± 92.4 | 600.7 ± 67.50 | 0.243 |
GSL | 48.1 ± 20.74 | 39.6 ± 15.14 | 0.098 |
GNL | 30.8 ± 7.67 | 26.9 ± 8.84 | 0.110 |
Group 1 (n = 21) | Group 2 (n = 31) | p-Value | |
---|---|---|---|
Died, n (%) | 11 (52.4%) | 7 (22.6%) | 0.027 * |
DM, died | 6 | 6 | 0.316 |
Survivors (n = 34) | Non-Survivors (n = 18) | p-Value | |
Calcitriol usage, n (%) | 24 (70.6%) | 7 (38.9%) | 0.027 * |
Presence of DM, n (%) | 8 (23.5%) | 12 (66.7%) | 0.02 * |
B | p-Value | Hazard Ratio | 95% CI (Lower–Upper) | |
---|---|---|---|---|
Male | 0.178 | 0.707 | 1.195 | 0.471–3.030 |
Age | −0.013 | 0.416 | 0.987 | 0.957–1.018 |
Duration on PD | 0.008 | 0.196 | 1.008 | 0.996–1.020 |
DM | 1.443 | 0.004 * | 4.235 | 1.574–11.397 |
PTH concentration | 0.001 | 0.679 | 1.000 | 0.999–1.001 |
Interaction with WGA | −0.002 | 0.809 | 0.998 | 0.978–1.018 |
Calcitriol usage | −1.102 | 0.023 * | 0.332 | 0.128–0.862 |
Kt/V | −0.523 | 0.285 | 0.593 | 0.227–1.546 |
Alb | −0.098 | 0.119 | 0.906 | 0.801–1.026 |
PO4− | 0.041 | 0.956 | 1.041 | 0.247–4.392 |
Ca2+ | −0.637 | 0.520 | 0.529 | 0.076–3.690 |
CVS | 0.220 | 0.770 | 1.246 | 0.285–5.446 |
HTN | 0.411 | 0.690 | 1.508 | 0.200–11.337 |
CMP | 0.377 | 0.427 | 1.458 | 0.576–3.692 |
AIM | 0.565 | 0.285 | 1.759 | 0.624–4.955 |
B | p-Value | Hazard Ratio | 95% CI (Lower–Upper) | |
---|---|---|---|---|
DM | 1.443 | 0.004 * | 4.235 | 1.574–11.397 |
Calcitriol usage | - | 0.188 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baralić, M.; Robajac, D.; Penezić, A.; Brković, V.; Gligorijević, N.; Bontić, A.; Pavlović, J.; Nikolić, J.; Miljuš, G.; Dobrijević, Z.; et al. Significance of 1,25-Dihydroxyvitamin D3 on Overall Mortality in Peritoneal Dialysis Patients with COVID-19. Nutrients 2023, 15, 2050. https://doi.org/10.3390/nu15092050
Baralić M, Robajac D, Penezić A, Brković V, Gligorijević N, Bontić A, Pavlović J, Nikolić J, Miljuš G, Dobrijević Z, et al. Significance of 1,25-Dihydroxyvitamin D3 on Overall Mortality in Peritoneal Dialysis Patients with COVID-19. Nutrients. 2023; 15(9):2050. https://doi.org/10.3390/nu15092050
Chicago/Turabian StyleBaralić, Marko, Dragana Robajac, Ana Penezić, Voin Brković, Nikola Gligorijević, Ana Bontić, Jelena Pavlović, Jelena Nikolić, Goran Miljuš, Zorana Dobrijević, and et al. 2023. "Significance of 1,25-Dihydroxyvitamin D3 on Overall Mortality in Peritoneal Dialysis Patients with COVID-19" Nutrients 15, no. 9: 2050. https://doi.org/10.3390/nu15092050
APA StyleBaralić, M., Robajac, D., Penezić, A., Brković, V., Gligorijević, N., Bontić, A., Pavlović, J., Nikolić, J., Miljuš, G., Dobrijević, Z., Šunderić, M., Pažitná, L., Katrlík, J., Nedić, O., & Laušević, M. (2023). Significance of 1,25-Dihydroxyvitamin D3 on Overall Mortality in Peritoneal Dialysis Patients with COVID-19. Nutrients, 15(9), 2050. https://doi.org/10.3390/nu15092050