Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus
Abstract
:1. Introduction
Nutrients and Phytochemicals (Units) | Nutrient Content per 100 g (Dry Roasted Pistachios, without Salt Added) |
---|---|
Nutrients | |
Energy (kJ/kcal) | 2390/572 |
Protein (g) * | 21 |
Total Fat (g) | 46 |
Saturated Fat (g) | 5.6 |
Monounsaturated Fat (g) | 25 |
Polyunsaturated fat (g) | 13 |
Cholesterol (mg) | 0 |
Carbohydrate (g) | 28 |
Fibre (g) | 10 |
Calcium (mg) | 107 |
Iron (mg) | 4 |
Magnesium (mg) | 109 |
Phosphorus (mg) | 469 |
Potassium (mg) | 1010 |
Sodium (mg) | 6 |
Zinc (mg) | 2.3 |
Copper (mg) | 1.3 |
Manganese (mg) | 1.2 |
Selenium (mcg) | 10 |
Chromium (mcg) | 39 a |
Vitamin C (mg) | 3 |
Thiamine (mg) | 0.7 |
Riboflavin (mg) | 0.2 |
Niacin (mg) | 1.4 |
Pantothenic acid (mg) | 0.5 |
Vitamin B6 (mg) | 1.1 |
Folate (mcg) | 51 |
Choline, total (mg) | 71 |
Betaine (mg) | 0.8 |
Vitamin B12 (mcg) | 0 |
Vitamin A (IU) | 266 |
Vitamin K (mcg) | 13.2 |
Vitamin E | |
Tocopherol, alpha (mg) | 2.2 |
Tocopherol, beta (mg) | 0.1 |
Tocopherol, gamma (mg) | 23.4 |
Tocopherol, delta (mg) | 0.6 |
Phytochemicals Carotenoids and Phytosterols | |
Carotene, beta (mcg) | 159 |
Carotene, alpha (mg) | 0 |
Cryptoxanthin, beta (mcg) | 0 |
Lutein + zeaxanthin (mcg) | 1160 |
Stigmasterol (mg) | 2 |
Campesterol (mg) | 10 |
Beta-sitosterol (mg) | 210 |
Total phenolics 448 mg GAE/100 g, | |
Gallic acid (mg) | 18.1 b |
Protocatechuic acid (mg) | 3.25 b |
Gentisic acid (mg) | 212 b |
Flavonoids Total 144 mg GAE/100 g | |
Catechin (mg) | 33.8 b |
Epigallocatechin (mg) | 6.26 b |
Other Polyphenols | |
Catechol (mg) | 7.88 b |
2. The Evolution of Protein Quality Concepts
3. Protein in Pistachios
4. Narrowing the Gap
4.1. Habitual Intakes of Tree Nuts
Country | Name of Study/Survey | Sample Size and Age | Level of Intake | Key Findings |
---|---|---|---|---|
Van den Brandt and Nieuwenhuis (2018) [72] Netherlands | Netherlands Cohort Study | n = 62,573 women, 55–69 years | Tree nut intakes were 1.0 (SD 3.9) g/day. | Total nut intake was significantly inversely related to oestrogen receptor breast cancer risk, with HR 0.55 (95% CI 0.33–0.93) for those consuming at least 10 g nuts/day versus non-consumers. |
Tan et al. (2021) [73] United States | NHANES (2011–12 and 2013–14) cohorts | n = 1848 (≥60 years) | Moderate nut intake (15.1–30.0 g/d) may be sufficient for better cognitive performance. | Moderate nut intake was also associated with better immediate and delayed memory in older adults with high risk of non-alcoholic fatty liver disease. |
O’Neil et al. (2015) [69] United States | NHANES (2005–2010) | n = 14,386, 19+ years | Tree nut consumers comprised around 6% of the population. UI of tree nuts for consumers was 44.3 ± 1.6 g/day and per capita consumption was 3.3 ± 0.1 g/day. | Tree nut consumers had a significantly higher HEI-2005 and percentage of the population above the AI for fibre and potassium. |
O’Neil et al. (2010) [68] United States | NHANES (1999–2004) | n = 13,292, 19+ years | Tree nut and tree nut butter consumption was low, with only 5.5% and 8.4% of participants 19–50 y and 51+ y consuming these. | Consumption of tree nuts was low but nutrient intake and diet quality significantly improved when tree nuts were consumed. |
Jenab et al. (2006) [71] Europe | EPIC Cohort | n = 36,994 | 0.4% of men and 0.7% of women were pistachio consumers with average daily portion size intakes of 22 g/d and 23.1 g/d, respectively | There was a northern to southern European gradient of whole tree nut intake. |
4.2. Recommended Intakes
5. Health Benefits of Pistachios
5.1. Body Weight
5.2. Diabetes and Prediabetes
5.3. Heart Health
5.4. Cancer
5.5. Other Potential Benefits
6. Sustainability
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, W.J.; Mangels, A.R.; Fresan, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Aimutis, W.R. Plant-Based Proteins: The Good, Bad, and Ugly. Annu. Rev. Food Sci. Technol. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Storz, M.A. What makes a plant-based diet? A review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The Anabolic Response to Plant-Based Protein Ingestion. Sport. Med. 2021, 51, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Ewy, M.W.; Patel, A.; Abdelmagid, M.G.; Mohamed Elfadil, O.; Bonnes, S.L.; Salonen, B.R.; Hurt, R.T.; Mundi, M.S. Plant-Based Diet: Is It as Good as an Animal-Based Diet When It Comes to Protein? Curr. Nutr. Rep. 2022, 11, 337–346. [Google Scholar] [CrossRef]
- Nichele, S.; Phillips, S.M.; Boaventura, B.C.B. Plant-based food patterns to stimulate muscle protein synthesis and support muscle mass in humans: A narrative review. Appl. Physiol. Nutr. Metab. 2022, 47, 700–710. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef]
- Dickson-Spillmann, M.; Siegrist, M. Consumers’ knowledge of healthy diets and its correlation with dietary behaviour. J. Hum. Nutr. Diet. 2011, 24, 54–60. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Corrin, T.; Papadopoulos, A. Understanding the attitudes and perceptions of vegetarian and plant-based diets to shape future health promotion programs. Appetite 2017, 109, 40–47. [Google Scholar] [CrossRef]
- Love, H.J.; Sulikowski, D. Of Meat and Men: Sex Differences in Implicit and Explicit Attitudes Toward Meat. Front. Psychol. 2018, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Doughty, K.N.; Geagan, K.; Jenkins, D.A.; Gardner, C.D. Perspective: The Public Health Case for Modernizing the Definition of Protein Quality. Adv. Nutr. 2019, 10, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E. Food-Based Dietary Guidelines and Protein Quality Definitions-Time to Move Forward and Encompass Mycoprotein? Foods 2022, 11, 647. [Google Scholar] [CrossRef]
- Salter, A.M.; Lopez-Viso, C. Role of novel protein sources in sustainably meeting future global requirements. Proc. Nutr. Soc. 2021, 80, 186–194. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Bull, C.; Belobrajdic, D.; Hamzelou, S.; Jones, D.; Leifert, W.; Ponce-Reyes, R.; Terefe, N.S.; Williams, G.; Colgrave, M. How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022, 11, 528. [Google Scholar] [CrossRef]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef]
- Esmaeili Nadimi, A.; Ahmadi, Z.; Falahati-Pour, S.K.; Mohamadi, M.; Nazari, A.; Hassanshahi, G.; Ekramzadeh, M. Physicochemical properties and health benefits of pistachio nuts. Int. J. Vitam. Nutr. Res. 2020, 90, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Bullo, M.; Juanola-Falgarona, M.; Hernandez-Alonso, P.; Salas-Salvado, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113 (Suppl. 2), S79–S93. [Google Scholar] [CrossRef] [PubMed]
- DHSC. Great Britain Nutrition and Health Claims (NHC) Register. Register of Nutrition and Health Claims That May Be Made in Commercial Communications in Great Britain. Available online: https://www.gov.uk/government/publications/great-britain-nutrition-and-health-claims-nhc-register (accessed on 7 November 2022).
- EC. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 7 November 2022).
- Higgs, J.; Styles, K.; Carughi, A.; Roussell, M.A.; Bellisle, F.; Elsner, W.; Li, Z. Plant-based snacking: Research and practical applications of pistachios for health benefits. J. Nutr. Sci. 2021, 10, e87. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zheng, B.; Li, T.; Liu, R.H. Quantification of Phytochemicals, Cellular Antioxidant Activities and Antiproliferative Activities of Raw and Roasted American Pistachios (Pistacia vera L.). Nutrients 2022, 14, 2. [Google Scholar] [CrossRef]
- Terzo, S.; Baldassano, S.; Caldara, G.F.; Ferrantelli, V.; Lo Dico, G.; Mule, F.; Amato, A. Health benefits of pistachios consumption. Nat. Prod. Res. 2019, 33, 715–726. [Google Scholar] [CrossRef]
- Ghanavati, M.; Rahmani, J.; Clark, C.C.T.; Hosseinabadi, S.M.; Rahimlou, M. Pistachios and cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Med. 2020, 52, 102513. [Google Scholar] [CrossRef]
- Wu, G.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N. Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef]
- EC. What Is a Nutrition Claim? Available online: https://food.ec.europa.eu/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en (accessed on 1 April 2023).
- U.S. Department of Agriculture (USDA). Agricultural Research Service. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 16 January 2023).
- Cabrera, C.; Lloris, F.; Gimenez, R.; Olalla, M.; Lopez, M.C. Mineral content in legumes and nuts: Contribution to the Spanish dietary intake. Sci. Total Environ. 2003, 308, 1–14. [Google Scholar] [CrossRef]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, F. Impacts of essential amino acids on energy balance. Mol. Metab. 2022, 57, 101393. [Google Scholar] [CrossRef]
- Tessari, P. Are there dietary requirements for dispensable amino acids and if so, how do we assess requirements? Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Jood, S.; Kapoor, A.C.; Singh, R. Amino acid composition and chemical evaluation of protein quality of cereals as affected by insect infestation. Plant. Foods Hum. Nutr. 1995, 48, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Lackey, K.A.; Fleming, S.A. Brief Research Report: Estimation of the Protein Digestibility-Corrected Amino Acid Score of Defatted Walnuts. Front. Nutr. 2021, 8, 702857. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. The protein digestibility-corrected amino acid score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- FAO/WHO. Protein Quality Evaluation; Food and Agricultural Organization of the United Nations: Rome, Italy, 1990. [Google Scholar]
- Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)—A concept for describing protein quality in foods and food ingredients: A critical review. J. AOAC Int. 2005, 88, 988–994. [Google Scholar] [CrossRef]
- Government of Canada (GoC). Measuring the Protein Quality of Foods. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/legislation-guidelines/policies/measuring-protein-quality-foods.html (accessed on 23 January 2023).
- Tome, D. Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements--functional aspects. Food Nutr. Bull. 2013, 34, 272–274. [Google Scholar] [CrossRef]
- Tome, D. Criteria and markers for protein quality assessment—A review. Br. J. Nutr. 2012, 108 (Suppl. 2), S222–S229. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Rutherfurd, S.M.; Kim, I.Y.; Moughan, P.J. Protein quality as determined by the Digestible Indispensable Amino Acid Score: Evaluation of factors underlying the calculation. Nutr. Rev. 2016, 74, 584–599. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). FAO Expert Working Group: Research Approaches and Methods for Evaluating Protein Quality of Human; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Dietary Protein Quality Evaluation in Human Nutrition: Paper 92; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant- And animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Craddock, J.C.; Genoni, A.; Strutt, E.F.; Goldman, D.M. Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with Special Attention to Plant-Based Diets: A Review. Curr. Nutr. Rep. 2021, 10, 93–98. [Google Scholar] [CrossRef]
- FAO; WHO. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation, FAO Food and Nutrition: Paper 51; FAO, WHO: Rome, Italy, 1991. [Google Scholar]
- FSA/NZ. Nutrition, Health and Related Claims. Available online: https://www.foodstandards.gov.au/media/Documents/P293%20PFAR%20Short%20Guide.pdf#:~:text=In%20our%20first%20round%20of%20consultation%2C%20FSANZ%20canvassed,number%20of%20pre-approved%20claims%20appearing%20in%20the%20standard (accessed on 1 April 2023).
- FSA/NZ. Food Standards Code [Internet]. Available online: https://www.foodstandards.govt.nz/code/Pages/default.aspx (accessed on 16 November 2022).
- eCFR. The Code of Federal Regulations. Part 101-Food Labelling. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-101 (accessed on 7 November 2022).
- FDA (Food and Drug Administration). Code of Federal Regulations Title 21, Volume 2. 21CFR101.9. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.9 (accessed on 7 March 2023).
- GoC (Government of Canada). Nutrient Content Claims: What They Mean. Available online: https://www.canada.ca/en/health-canada/services/understanding-food-labels/nutrient-content-claims-what-they-mean.html (accessed on 7 November 2022).
- Bailey, H.M.; Stein, H.H. Raw and roasted pistachio nuts (Pistacia vera L.) are ‘good’ sources of protein based on their digestible indispensable amino acid score as determined in pigs. J. Sci. Food Agric. 2020, 100, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.; Fernandes, D.; Czeder, L.; Lima, J.; Sousa, A.; Bnaves, M. Edible Seeds and Nuts Grown in Brazil as Sources of Protein for Human Nutrition. Food Nutr. Sci. 2012, 3, 20057. [Google Scholar] [CrossRef]
- House, J.; Hill, K.; Neufeld, J.; Franczyk, A.; Nosworthy, M. Determination of the protein quality of almonds (Prunus dulcis L.) as assessed by in vitro and in vivo methodologies. Food Sci. Nutr. 2019, 7, 2932–2938. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; He, W.; Hu, S.; Wu, G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019, 51, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Prolla, I.R.; Rafii, M.; Courtney-Martin, G.; Elango, R.; da Silva, L.P.; Ball, R.O.; Pencharz, P.B. Lysine from cooked white rice consumed by healthy young men is highly metabolically available when assessed using the indicator amino acid oxidation technique. J. Nutr. 2013, 143, 302–306. [Google Scholar] [CrossRef]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108 (Suppl. 2), S183–S211. [Google Scholar] [CrossRef]
- Pires, C.V.; Almeida Oliveira, M.G.D.; Cesar Rosa, J. Nutritional quality and chemical score of amino acids from different protein sources. Cienc. Tecnol. Aliment. 2006, 26, 179–187. [Google Scholar] [CrossRef]
- Negrão, C.C.; Mizubuti, I.Y.; Morita, M.C.; Colli, C.; Ida, E.I.; Shimokomaki, M. Biological evaluation of mechanically deboned chicken meat protein quality. Food Chem. 2005, 90, 579–583. [Google Scholar] [CrossRef]
- Nosworthy, M.G.; Neufeld, J.; Frohlich, P.; Young, G.; Malcolmson, L.; House, J.D. Determination of the protein quality of cooked Canadian pulses. Food Sci. Nutr. 2017, 5, 896–903. [Google Scholar] [CrossRef]
- Tanwar, B.; Modgil, R.; Goyal, A. Protein Quality Assessment of Pecan [Carya illinoinensis (wangenh.) K. Koch] and Pine (Pinus gerardiana wall.) Nuts for Dietary Supplementation. Nutr. Food Sci. 2022, 52, 641–656. [Google Scholar] [CrossRef]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Keast, D.R.; Fulgoni, V.L., 3rd; Nicklas, T.A. Tree nut consumption improves nutrient intake and diet quality in US adults: An analysis of National Health and Nutrition Examination Survey (NHANES) 1999–2004. Asia Pac. J. Clin. Nutr. 2010, 19, 142–150. [Google Scholar]
- O’Neil, C.E.; Fulgoni, V.L., 3rd; Nicklas, T.A. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutr. J. 2015, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Brown, D. FDA considers health claim for nuts. J. Am. Diet. Assoc. 2003, 103, 426. [Google Scholar] [CrossRef] [PubMed]
- Jenab, M.; Sabate, J.; Slimani, N.; Ferrari, P.; Mazuir, M.; Casagrande, C.; Deharveng, G.; Tjonneland, A.; Olsen, A.; Overvad, K.; et al. Consumption and portion sizes of tree nuts, peanuts and seeds in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Br. J. Nutr. 2006, 96 (Suppl. 2), S12–S23. [Google Scholar] [CrossRef]
- van den Brandt, P.A.; Nieuwenhuis, L. Tree nut, peanut, and peanut butter intake and risk of postmenopausal breast cancer: The Netherlands Cohort Study. Cancer Causes Control 2018, 29, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Georgousopoulou, E.N.; Cardoso, B.R.; Daly, R.M.; George, E.S. Associations between nut intake, cognitive function and non-alcoholic fatty liver disease (NAFLD) in older adults in the United States: NHANES 2011-14. BMC Geriatr. 2021, 21, 313. [Google Scholar] [CrossRef]
- SPF (Santé Publique France). Recommendations Concerning Diet, Physical Activity and Sedentary Behaviour for Adults; Santé Publique France: Rennes, France, 2019.
- EC (European Commission). Food-Based Dietary Guidelines in Europe—Table 12. Summary of FBDG Recommendations for Nuts and Seeds for the the EU, Iceland, Norway, Switzerland and the United Kingdom. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-12_en (accessed on 7 March 2023).
- NHMRC (Australia Department of Health and Ageing. National Health and Medical Research Council). Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- NZMoH (New Zealand Ministry of Health). Eating and Activity Guidelines for New Zealand Adults: Updated 2020; Ministry of Health New Zealand: Wellington, New Zealand, 2020.
- HC (Health Canada). Canada’s Dietary Guidelines for Health Professionals and Policy Makers; Santé Canada: Ottawa, ON, Canada, 2019.
- Neale, E.P.; Tapsell, L.C. Health Benefits of Nuts and Dried Fruits. In Nuts in Healthy Dietary Patterns and Dietary Guidelines; CRC Press: Boca Raton, FL, USA, 2020; pp. 289–312. [Google Scholar]
- Liu, Y.; Blumberg, J.B.; Chen, C.Y. Quantification and bioaccessibility of california pistachio bioactives. J. Agric. Food Chem. 2014, 62, 1550–1556. [Google Scholar] [CrossRef]
- Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Bisignano, C.; Gugliandolo, E.; Carughi, A.; Esposito, E.; Mandalari, G.; Cuzzocrea, S. The Anti-Inflammatory and Antioxidant Potential of Pistachios (Pistacia vera L.) In Vitro and In Vivo. Nutrients 2017, 9, 915. [Google Scholar] [CrossRef]
- Dreher, M.L. Pistachio nuts: Composition and potential health benefits. Nutr. Rev. 2012, 70, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Zunshine, E.; Nguyen, H.T.; Perez, A.O.; Zoumas, C.; Pakiz, B.; White, M.M. Effects of Pistachio Consumption in a Behavioral Weight Loss Intervention on Weight Change, Cardiometabolic Factors, and Dietary Intake. Nutrients 2020, 12, 2155. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-wk, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Z.; Liu, Y.; Lv, X.; Yang, W. Effects of pistachios on body weight in Chinese subjects with metabolic syndrome. Nutr. J. 2012, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, R.; Nguyen, C.; Zerlin, A.; Karp, H.; Naowamondhol, K.; Thames, G.; Gao, K.; Li, L.; Tseng, C.H.; et al. Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program. J. Am. Coll. Nutr. 2010, 29, 198–203. [Google Scholar] [CrossRef]
- Fantino, M.; Bichard, C.; Mistretta, F.; Bellisle, F. Daily consumption of pistachios over 12 weeks improves dietary profile without increasing body weight in healthy women: A randomized controlled intervention. Appetite 2020, 144, 104483. [Google Scholar] [CrossRef]
- Carughi, A.; Bellisle, F.; Dougkas, A.; Giboreau, A.; Feeney, M.J.; Higgs, J. A Randomized Controlled Pilot Study to Assess Effects of a Daily Pistachio (Pistacia vera) Afternoon Snack on Next-Meal Energy Intake, Satiety, and Anthropometry in French Women. Nutrients 2019, 11, 767. [Google Scholar] [CrossRef]
- Bellisle, F.; Fantino, M.; Feeney, M.J.; Higgs, J.; Carughi, A. Daily Consumption of Pistachios over 12 Weeks Improves Nutrient Intake, Induces Energy Compensation, and Has No Effect on Body Weight or Composition in Healthy Women (P08-002-19). Curr. Dev. Nutr. 2019, 3, 2064. [Google Scholar] [CrossRef]
- Hernandez-Alonso, P.; Salas-Salvado, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bullo, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: A randomized clinical trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef]
- Parham, M.; Heidari, S.; Khorramirad, A.; Hozoori, M.; Hosseinzadeh, F.; Bakhtyari, L.; Vafaeimanesh, J. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: A randomized crossover trial. Rev. Diabet. Stud. 2014, 11, 190–196. [Google Scholar] [CrossRef]
- Kendall, C.W.; Josse, A.R.; Esfahani, A.; Jenkins, D.J. The impact of pistachio intake alone or in combination with high-carbohydrate foods on post-prandial glycemia. Eur. J. Clin. Nutr. 2011, 65, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.W.; West, S.G.; Augustin, L.S.; Esfahani, A.; Vidgen, E.; Bashyam, B.; Sauder, K.A.; Campbell, J.; Chiavaroli, L.; Jenkins, A.L.; et al. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome. Eur. J. Clin. Nutr. 2014, 68, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Banach, M.S.; Srichaikul, K.; Vidgen, E.; Mitchell, S.; Parker, T.; Nishi, S.; Bashyam, B.; de Souza, R.; et al. Nuts as a replacement for carbohydrates in the diabetic diet. Diabetes Care 2011, 34, 1706–1711. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Lamarche, B.; Banach, M.S.; Srichaikul, K.; Vidgen, E.; Mitchell, S.; Parker, T.; Nishi, S.; Bashyam, B.; et al. Nuts as a replacement for carbohydrates in the diabetic diet: A reanalysis of a randomised controlled trial. Diabetologia 2018, 61, 1734–1747. [Google Scholar] [CrossRef] [PubMed]
- Assaf-Balut, C.; Garcia de la Torre, N.; Duran, A.; Fuentes, M.; Bordiu, E.; Del Valle, L.; Familiar, C.; Ortola, A.; Jimenez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, N.G.; Assaf-Balut, C.; Jimenez Varas, I.; Del Valle, L.; Duran, A.; Fuentes, M.; Del Prado, N.; Bordiu, E.; Valerio, J.J.; Herraiz, M.A.; et al. Effectiveness of Following Mediterranean Diet Recommendations in the Real World in the Incidence of Gestational Diabetes Mellitus (GDM) and Adverse Maternal-Foetal Outcomes: A Prospective, Universal, Interventional Study with a Single Group. The St Carlos Study. Nutrients 2019, 11, 1210. [Google Scholar] [CrossRef]
- Assaf-Balut, C.; Garcia de la Torre, N.; Duran, A.; Fuentes, M.; Bordiu, E.; Del Valle, L.; Familiar, C.; Valerio, J.; Jimenez, I.; Herraiz, M.A.; et al. A Mediterranean Diet with an Enhanced Consumption of Extra Virgin Olive Oil and Pistachios Improves Pregnancy Outcomes in Women Without Gestational Diabetes Mellitus: A Sub-Analysis of the St. Carlos Gestational Diabetes Mellitus Prevention Study. Ann. Nutr. Metab. 2019, 74, 69–79. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; Li, Z.; Carughi, A.; Ge, S. Acute Effect of Pistachio Intake on Postprandial Glycemic and Gut Hormone Responses in Women With Gestational Diabetes or Gestational Impaired Glucose Tolerance: A Randomized, Controlled, Crossover Study. Front. Nutr. 2019, 6, 186. [Google Scholar] [CrossRef]
- Canudas, S.; Hernandez-Alonso, P.; Galie, S.; Muralidharan, J.; Morell-Azanza, L.; Zalba, G.; Garcia-Gavilan, J.; Marti, A.; Salas-Salvado, J.; Bullo, M. Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: A crossover randomized clinical trial. Am. J. Clin. Nutr. 2019, 109, 1738–1745. [Google Scholar] [CrossRef]
- Hernandez-Alonso, P.; Giardina, S.; Salas-Salvado, J.; Arcelin, P.; Bullo, M. Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur. J. Nutr. 2017, 56, 2181–2191. [Google Scholar] [CrossRef]
- Becerra-Tomas, N.; Paz-Graniel, I.; Kendall, C.W.C.; Kahleova, H.; Rahelic, D.; Sievenpiper, J.L.; Salas-Salvado, J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Rev. 2019, 77, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Pistachio nut consumption modifies systemic hemodynamics, increases heart rate variability, and reduces ambulatory blood pressure in well-controlled type 2 diabetes: A randomized trial. J. Am. Heart Assoc. 2014, 3, e000873. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.J.; Cooper, J.N.; Erario, M.; Cheifetz, C.E. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr. 2007, 26, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Singh, A.; O’Keefe, J.H. Nuts: Natural Pleiotropic Nutraceuticals. Nutrients 2021, 13, 3269. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.D. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef]
- Fadelu, T.; Zhang, S.; Niedzwiecki, D.; Ye, X.; Saltz, L.B.; Mayer, R.J.; Mowat, R.B.; Whittom, R.; Hantel, A.; Benson, A.B.; et al. Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). J. Clin. Oncol. 2018, 36, 1112–1120. [Google Scholar] [CrossRef]
- Yang, M.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S.; Wu, K.; Bao, Y. Nut consumption and risk of colorectal cancer in women. Eur. J. Clin. Nutr. 2016, 70, 333–337. [Google Scholar] [CrossRef]
- Nieuwenhuis, L.; van den Brandt, P.A. Total Nut, Tree Nut, Peanut, and Peanut Butter Consumption and the Risk of Pancreatic Cancer in the Netherlands Cohort Study. Cancer Epidemiol. Biomark. Prev. 2018, 27, 274–284. [Google Scholar] [CrossRef]
- Bao, Y.; Hu, F.B.; Giovannucci, E.L.; Wolpin, B.M.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Nut consumption and risk of pancreatic cancer in women. Br. J. Cancer 2013, 109, 2911–2916. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghian, M.; Nasiri, M.; Mobarak, S.; Asadi, M.; Sadeghi, O. Association of Total Nut, Tree Nut, Peanut, and Peanut Butter Consumption with Cancer Incidence and Mortality: A Comprehensive Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Adv. Nutr. 2021, 12, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- van den Brandt, P.A.; Schouten, L.J. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: A cohort study and meta-analysis. Int. J. Epidemiol. 2015, 44, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Glei, M.; Ludwig, D.; Lamberty, J.; Fischer, S.; Lorkowski, S.; Schlormann, W. Chemopreventive Potential of Raw and Roasted Pistachios Regarding Colon Carcinogenesis. Nutrients 2017, 9, 1368. [Google Scholar] [CrossRef]
- Lim, S.J.; Kwon, H.C.; Shin, D.M.; Choi, Y.J.; Han, S.G.; Kim, Y.J.; Han, S.G. Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods 2023, 12, 189. [Google Scholar] [CrossRef]
- Haider, S.; Madiha, S.; Batool, Z. Amelioration of motor and non-motor deficits and increased striatal APoE levels highlight the beneficial role of pistachio supplementation in rotenone-induced rat model of PD. Metab. Brain Dis. 2020, 35, 1189–1200. [Google Scholar] [CrossRef]
- Singh, S.; Dharamveer; Kulshreshtha, M. Pharmacological Approach of Pistacia Vera Fruit to Assess Learning and Memory Potential in Chemically-Induced Memory Impairment in Mice. Cent. Nerv. Syst. Agents Med. Chem. 2019, 19, 125–132. [Google Scholar] [CrossRef]
- Hakimizadeh, S.; Fatemi, I.M.A. The effect of hydroalcoholic extract of pistachio on anxiety and working memory in ovariectomized female rats. Pist. Health J. 2020, 3, 72–83. [Google Scholar]
- Rostampour, M.; Hadipour, E.; Oryan, S.; Soltani, B.; Saadat, F. Anxiolytic-like effect of hydroalcoholic extract of ripe pistachio hulls in adult female Wistar rats and its possible mechanisms. Res. Pharm. Sci. 2016, 11, 454–460. [Google Scholar] [CrossRef]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef]
- Yanni, A.E.; Mitropoulou, G.; Prapa, I.; Agrogiannis, G.; Kostomitsopoulos, N.; Bezirtzoglou, E.; Kourkoutas, Y.; Karathanos, V.T. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts (Pistacia vera L.). Metabol. Open 2020, 7, 100040. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Canueto, D.; Giardina, S.; Salas-Salvado, J.; Canellas, N.; Correig, X.; Bullo, M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J. Nutr. Biochem. 2017, 45, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, R.; Schulz, Z.; Hsu, A.; Pai, J.; Yang, S.; Henning, S.M.; Huang, J.; Jacobs, J.P.; Heber, D.; et al. Mixed Nuts as Healthy Snacks: Effect on Tryptophan Metabolism and Cardiovascular Risk Factors. Nutrients 2023, 15, 569. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef]
- Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. 2016, 7, 1005–1025. [Google Scholar] [CrossRef]
- Harris, F.; Moss, C.; Joy, E.J.M.; Quinn, R.; Scheelbeek, P.F.D.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Adv. Nutr. 2020, 11, 375–386. [Google Scholar] [CrossRef]
- UCDWI. UC Davis Western Institute for Food Safety & Security; FDA. Pistachios. Available online: https://www.wifss.ucdavis.edu/wpcontent/ (accessed on 1 April 2023).
- Barghchi, M.; Alderson, P.G. Pistachio (Pistacia vera L.). In Biotechnology in Agriculture and Forestry, Trees II; Springer: Berlin/Heidelberg, Germany, 1989; pp. 68–98. [Google Scholar]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 476S–482S. [Google Scholar] [CrossRef]
- Loveday, S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019, 10, 311–339. [Google Scholar] [CrossRef]
- de Gavelle, E.; Huneau, J.F.; Bianchi, C.M.; Verger, E.O.; Mariotti, F. Protein Adequacy Is Primarily a Matter of Protein Quantity, Not Quality: Modeling an Increase in Plant: Animal Protein Ratio in French Adults. Nutrients 2017, 9, 1333. [Google Scholar] [CrossRef]
- Schaafsma, G. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br. J. Nutr. 2012, 108 (Suppl. 2), S333–S336. [Google Scholar] [CrossRef]
- DGA. Dietary Guidelines for Americans 2020–2025. Available online: https://www.dietaryguidelines.gov/sites/default/files/2021-03/DGA_2020-2025_ExecutiveSummary_English.pdf (accessed on 23 January 2023).
Country | Source of | High in/Good Source of/Rich in/Increased |
---|---|---|
Australia and New Zealand [51,52] | Good source—the food contains at least 10 g of protein per serving. | Increased (a) the food contains at least 25% more protein than in the same quantity of reference food; and (b) the reference food meets the general claim conditions followed by a nutrition content claim about protein. |
EU [24] | ≥12% energy from protein | ≥20% energy from protein |
UK [23] | ≥12% energy from protein | ≥20% energy from protein |
US [53,54] | 10–19% of the DRV of the corrected amount of protein ** per RACC. Equivalent to 5–9.5 g per RACC. | ≥20% of the DV of protein per RACC *. Equivalent to ≥10 g protein per RACC *, ** |
Canada [42,55] | Protein rating of 20 or more *** | Protein rating of 20 or more and contains at least 25% more protein, totalling at least 7 g more than the food to which it is compared *** |
Foods | PDCAAS (%) | Age for Standard Amino Acid Requirement | Reference Source |
---|---|---|---|
Almonds, nuts, raw | 44–48% | 2–5 years | House et al. (2019) [58] |
Almonds, Baru, roasted | 56.6% | 2–5 years | Freita et al. (2012) [57] |
White rice, cooked | 56% | Healthy young men | Prolla et al. (2013) [60] |
Beef, dried beef, ground | 92.4% | 2–5 years | Boye et al. (2012) [61]; Pires et al. (2006) [62] |
Brazil nuts, dried, raw | 63.3% | 2–5 years | Freitas et al. (2012) [57] |
Cashew nuts | 90.3% | 2–5 years | Freitas et al. (2012) [57] |
Chicken, fresh breast meat, dried | 95.2% | NCS | Negrão et al. (2005) [63] |
Chickpeas, canned, drained solids | 52% | NCS | Nosworthy et al. (2017) [64] |
Egg, lyophilised powder | 90.1% | 2–5 years | Boye et al. (2012) [61] Pires et al. (2006) [62] |
Red kidney beans | 55% | -- | Nosworthy et al. (2017) [64] |
Lentils, whole green | 63% | -- | Nosworthy et al. (2017) [64] |
Lentils, split red | 54% | -- | Nosworthy et al. (2017) [64] |
Lentils, split yellow | 64% | -- | Nosworthy et al. (2017) [64] |
Peanuts, roasted | 69% | 2–5 years | Freitas et al. (2012) [57] |
Pecans | 59% | -- | Tanwar et al. (2022) [65] Calculated value * |
Pine nuts | 73% | -- | Calculated value * |
Pistachio nuts, raw | 73% | 2–5 years | Bailey et al. (2020) [56] |
Pistachio nuts, roasted | 81% | 2–5 years | Bailey et al. (2020) [56] |
Walnuts | 39% 46% | 6 months–3 years (Child) 3–10 years (Older child, adolescent, adult) | Lackey et al. (2021) [38] |
Amino Acids | Almonds, Nuts | Brown Rice, Cooked | Beef, Brisket, Lean Only, Braised | Brazil Nuts, Dried, Unblanched | Cashew Nuts | Chicken, Meat Only, Cooked, Grilled | Chickpeas, Canned, Drained Solids | Egg, Whole, Cooked, Hard-Boiled | Kidney Beans, Drained Solids | Lentils, Cooked, Boiled, without Salt | Peanuts, Virginia, Raw | Pecans | Pine Nuts, Dried | Pistachio Nuts | Walnuts |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alanine | 1.0 | 0.2 | 1.8 | 0.6 | 0.8 | 1.8 | 0.3 | 0.7 | 0.4 | 0.4 | 1.0 | 0.4 | 0.7 | 1.0 | 0.7 |
Arginine | 2.5 | 0.2 | 1.9 | 2.1 | 2.1 | 2.1 | 0.7 | 0.8 | 0.4 | 0.7 | 3.0 | 1.2 | 2.4 | 2.2 | 2.3 |
Aspartic acid | 2.6 | 0.2 | 2.7 | 1.3 | 1.8 | 2.9 | 0.8 | 1.3 | 1.0 | 1.0 | 3.1 | 0.9 | 1.3 | 2.0 | 1.8 |
Cystine | 0.2 | 0.0 | 0.4 | 0.3 | 0.4 | 0.3 | 0.1 | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 |
Glutamic acid | 6.2 | 0.5 | 4.5 | 3.2 | 4.5 | 4.5 | 1.2 | 1.6 | 1.3 | 1.4 | 5.3 | 1.8 | 2.9 | 4.5 | 2.8 |
Glycine | 1.4 | 0.1 | 1.8 | 0.7 | 0.9 | 1.4 | 0.3 | 0.4 | 0.3 | 0.4 | 1.5 | 0.5 | 0.7 | 1.1 | 0.8 |
Histidine * | 0.5 | 0.1 | 0.9 | 0.4 | 0.5 | 1.1 | 0.2 | 0.3 | 0.2 | 0.3 | 0.6 | 0.3 | 0.3 | 0.5 | 0.4 |
Isoleucine *,b | 0.8 | 0.1 | 1.4 | 0.5 | 0.8 | 1.5 | 0.3 | 0.7 | 0.4 | 0.4 | 0.9 | 0.3 | 0.5 | 1.0 | 0.6 |
Leucine *,b | 1.5 | 0.2 | 2.4 | 1.2 | 1.5 | 2.5 | 0.5 | 1.1 | 0.7 | 0.7 | 1.6 | 0.6 | 1.0 | 1.7 | 1.2 |
Lysine* | 0.6 | 0.1 | 2.5 | 0.5 | 0.9 | 2.9 | 0.5 | 0.9 | 0.6 | 0.6 | 0.9 | 0.3 | 0.5 | 1.2 | 0.4 |
Methionine * | 0.2 | 0.1 | 0.8 | 1.1 | 0.4 | 0.8 | 0.1 | 0.4 | 0.1 | 0.1 | 0.3 | 0.2 | 0.3 | 0.4 | 0.2 |
Phenylalanine * | 1.1 | 0.1 | 1.2 | 0.6 | 1.0 | 1.2 | 0.4 | 0.7 | 0.5 | 0.4 | 1.3 | 0.4 | 0.5 | 1.1 | 0.7 |
Proline | 1.0 | 0.1 | 1.4 | 0.7 | 0.8 | 1.0 | 0.3 | 0.5 | 0.5 | 0.4 | 1.1 | 0.4 | 0.7 | 0.9 | 0.7 |
Serine | 0.9 | 0.1 | 1.2 | 0.7 | 1.1 | 1.2 | 0.4 | 0.9 | 0.5 | 0.4 | 1.2 | 0.5 | 0.8 | 1.3 | 0.9 |
Threonine * | 0.6 | 0.1 | 1.2 | 0.4 | 0.7 | 1.4 | 0.3 | 0.6 | 0.3 | 0.3 | 0.9 | 0.3 | 0.4 | 0.7 | 0.6 |
Tryptophan * | 0.2 | 0.0 | 2.0 | 0.1 | 0.3 | 0.4 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 |
Tyrosine | 0.5 | 0.1 | 0.9 | 0.4 | 0.5 | 1.1 | 0.2 | 0.5 | 0.2 | 0.2 | 1.0 | 0.2 | 0.5 | 0.5 | 0.4 |
Valine *,b | 0.9 | 0.2 | 1.4 | 0.8 | 1.1 | 1.6 | 0.3 | 0.8 | 0.5 | 0.4 | 1.0 | 0.4 | 0.7 | 1.3 | 0.8 |
BCAAs | 3.2 | 0.5 | 5.2 | 2.5 | 3.4 | 5.6 | 1.1 | 2.6 | 1.6 | 1.5 | 3.5 | 1.3 | 2.2 | 4.0 | 2.6 |
EAAs | 6.4 | 1.0 | 13.8 | 5.6 | 7.2 | 13.4 | 2.7 | 5.7 | 3.4 | 3.3 | 7.7 | 2.9 | 4.3 | 8.2 | 5.1 |
NEAAs | 16.3 | 1.5 | 16.6 | 10.0 | 12.9 | 16.3 | 4.3 | 7.0 | 4.7 | 5.0 | 17.5 | 6.1 | 10.3 | 13.8 | 10.6 |
Data source/NDB Number | 12,061 | 20,037 | 13,368 | 12,078 | 12,087 | 5747 | 16,358 | 1129 | 16,145 | 16,070 | 16,095 | 12,142 | 12,147 | 12,152 | 12,155 |
It is advised that outlooks relating to ‘protein quality’ are refreshed and, as advised by Katz and colleagues (2019), updates are needed to account to health and environmental outcomes, which could be layered on top of PDCAAS or indeed other baseline scores reflective of protein quality [14]. |
Updated baseline measures of what constitutes ‘protein quality’ are needed as both the PDCAAS and DIAAS have their limitations, with the latter thought to produce erroneous results in the context of its application to plant-based diets [49,133]. |
It would make better sense to consider the ‘totality of diets’ and daily amino acids profiles rather than focusing in on individual, sole foods [14]. To facilitate the movement of science in this direction, future dietary surveys should collate intake data on separate amino acids alongside total daily protein intake. |
The concept of protein diversification should begin to be uniformly expressed within national and international dietary guidelines [14,15,16,18]. |
Within future global dietary guidelines, nuts such as pistachios should be included and considered as a useful protein source. At present there is a lack of consensus. Some countries such as the U.S. [134] do specify nuts in their dietary guidelines but others do not. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbyshire, E.; Higgs, J.; Feeney, M.J.; Carughi, A. Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus. Nutrients 2023, 15, 2158. https://doi.org/10.3390/nu15092158
Derbyshire E, Higgs J, Feeney MJ, Carughi A. Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus. Nutrients. 2023; 15(9):2158. https://doi.org/10.3390/nu15092158
Chicago/Turabian StyleDerbyshire, Emma, Jennette Higgs, Mary Jo Feeney, and Arianna Carughi. 2023. "Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus" Nutrients 15, no. 9: 2158. https://doi.org/10.3390/nu15092158
APA StyleDerbyshire, E., Higgs, J., Feeney, M. J., & Carughi, A. (2023). Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus. Nutrients, 15(9), 2158. https://doi.org/10.3390/nu15092158