Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Measurements
2.2.1. Objectively Measured SB
2.2.2. MVPA According to the WHO’s Recommendation
2.2.3. PhA
2.2.4. Covariates
2.3. Statistical Analyses
3. Results
3.1. Sociodemographic Characteristics
3.2. Relationships of Total SB Amount and SB Patterns with PhA in the Total Number of Participants
3.3. Relationships of Total SB Amount and SB Patterns with PhA in Physically Active and Inactive Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Ageing and Health. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 1 October 2022).
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing Up to the Global Challenges of Ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef]
- Grundmann, O.; Yoon, S.; Williams, J. The value of bioelectrical impedance analysis and phase angle in the evaluation of malnutrition and quality of life in cancer patients—A comprehensive review. Eur. J. Clin. Nutr. 2015, 69, 1290–1297. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; Laudisio, D.; de Alteriis, G.; Graziadio, C.; Colao, A.; Savastano, S. Phase Angle as an Easy Diagnostic Tool of Meta-Inflammation for the Nutritionist. Nutrients 2021, 13, 1446. [Google Scholar] [CrossRef]
- Player, E.; Morris, P.; Thomas, T.; Chan, W.; Vyas, R.; Dutton, J.; Tang, J.; Alexandre, L.; Forbes, A. Bioelectrical impedance analysis (BIA)-derived phase angle (PA) is a practical aid to nutritional assessment in hospital in-patients. Clin. Nutr. 2019, 38, 1700–1706. [Google Scholar] [CrossRef]
- Da Silva, B.R.; Mialich, M.S.; Cruz, L.P.; Rufato, S.; Gozzo, T.; Jordao, A.A. Performance of functionality measures and phase angle in women exposed to chemotherapy for early breast cancer. Clin. Nutr. ESPEN 2021, 42, 105–116. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance analysis (BIA)-derived phase angle in sarcopenia: A systematic review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef]
- De Pontes Araújo, A.C.; Cabral, P.C.; da Silva Almeida, R.d.C.; Viana, A.C.C.; da Silveira Silva, R.L.; da Silva Diniz, A.; Dos Santos, A.C.O. Is low phase angle a risk indicator for frailty and pre-frailty among community-dwelling older adults? Medicine 2023, 102, e33982. [Google Scholar] [CrossRef]
- Asano, Y.; Tsuji, T.; Kim, M.; Nagata, K.; Shibuya, K.; Tateoka, K.; Okura, T. Cross-sectional and longitudinal study of the relationship between phase angle and physical function in older adults. Geriatr. Gerontol. Int. 2023, 23, 141–147. [Google Scholar] [CrossRef]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Sedentary Behaviour Research Network. Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.; Altenburg, T.M.; Chinapaw, M.J. Sedentary behavior research network (SBRN)—Terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Scientific Report, 2018; US Department of Health and Human Services: Washington, DC, USA, 2018. [Google Scholar]
- Rezende, L.F.M.d.; Rey-López, J.P.; Matsudo, V.K.R.; Luiz, O.D.C. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 2014, 14, 333. [Google Scholar] [CrossRef]
- Han, X.; Wang, X.; Wang, C.; Wang, P.; Han, X.; Zhao, M.; Han, Q.; Jiang, Z.; Mao, M.; Chen, S.; et al. Accelerometer-assessed sedentary behaviour among Chinese rural older adults: Patterns and associations with physical function. J. Sports Sci. 2022, 40, 1940–1949. [Google Scholar] [CrossRef]
- Toby, G.P.; Peeters, G.; Wendy, J.B. Sitting-time and 9-year all-cause mortality in older women. Br. J. Sports Med. 2015, 49, 95. [Google Scholar]
- Gennuso, K.P.; Thraen-Borowski, K.M.; Gangnon, R.E.; Colbert, L.H. Patterns of sedentary behavior and physical function in older adults. Aging Clin. Exp. Res. 2016, 28, 943–950. [Google Scholar] [CrossRef]
- Jeng, B.; Šilić, P.; Huynh, T.L.T.; Motl, R.W. Sedentary Behavior and Lower-Extremity Physical Function across the Lifespan of Adults with Multiple Sclerosis. Int. J. Environ. Res. Public Health 2022, 19, 12466. [Google Scholar] [CrossRef]
- Asano, Y.; Nagata, K.; Shibuya, K.; Fujii, Y.; Kitano, N.; Okura, T. Association of 24-h movement behaviors with phase angle in community-dwelling older adults: A compositional data analysis. Aging Clin. Exp. Res. 2023, 35, 1469–1476. [Google Scholar] [CrossRef]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef]
- Gilchrist, S.C.; Bennett, A.; Judd, S.E.; Akinyemiju, T.; Howard, V.J.; Hooker, S.P.; Cushman, M.; Diaz, K.M. Sedentary Behavior and Physical Functioning in Middle-Age and Older Adults Living in the United States: The Reasons for Geographic and Racial Differences in Stroke Study. Med. Sci. Sports Exerc. 2022, 54, 1897–1903. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf (accessed on 25 November 2020).
- Yamada, Y.; Itoi, A.; Yoshida, T.; Nakagata, T.; Yokoyama, K.; Fujita, H.; Kimura, M.; Miyachi, M. Association of bioelectrical phase angle with aerobic capacity, complex gait ability and total fitness score in older adults. Exp. Gerontol. 2021, 150, 111350. [Google Scholar] [CrossRef]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Phase angle is a useful indicator for muscle function in older adults. J. Nutr. Health Aging 2019, 23, 251–255. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Schlaff, R.A.; Baruth, M.; Boggs, A.; Hutto, B. Patterns of sedentary behavior in older adults. Am. J. Health Behav. 2017, 41, 411–418. [Google Scholar] [CrossRef]
- Silva, G.O.; Cunha, P.M.; Oliveira, M.D.; Christofaro, D.G.D.; Tebar, W.R.; Gerage, A.M.; Kanegusuku, H.; Correia, M.A.; Ritti-Dias, R.M. Patterns of sedentary behavior in adults: A cross-sectional study. Front. Cardiovasc. Med. 2023, 10, 1116499. [Google Scholar] [CrossRef]
- Donaldson, S.C.; Montoye, A.H.K.; Tuttle, M.S.; Kaminsky, L.A. Variability of Objectively Measured Sedentary Behavior. Med. Sci. Sports Exerc. 2016, 48, 755–761. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Ward, L.C.; Brantlov, S. Bioimpedance basics and phase angle fundamentals. Rev. Endocr. Metab. Disord. 2023, 24, 381–391. [Google Scholar]
- Bellido, D.; García-García, C.; Talluri, A.; Lukaski, H.C.; García-Almeida, J.M. Future lines of research on phase angle: Strengths and limitations. Rev. Endocr. Metab. Disord. 2023, 24, 563–583. [Google Scholar] [CrossRef]
- Tanita. Tanita MC-780MA Multi-Frequency Segmental Body Composition Analyzer: Product Operation Tutorial Video. 2023. Available online: https://www.youtube.com/watch?v=1vQuN6Gpm0g (accessed on 7 June 2023).
- Jebb, S.A.; Cole, T.J.; Doman, D.; Murgatroyd, P.R.; Prentice, A.M. Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model. Br. J. Nutr. 2000, 83, 115–122. [Google Scholar] [CrossRef]
- Siddiqui, N.I.; Khan, S.A.; Shoeb, M.; Bose, S. Anthropometric Predictors of Bio-Impedance Analysis (BIA) Phase Angle in Healthy Adults. J. Clin. Diagn. Res. 2016, 10, Cc01–Cc04. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E.; et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef]
- Woods, J.A.; Wilund, K.R.; Martin, S.A.; Kistler, B.M. Exercise, inflammation and aging. Aging Dis. 2012, 3, 130–140. [Google Scholar]
- Tomeleri, C.M.; Cavaglieri, C.R.; de Souza, M.F.; Cavalcante, E.F.; Antunes, M.; Nabbuco, H.C.G.; Venturini, D.; Barbosa, D.S.; Silva, A.M.; Cyrino, E.S. Phase angle is related with inflammatory and oxidative stress biomarkers in older women. Exp. Gerontol. 2018, 102, 12–18. [Google Scholar] [CrossRef]
- Safdar, A.; Hamadeh, M.J.; Kaczor, J.J.; Raha, S.; Debeer, J.; Tarnopolsky, M.A. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE 2010, 5, e10778. [Google Scholar] [CrossRef]
- Koster, A.; Caserotti, P.; Patel, K.V.; Matthews, C.E.; Berrigan, D.; Van Domelen, D.R.; Brychta, R.J.; Chen, K.Y.; Harris, T.B. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS ONE 2012, 7, e37696. [Google Scholar] [CrossRef]
- Rodas, L.; Riera-Sampol, A.; Aguiló, A.; Martinez, S.; Tauler, P. Effects of Habitual Caffeine Intake, Physical Activity Levels, and Sedentary Behavior on the Inflammatory Status in a Healthy Population. Nutrients 2020, 12, 2325. [Google Scholar] [CrossRef]
- Da Silva, B.R.; Orsso, C.E.; Gonzalez, M.C.; Sicchieri, J.M.F.; Mialich, M.S.; Jordao, A.A.; Prado, C.M. Phase angle and cellular health: Inflammation and oxidative damage. Rev. Endocr. Metab. Disord. 2023, 24, 543–562. [Google Scholar] [CrossRef]
- Yerramalla, M.S.; van Hees, V.T.; Chen, M.; Fayosse, A.; Chastin, S.F.M.; Sabia, S. Objectively Measured Total Sedentary Time and Pattern of Sedentary Accumulation in Older Adults: Associations with Incident Cardiovascular Disease and All-Cause Mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 842–850. [Google Scholar] [CrossRef]
- Lai, T.-F.; Liao, Y.; Lin, C.-Y.; Hsueh, M.-C.; Koohsari, M.J.; Shibata, A.; Oka, K.; Chan, D.-C. Diurnal pattern of breaks in sedentary time and the physical function of older adults. Arch. Public Health 2023, 81, 35. [Google Scholar] [CrossRef]
- Kajiyama, S.; Nakanishi, N.; Yamamoto, S.; Ichikawa, T.; Okamura, T.; Hashimoto, Y.; Kitagawa, N.; Hamaguchi, M.; Fukui, M. The Impact of Nutritional Markers and Dietary Habits on the Bioimpedance Phase Angle in Older Individuals. Nutrients 2023, 15, 3599. [Google Scholar] [CrossRef]
Categorical Variables | n | % |
---|---|---|
Age | ||
65–74 | 120 | 72.3 |
≥75 | 46 | 27.7 |
Gender | ||
Female | 130 | 78.3 |
Male | 36 | 21.7 |
Current Marital Status | ||
No | 24 | 14.5 |
Yes | 142 | 85.5 |
Residential Status | ||
Alone | 29 | 17.5 |
With others | 137 | 82.5 |
Current Employment Status | ||
No | 155 | 93.4 |
Yes | 11 | 6.6 |
Education level | ||
No graduate level | 67 | 40.4 |
Graduate and higher level | 99 | 59.6 |
Met 150 min/week MVPA | ||
Physically active | 63 | 38.0 |
Physically inactive | 103 | 62.0 |
Continuous variables | Mean | SD |
BMI (kg/m2) | 23.1 | 3.3 |
The whole-body PhA (°) | 5.0° | 0.58 |
Sedentary behavior (min/day) | 587.5 | 71.7 |
Number of ≥10 min sedentary bouts (times/day) | 15.4 | 4.1 |
Number of ≥30 min sedentary bouts (times/day) | 3.1 | 1.7 |
Number of ≥60 min sedentary bouts (times/day) | 0.6 | 0.6 |
Number of ≥10 min sedentary breaks (times/day) | 15.2 | 4.1 |
Average MVPA per day (min/day) | 21.4 | 18.8 |
Accelerometer wear time (min/day) | 896.9 | 67.1 |
Variables | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95%CI | p | B | 95% CI | p | B | 95% CI | p | |
Total sedentary behavior time | −0.038 | (−0.079, 0.002) | 0.062 | −0.033 | (−0.074, 0.008) | 0.112 | −0.038 | (−0.080, 0.003) | 0.072 |
Number of sedentary bouts (≥10 min) | 0.019 | (−0.009, 0.047) | 0.188 | 0.010 | (−0.016, 0.036) | 0.447 | 0.014 | (−0.013, 0.041) | 0.296 |
Number of sedentary bouts (≥30 min) | 0.006 | (−0.054, 0.066) | 0.846 | 0.016 | (−0.039, 0.072) | 0.560 | 0.020 | (−0.037, 0.077) | 0.492 |
Number of sedentary bouts (≥60 min) | −0.035 | (−0.202, 0.131) | 0.675 | 0.016 | (−0.138, 0.170) | 0.839 | 0.008 | (−0.147, 0.162) | 0.921 |
Number of sedentary breaks (≥10 min) | 0.019 | (−0.009, 0.047) | 0.191 | 0.010 | (−0.016, 0.036) | 0.453 | 0.014 | (−0.013, 0.041) | 0.300 |
Variables | Active (n = 63) | Inactive (n = 103) | ||||
---|---|---|---|---|---|---|
B | 95%CI | p | B | 95% CI | p | |
Model 1 adjusted for accelerometer wear time. | ||||||
Total sedentary behavior time | −0.012 | (−0.076, 0.052) | 0.711 | −0.037 | (−0.096, 0.021) | 0.205 |
Number of sedentary bouts (≥10 min) | 0.027 | (−0.027, 0.082) | 0.316 | 0.018 | (−0.016, 0.053) | 0.296 |
Number of sedentary bouts (≥30 min) | 0.063 | (−0.034, 0.159) | 0.197 | −0.017 | (−0.095, 0.061) | 0.669 |
Number of sedentary bouts (≥60 min) | 0.077 | (−0.170, 0.324) | 0.535 | −0.115 | (−0.340, 0.110) | 0.312 |
Number of sedentary breaks (≥10 min) | 0.027 | (−0.027, 0.081) | 0.323 | 0.018 | (−0.016, 0.053) | 0.298 |
Model 2 adjusted for age, gender, body mass index, average moderate-to-vigorous physical activity per day, and accelerometer wear time. | ||||||
Total sedentary behavior time | 0.002 | (−0.057, 0.060) | 0.953 | −0.053 | (−0.110, 0.005) | 0.072 |
Number of sedentary bouts (≥10 min) | 0.013 | (−0.036, 0.062) | 0.589 | 0.018 | (−0.016, 0.052) | 0.307 |
Number of sedentary bouts (≥30 min) | 0.063 | (−0.025, 0.151) | 0.157 | 0.006 | (−0.071, 0.083) | 0.875 |
Number of sedentary bouts (≥60 min) | 0.200 | (−0.021, 0.422) | 0.075 | −0.100 | (−0.312, 0.112) | 0.352 |
Number of sedentary breaks (≥10 min) | 0.013 | (−0.036, 0.062) | 0.600 | 0.018 | (−0.016, 0.051) | 0.307 |
Model 3 adjusted for age, gender, body mass index, level of education, current marital status, residential status, current employment status, average moderate-to-vigorous physical activity per day, and accelerometer wear time. | ||||||
Total sedentary behavior time | 0.010 | (−0.054, 0.074) | 0.751 | −0.059 | (−0.118, 0.000) | 0.049 * |
Number of sedentary bouts (≥10 min) | 0.018 | (−0.034, 0.070) | 0.491 | 0.022 | (−0.013, 0.057) | 0.212 |
Number of sedentary bouts (≥30 min) | 0.081 | (−0.015, 0.176) | 0.097 | 0.003 | (−0.075, 0.082) | 0.932 |
Number of sedentary bouts (≥60 min) | 0.228 | (−0.007, 0.464) | 0.057 | −0.135 | (−0.350, 0.079) | 0.214 |
Number of sedentary breaks (≥10 min) | 0.018 | (−0.034, 0.069) | 0.501 | 0.022 | (−0.013, 0.057) | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.-Y.; Chen, J.; Lai, T.-F.; Chung, Y.-Y.; Park, J.-H.; Hu, Y.-J.; Liao, Y. Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults. Nutrients 2024, 16, 101. https://doi.org/10.3390/nu16010101
Lin L-Y, Chen J, Lai T-F, Chung Y-Y, Park J-H, Hu Y-J, Liao Y. Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults. Nutrients. 2024; 16(1):101. https://doi.org/10.3390/nu16010101
Chicago/Turabian StyleLin, Liu-Yin, Jiaren Chen, Ting-Fu Lai, Yen-Yu Chung, Jong-Hwan Park, Yih-Jin Hu, and Yung Liao. 2024. "Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults" Nutrients 16, no. 1: 101. https://doi.org/10.3390/nu16010101
APA StyleLin, L. -Y., Chen, J., Lai, T. -F., Chung, Y. -Y., Park, J. -H., Hu, Y. -J., & Liao, Y. (2024). Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults. Nutrients, 16(1), 101. https://doi.org/10.3390/nu16010101