Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurement of NAD-Related Compounds Using HPLC-MS/MS
2.3. Method Validation
2.4. Stability Test
2.5. Developmental Outcomes of Infants
2.6. Physical Growth Outcomes of Infants
2.7. Confounders
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarzenberg, S.J.; Georgieff, M.K.; Daniels, S.; Corkins, M.; Golden, N.H.; Kim, J.H.; Lindsey, C.W.; Magge, S.N. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.J.; Leite, Á.J.; Almeida, I.S. The Pediatrician’s Role in the First Thousand Days of the Child: The Pursuit of Healthy Nutrition and Development. J. Pediatr. 2015, 91, S44–S51. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, F.; McCann, S.; Moore, S.E. Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review. Nutrients 2021, 13, 3848. [Google Scholar] [CrossRef] [PubMed]
- Peluso, A.; Damgaard, M.V.; Mori, M.A.S.; Treebak, J.T. Age-Dependent Decline of Nad(+)-Universal Truth or Confounded Consensus? Nutrients 2021, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Sheng, R.; Qin, Z.H. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis. 2021, 12, 1879–1897. [Google Scholar] [CrossRef]
- Chu, X.; Raju, R.P. Regulation of Nad(+) Metabolism in Aging and Disease. Metabolism 2022, 126, 154923. [Google Scholar] [CrossRef]
- Fang, E.F.; Lautrup, S.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. Nad(+) in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med. 2017, 23, 899–916. [Google Scholar] [CrossRef]
- Radenkovic, D.; Reason; Verdin, E. Clinical Evidence for Targeting Nad Therapeutically. Pharmaceuticals 2020, 13, 247. [Google Scholar] [CrossRef]
- Zhang, M.; Ying, W. Nad(+) Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid. Redox Signal. 2019, 30, 890–905. [Google Scholar] [CrossRef]
- Yoshino, J.; Baur, J.A.; Imai, S.I. Nad(+) Intermediates: The Biology and Therapeutic Potential of Nmn and Nr. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef]
- Campagna, R.; Vignini, A. Nad(+) Homeostasis and Nad(+)-Consuming Enzymes: Implications for Vascular Health. Antioxidants 2023, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Redeuil, K.; Vulcano, J.; Prencipe, F.P.; Bénet, S.; Campos-Giménez, E.; Meschiari, M. First Quantification of Nicotinamide Riboside with B(3) Vitamers and Coenzymes Secreted in Human Milk by Liquid Chromatography-Tandem-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1110–1111, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ummarino, S.; Mozzon, M.; Zamporlini, F.; Amici, A.; Mazzola, F.; Orsomando, G.; Ruggieri, S.; Raffaelli, N. Simultaneous Quantitation of Nicotinamide Riboside, Nicotinamide Mononucleotide and Nicotinamide Adenine Dinucleotide in Milk by a Novel Enzyme-Coupled Assay. Food Chem. 2017, 221, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; York, E.R.; Allen, L.H. Ultra-Performance Liquid Chromatography Tandem Mass-Spectrometry (Uplc-Ms/Ms) for the Rapid, Simultaneous Analysis of Thiamin, Riboflavin, Flavin Adenine Dinucleotide, Nicotinamide and Pyridoxal in Human Milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 903, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Furukawa, M.; Asoh, M.; Kanno, T.; Kojima, T.; Yonekubo, A. Fat-Soluble and Water-Soluble Vitamin Contents of Breast Milk from Japanese Women. J. Nutr. Sci. Vitaminol. 2005, 51, 239–247. [Google Scholar] [CrossRef]
- Ear, P.H.; Chadda, A.; Gumusoglu, S.B.; Schmidt, M.S.; Vogeler, S.; Malicoat, J.; Kadel, J.; Moore, M.M.; Migaud, M.E.; Stevens, H.E.; et al. Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring. Cell Rep. 2019, 26, 969–983. [Google Scholar] [CrossRef]
- Greenbaum, A.L.; Pinder, S. Changes in the Activities of Enzymes of the Biosynthetic Pathway of the Nicotinamide Nucleotides in Rat Mammary Gland During the Lactation Cycle. Biochem. J. 1968, 107, 63–67. [Google Scholar] [CrossRef]
- Ratajczak, J.; Joffraud, M.; Trammell, S.A.; Ras, R.; Canela, N.; Boutant, M.; Kulkarni, S.S.; Rodrigues, M.; Redpath, P.; Migaud, M.E.; et al. Nrk1 Controls Nicotinamide Mononucleotide and Nicotinamide Riboside Metabolism in Mammalian Cells. Nat. Commun. 2016, 7, 13103. [Google Scholar] [CrossRef]
- Trammell, S.A.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide Riboside Is Uniquely and Orally Bioavailable in Mice and Humans. Nat. Commun. 2016, 7, 12948. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Choi, J.; Arvas, M.I.; Salimian, M.; Singh, S.; Xu, S.; Gullapalli, R.P.; Kristian, T.; Russell, J.W. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int. J. Mol. Sci. 2020, 21, 3756. [Google Scholar] [CrossRef]
- Tarantini, S.; Valcarcel-Ares, M.N.; Toth, P.; Yabluchanskiy, A.; Tucsek, Z.; Kiss, T.; Hertelendy, P.; Kinter, M.; Ballabh, P.; Süle, Z.; et al. Nicotinamide Mononucleotide (Nmn) Supplementation Rescues Cerebromicrovascular Endothelial Function and Neurovascular Coupling Responses and Improves Cognitive Function in Aged Mice. Redox Biol. 2019, 24, 101192. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy Inhibits Amyloid-Β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, X.; Yang, Y.; Takata, T.; Sakurai, T. Nicotinamide Mononucleotide Protects against Β-Amyloid Oligomer-Induced Cognitive Impairment and Neuronal Death. Brain Res. 2016, 1643, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yang, W.; Gao, Z.; Jia, P. Nicotinamide Mononucleotide Inhibits Jnk Activation to Reverse Alzheimer Disease. Neurosci. Lett. 2017, 647, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Klimova, N.; Fearnow, A.; Long, A.; Kristian, T. Nad(+) Precursor Modulates Post-Ischemic Mitochondrial Fragmentation and Reactive Oxygen Species Generation Via Sirt3 Dependent Mechanisms. Exp. Neurol. 2020, 325, 113144. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.C.; Kong, Y.Y.; Li, G.Q.; Guan, Y.F.; Wang, P.; Miao, C.Y. Nicotinamide Mononucleotide Attenuates Brain Injury after Intracerebral Hemorrhage by Activating Nrf2/Ho-1 Signaling Pathway. Sci. Rep. 2017, 7, 717. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yu, C.; Zhou, J.; Xiao, Q.; Shen, Q.; Xiong, Z.; Li, Z.; Fu, Z. Nicotinamide Mononucleotide Ameliorates the Depression-Like Behaviors and Is Associated with Attenuating the Disruption of Mitochondrial Bioenergetics in Depressed Mice. J. Affect. Disord. 2020, 263, 166–174. [Google Scholar] [CrossRef]
- Kiss, T.; Balasubramanian, P.; Valcarcel-Ares, M.N.; Tarantini, S.; Yabluchanskiy, A.; Csipo, T.; Lipecz, A.; Reglodi, D.; Zhang, X.A.; Bari, F.; et al. Nicotinamide Mononucleotide (Nmn) Treatment Attenuates Oxidative Stress and Rescues Angiogenic Capacity in Aged Cerebromicrovascular Endothelial Cells: A Potential Mechanism for the Prevention of Vascular Cognitive Impairment. Geroscience 2019, 41, 619–630. [Google Scholar] [CrossRef]
- Kiss, T.; Nyúl-Tóth, Á.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; Yabluchanskiy, A.; Csipo, T.; Farkas, E.; Wren, J.D.; Garman, L.; et al. Nicotinamide Mononucleotide (Nmn) Supplementation Promotes Neurovascular Rejuvenation in Aged Mice: Transcriptional Footprint of Sirt1 Activation, Mitochondrial Protection, Anti-Inflammatory, and Anti-Apoptotic Effects. Geroscience 2020, 42, 527–546. [Google Scholar] [CrossRef]
- Kuriyama, S.; Metoki, H.; Kikuya, M.; Obara, T.; Ishikuro, M.; Yamanaka, C.; Nagai, M.; Matsubara, H.; Kobayashi, T.; Sugawara, J.; et al. Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (Tmm Birthree Cohort Study): Rationale, Progress and Perspective. Int. J. Epidemiol. 2020, 49, 18–19m. [Google Scholar] [CrossRef]
- Minegishi, N.; Nishijima, I.; Nobukuni, T.; Kudo, H.; Ishida, N.; Terakawa, T.; Kumada, K.; Yamashita, R.; Katsuoka, F.; Ogishima, S.; et al. Biobank Establishment and Sample Management in the Tohoku Medical Megabank Project. Tohoku J. Exp. Med. 2019, 248, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; Shahab-Ferdows, S.; Islam, M.M.; Peerson, J.M.; Allen, L.H. Vitamin Concentrations in Human Milk Vary with Time within Feed, Circadian Rhythm, and Single-Dose Supplementation. J. Nutr. 2017, 147, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Mezawa, H.; Aoki, S.; Nakayama, S.F.; Nitta, H.; Ikeda, N.; Kato, K.; Tamai, S.; Takekoh, M.; Sanefuji, M.; Ohga, S.; et al. Psychometric Profile of the Ages and Stages Questionnaires, Japanese Translation. Pediatr. Int. 2019, 61, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Jane Squires, E.T.; Bricker, D.; Potter, L. Ages & Stages Questionnaires, 3rd ed.; Asq-3; Igaku-Shoin Ltd.: Tokyo, Japan, 2021. (In Japanese) [Google Scholar]
- Benn, R. Conceptualizing Eligibility for Services. In Implementing Early Intervention. From Research to Effective Practice; Bryant, D.M., Graham, M.A., Eds.; The Guilford Press: New York, NY, USA, 1993; pp. 18–45. [Google Scholar]
- Anderson, J.W.; Johnstone, B.M.; Remley, D.T. Breast-Feeding and Cognitive Development: A Meta-Analysis. Am. J. Clin. Nutr. 1999, 70, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Picciano, M.F. Nutrient Composition of Human Milk. Pediatr. Clin. N. Am. 2001, 48, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018, 9, 278s–294s. [Google Scholar] [CrossRef] [PubMed]
- Sadr Dadres, G.; Whitaker, K.M.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R., Jr.; Kharbanda, E.O.; McGovern, P.M.; Schoenfuss, T.C.; et al. Relationship of Maternal Weight Status before, During, and after Pregnancy with Breast Milk Hormone Concentrations. Obesity 2019, 27, 621–628. [Google Scholar] [CrossRef]
- Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; et al. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 2016, 24, 795–806. [Google Scholar] [CrossRef]
- Kulikova, V.; Shabalin, K.; Nerinovski, K.; Yakimov, A.; Svetlova, M.; Solovjeva, L.; Kropotov, A.; Khodorkovskiy, M.; Migaud, M.E.; Ziegler, M.; et al. Degradation of Extracellular Nad(+) Intermediates in Cultures of Human Hek293 Cells. Metabolites 2019, 9, 293. [Google Scholar] [CrossRef]
- Bieganowski, P.; Brenner, C. Discoveries of Nicotinamide Riboside as a Nutrient and Conserved Nrk Genes Establish a Preiss-Handler Independent Route to Nad+ in Fungi and Humans. Cell 2004, 117, 495–502. [Google Scholar] [CrossRef]
- Trammell, S.A.; Yu, L.; Redpath, P.; Migaud, M.E.; Brenner, C. Nicotinamide Riboside Is a Major Nad+ Precursor Vitamin in Cow Milk. J. Nutr. 2016, 146, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Lundt, S.; Ding, S. Nad(+) Metabolism and Diseases with Motor Dysfunction. Genes 2021, 12, 1776. [Google Scholar] [CrossRef] [PubMed]
- Reiten, O.K.; Wilvang, M.A.; Mitchell, S.J.; Hu, Z.; Fang, E.F. Preclinical and Clinical Evidence of Nad(+) Precursors in Health, Disease, and Ageing. Mech. Ageing Dev. 2021, 199, 111567. [Google Scholar] [CrossRef] [PubMed]
- Bitterman, K.J.; Anderson, R.M.; Cohen, H.Y.; Latorre-Esteves, M.; Sinclair, D.A. Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human Sirt1. J. Biol. Chem. 2002, 277, 45099–45107. [Google Scholar] [CrossRef] [PubMed]
- ApSimon, M.M.; Rawling, J.M.; Kirkland, J.B. Nicotinamide Megadosing Increases Hepatic Poly(Adp-Ribose) Levels in Choline-Deficient Rats. J. Nutr. 1995, 125, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Kang-Lee, Y.A.; McKee, R.W.; Wright, S.M.; Swendseid, M.E.; Jenden, D.J.; Jope, R.S. Metabolic Effects of Nicotinamide Administration in Rats. J. Nutr. 1983, 113, 215–221. [Google Scholar] [CrossRef]
- Li, D.; Tian, Y.J.; Guo, J.; Sun, W.P.; Lun, Y.Z.; Guo, M.; Luo, N.; Cao, Y.; Cao, J.M.; Gong, X.J.; et al. Nicotinamide Supplementation Induces Detrimental Metabolic and Epigenetic Changes in Developing Rats. Br. J. Nutr. 2013, 110, 2156–2164. [Google Scholar] [CrossRef]
- Köppen, A.; Klein, J.; Schmidt, B.H.; van der Staay, F.J.; Löffelholz, K. Effects of Nicotinamide on Central Cholinergic Transmission and on Spatial Learning in Rats. Pharmacol. Biochem. Behav. 1996, 53, 783–790. [Google Scholar] [CrossRef]
- Fukamizu, Y.; Uchida, Y.; Shigekawa, A.; Sato, T.; Kosaka, H.; Sakurai, T. Safety Evaluation of Β-Nicotinamide Mononucleotide Oral Administration in Healthy Adult Men and Women. Sci. Rep. 2022, 12, 14442. [Google Scholar] [CrossRef]
- Dollerup, O.L.; Christensen, B.; Svart, M.; Schmidt, M.S.; Sulek, K.; Ringgaard, S.; Stødkilde-Jørgensen, H.; Møller, N.; Brenner, C.; Treebak, J.T.; et al. A Randomized Placebo-Controlled Clinical Trial of Nicotinamide Riboside in Obese Men: Safety, Insulin-Sensitivity, and Lipid-Mobilizing Effects. Am. J. Clin. Nutr. 2018, 108, 343–353. [Google Scholar] [CrossRef]
- Stein, L.R.; Imai, S. Specific Ablation of Nampt in Adult Neural Stem Cells Recapitulates Their Functional Defects During Aging. Embo J. 2014, 33, 1321–1340. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.M.; Hoff, J.D.; Zeese, M.L.; Corfas, G. Poly (Adp-Ribose) Polymerase 1 Regulates Cajal-Retzius Cell Development and Neural Precursor Cell Adhesion. Front. Cell Dev. Biol. 2021, 9, 693595. [Google Scholar] [CrossRef] [PubMed]
- Milde, S.; Gilley, J.; Coleman, M.P. Axonal Trafficking of Nmnat2 and Its Roles in Axon Growth and Survival in Vivo. Bioarchitecture 2013, 3, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Gilley, J.; Adalbert, R.; Yu, G.; Coleman, M.P. Rescue of Peripheral and Cns Axon Defects in Mice Lacking Nmnat2. J. Neurosci. 2013, 33, 13410–13424. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Parrish, J.Z.; He, R.; Zhai, R.G.; Kim, M.D. Nmnat Exerts Neuroprotective Effects in Dendrites and Axons. Mol. Cell Neurosci. 2011, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, J.Y.; Yang, Z.C.; Liu, M.; Gang, B.Z.; Zhao, Q.J. Nicotinamide Mononucleotide Adenylyltransferase 1 Gene Nmnat1 Regulates Neuronal Dendrite and Axon Morphogenesis in Vitro. Chin. Med. J. 2011, 124, 3373–3377. [Google Scholar]
- Ma, X.R.; Zhu, X.; Xiao, Y.; Gu, H.M.; Zheng, S.S.; Li, L.; Wang, F.; Dong, Z.J.; Wang, D.X.; Wu, Y.; et al. Restoring Nuclear Entry of Sirtuin 2 in Oligodendrocyte Progenitor Cells Promotes Remyelination During Ageing. Nat. Commun. 2022, 13, 1225. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hwang, H.G.; Lee, J.Y.; Kim, M.; Kim, J.Y. Cortactin Deacetylation by Hdac6 and Sirt2 Regulates Neuronal Migration and Dendrite Morphogenesis During Cerebral Cortex Development. Mol. Brain 2020, 13, 105. [Google Scholar] [CrossRef]
- Beirowski, B.; Gustin, J.; Armour, S.M.; Yamamoto, H.; Viader, A.; North, B.J.; Michán, S.; Baloh, R.H.; Golden, J.P.; Schmidt, R.E.; et al. Sir-Two-Homolog 2 (Sirt2) Modulates Peripheral Myelination through Polarity Protein Par-3/Atypical Protein Kinase C (Apkc) Signaling. Proc. Natl. Acad. Sci. USA 2011, 108, E952–E961. [Google Scholar] [CrossRef]
- Matsuno, H.; Tsuchimine, S.; Fukuzato, N.; O’Hashi, K.; Kunugi, H.; Sohya, K. Sirtuin 6 Is a Regulator of Dendrite Morphogenesis in Rat Hippocampal Neurons. Neurochem. Int. 2021, 145, 104959. [Google Scholar] [CrossRef]
- Lundt, S.; Zhang, N.; Wang, X.; Polo-Parada, L.; Ding, S. The Effect of Nampt Deletion in Projection Neurons on the Function and Structure of Neuromuscular Junction (Nmj) in Mice. Sci. Rep. 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.C.; Alrowaished, S.S.; Kilroy, E.A.; Crooks, E.S.; Drinkert, D.M.; Karunasiri, C.M.; Belanger, J.J.; Khalil, A.; Kelley, J.B.; Henry, C.A. Nad+ Improves Neuromuscular Development in a Zebrafish Model of Fkrp-Associated Dystroglycanopathy. Skelet. Muscle 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Bao, R.; Zhang, N.; Wang, Y.; Polo-Parada, L.; Tarim, A.; Alemifar, A.; Han, X.; Wilkins, H.M.; et al. Deletion of Nampt in Projection Neurons of Adult Mice Leads to Motor Dysfunction, Neurodegeneration, and Death. Cell Rep. 2017, 20, 2184–2200. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.; Dean, D., 3rd; Joelson, S.; O’Regan, J.; Schneider, N. Early Nutrition Influences Developmental Myelination and Cognition in Infants and Young Children. Neuroimage 2018, 178, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.K.; Plows, J.F.; Jones, R.B.; Alderete, T.L.; Yonemitsu, C.; Poulsen, M.; Ryoo, J.H.; Peterson, B.S.; Bode, L.; Goran, M.I. Human Milk Oligosaccharide 2’-Fucosyllactose Links Feedings at 1 Month to Cognitive Development at 24 Months in Infants of Normal and Overweight Mothers. PLoS ONE 2020, 15, e0228323. [Google Scholar] [CrossRef]
- Gilmore, J.H.; Knickmeyer, R.C.; Gao, W. Imaging Structural and Functional Brain Development in Early Childhood. Nat. Rev. Neurosci. 2018, 19, 123–137. [Google Scholar] [CrossRef]
- Lima, A.A.; Kvalsund, M.P.; Souza, P.P.; Figueiredo, Í.L.; Soares, A.M.; Mota, R.M.; Lima, N.L.; Pinkerton, R.C.; Patrick, P.P.; Guerrant, R.L.; et al. Zinc, Vitamin a, and Glutamine Supplementation in Brazilian Shantytown Children at Risk for Diarrhea Results in Sex-Specific Improvements in Verbal Learning. Clinics 2013, 68, 351–358. [Google Scholar] [CrossRef]
- Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of Breast Milk on Intelligence Quotient, Brain Size, and White Matter Development. Pediatr. Res. 2010, 67, 357–362. [Google Scholar] [CrossRef]
N | Mean ± SD | |
---|---|---|
or % | ||
Mother | 150 | |
Age during participation, years | 150 | 31.6 ± 4.5 |
Body mass index, kg/m2 | 146 | 20.6 ± 2.9 |
No information | 4 | 2.70% |
Household income, JPY/year | ||
<2,000,000 | 2 | 1.3% |
2,000,000–3,999,999 | 38 | 25.3% |
4,000,000–5,999,999 | 47 | 31.3% |
6,000,000–7,999,999 | 32 | 21.3% |
8,000,000–9,999,999 | 18 | 12.0% |
10,000,000–11,999,999 | 6 | 4.0% |
≥12,000,000 | 3 | 2.0% |
No information | 4 | 2.7% |
Employment status (no), % | ||
At 6 months | 95 | 63.30% |
No information | 7 | 4.70% |
At 12 months | 71 | 47.30% |
No information | 15 | 10.00% |
At 24 months | 66 | 44.00% |
No information | 5 | 3.30% |
Alcohol consumption during pregnancy (yes), % | 32 | 21.30% |
No information | 3 | 2.00% |
Number of children in the family (people) | ||
1 | 71 | 47.3% |
2 | 58 | 38.7% |
3 | 20 | 13.3% |
4 | 1 | 0.7% |
No information | 0 | 0% |
Infants | 150 | |
Sex (female), % | 150 | 100% |
At birth | ||
Gestational weeks, week | 150 | 39.3 ± 1.2 |
<37 | 2 | 1.30% |
≥42 | 0 | 0% |
Weight, g | 150 | 3006.0 ± 372.8 |
<2500 | 16 | 10.70% |
≥4000 | 1 | 0.70% |
Length, cm | 150 | 49.0 ± 2.1 |
Head circumference, cm | 150 | 33.4 ± 1.4 |
At 1 month (age in 15–44 days) | ||
Age, days | 124 | 31.6 ± 3.6 |
Weight, kg | 124 | 4.0 ± 0.5 |
Length, cm | 124 | 52.9 ± 2.2 |
Head circumference, cm | 121 | 36.5 ± 1.2 |
Chest circumference, cm | 82 | 35.6 ± 1.7 |
Out of age in days | 26 | 17.30% |
At 5 months (encompassing 120–179 days) | ||
Age, days | 145 | 144.5 ± 15.6 |
Weight, kg | 145 | 6.8 ± 0.7 |
Length, cm | 142 | 63.2 ± 2.4 |
Head circumference, cm | 139 | 41.3 ± 1.6 |
Chest circumference, cm | 137 | 41.4 ± 1.7 |
Out of age in days | 5 | 3.30% |
At 9 months (encompassing 240–299 days) | ||
Age, days | 138 | 270.0 ± 15.7 |
Weight, kg | 138 | 8.1 ± 0.8 |
Length, cm | 138 | 68.6 ± 2.2 |
Head circumference, cm | 135 | 43.8 ± 1.5 |
Chest circumference, cm | 123 | 43.8 ± 2.0 |
Out of age in days | 12 | 8.00% |
At 18 months (encompassing 540–599 days) | ||
Age, days | 134 | 563.0 ± 11.7 |
Weight, kg | 134 | 9.9 ± 1.0 |
Length, cm | 134 | 78.2 ± 6.6 |
Out of age in days | 16 | 10.70% |
6 Month | 12 Month | 24 Month | ||||
---|---|---|---|---|---|---|
ASQ-3 Score | N | Median (IQR) | N | Median (IQR) | N | Median (IQR) |
Communication | 150 | 50 (40, 55) | 150 | 45 (35, 53.8) | 150 | 60 (50, 60) |
Gross motor | 150 | 40 (30, 50) | 150 | 52.5 (35, 60) | 150 | 60 (51.3, 60) |
Fine motor | 150 | 50 (35, 60) | 150 | 50 (45, 60) | 150 | 50 (50, 60) |
Problem solving | 150 | 55 (50, 60) | 150 | 50 (40, 60) | 150 | 55 (50, 60) |
Personal–social | 150 | 45 (30, 55) | 150 | 40 (35, 55) | 150 | 50 (45, 50) |
ASQ-3 | NAD | NMN | NAM | |||
---|---|---|---|---|---|---|
6 months | ||||||
Communication | r = 0.107, Q = 0.486 | r = 0.016, Q = 0.910 | r = 0.060, Q = 0.756 | |||
Gross motor | r = −0.035, Q = 0.773 | r = −0.055, Q = 0.756 | r = −0.232, Q = 0.032 | * | ||
Fine motor | r = −0.086, Q = 0.612 | r = −0.035, Q = 0.773 | r = −0.182, Q = 0.128 | |||
Problem solving | r = −0.108, Q = 0.486 | r = 0.002, Q = 0.985 | r = −0.234, Q = 0.032 | * | ||
Personal–social | r = −0.081, Q = 0.612 | r = −0.041, Q = 0.773 | r = −0.135, Q = 0.372 | |||
12 months | ||||||
Communication | r = 0.069, Q = 0.699 | r = 0.108, Q = 0.699 | r = −0.048, Q = 0.699 | |||
Gross motor | r = 0.065, Q = 0.699 | r = 0.077, Q = 0.699 | r = −0.130, Q = 0.699 | |||
Fine motor | r = 0.054, Q = 0.699 | r = 0.056, Q = 0.699 | r = −0.052, Q = 0.699 | |||
Problem solving | r = −0.011, Q = 0.957 | r = 0.075, Q = 0.699 | r = −0.122, Q = 0.699 | |||
Personal–social | r = −0.023, Q = 0.898 | r = −0.004, Q = 0.957 | r = −0.121, Q = 0.699 | |||
24 months | ||||||
Communication | r = 0.198, Q = 0.038 | * | r = 0.199, Q = 0.038 | * | r = 0.016, Q = 0.907 | |
Gross motor | r = 0.077, Q = 0.527 | r = 0.186, Q = 0.048 | * | r = −0.126, Q = 0.234 | ||
Fine motor | r = 0.025, Q = 0.880 | r = 0.208, Q = 0.038 | * | r = −0.002, Q = 0.981 | ||
Problem solving | r = 0.056, Q = 0.675 | r = 0.288, Q = 0.005 | * | r = −0.077, Q = 0.527 | ||
Personal–social | r = 0.048, Q = 0.699 | r = 0.259, Q = 0.010 | * | r = −0.211, Q = 0.038 | * |
6-Month ASQ-3 | Crude | Adjusted | ||||
---|---|---|---|---|---|---|
cOR (95% CI) | Q Value | cOR (95% CI) | Q Value | |||
NAD | ||||||
Communication | 1.15 (0.90, 1.46) | 0.772 | 1.20 (0.93, 1.55) | 0.812 | ||
Gross motor | 0.91 (0.71, 1.17) | 0.886 | 0.95 (0.72, 1.24) | 0.815 | ||
Fine motor | 0.89 (0.69, 1.15) | 0.772 | 1.00 (0.76, 1.32) | 0.999 | ||
Problem solving | 0.88 (0.68, 1.14) | 0.772 | 0.93 (0.70, 1.25) | 0.815 | ||
Personal–social | 0.87 (0.68, 1.11) | 0.772 | 0.89 (0.68, 1.16) | 0.815 | ||
NMN | ||||||
Communication | 1.00 (0.92, 1.08) | 0.930 | 0.99 (0.91, 1.08) | 0.956 | ||
Gross motor | 0.98 (0.91, 1.06) | 0.930 | 0.98 (0.90, 1.06) | 0.815 | ||
Fine motor | 0.99 (0.91, 1.08) | 0.930 | 0.97 (0.89, 1.06) | 0.815 | ||
Problem solving | 0.99 (0.92, 1.08) | 0.930 | 0.98 (0.90, 1.07) | 0.815 | ||
Personal–social | 0.99 (0.91, 1.07) | 0.930 | 0.98 (0.89, 1.07) | 0.815 | ||
NAM | ||||||
Communication | 1.01 (0.89, 1.14) | 0.930 | 0.97 (0.84, 1.13) | 0.815 | ||
Gross motor | 0.86 (0.75, 0.98) | 0.216 | 0.84 (0.71, 0.98) | 0.366 | ||
Fine motor | 0.87 (0.77, 0.99) | 0.216 | 0.87 (0.75, 1.00) | 0.430 | ||
Problem solving | 0.96 (0.84, 1.09) | 0.899 | 0.95 (0.81, 1.11) | 0.815 | ||
Personal–social | 0.93 (0.83, 1.04) | 0.772 | 0.97 (0.84, 1.13) | 0.815 | ||
12-month ASQ-3 | Crude | Adjusted | ||||
cOR (95% CI) | Q value | cOR (95% CI) | Q value | |||
NAD | ||||||
Communication | 1.18 (0.93, 1.51) | 0.909 | 1.22 (0.94, 1.58) | 0.730 | ||
Gross motor | 1.12 (0.87, 1.45) | 0.909 | 1.23 (0.94, 1.61) | 0.730 | ||
Fine motor | 1.06 (0.83, 1.36) | 0.909 | 1.02 (0.78, 1.34) | 0.937 | ||
Problem solving | 0.97 (0.76, 1.23) | 0.909 | 1.01 (0.78, 1.31) | 0.937 | ||
Personal–social | 0.99 (0.78, 1.25) | 0.909 | 0.99 (0.77, 1.27) | 0.937 | ||
NMN | ||||||
Communication | 1.05 (0.97, 1.14) | 0.909 | 1.07 (0.98, 1.17) | 0.730 | ||
Gross motor | 1.05 (0.96, 1.14) | 0.909 | 1.06 (0.97, 1.16) | 0.785 | ||
Fine motor | 1.03 (0.95, 1.12) | 0.909 | 1.01 (0.92, 1.10) | 0.937 | ||
Problem solving | 1.02 (0.94, 1.11) | 0.909 | 1.01 (0.92, 1.11) | 0.937 | ||
Personal–social | 0.99 (0.92, 1.07) | 0.909 | 0.99 (0.91, 1.08) | 0.937 | ||
NAM | ||||||
Communication | 1.01 (0.90, 1.14) | 0.909 | 0.96 (0.83, 1.12) | 0.937 | ||
Gross motor | 0.93 (0.82, 1.05) | 0.909 | 0.95 (0.81, 1.11) | 0.937 | ||
Fine motor | 0.98 (0.87, 1.11) | 0.909 | 0.96 (0.83, 1.11) | 0.937 | ||
Problem solving | 0.94 (0.84, 1.06) | 0.909 | 0.95 (0.82, 1.10) | 0.937 | ||
Personal–social | 1.01 (0.89, 1.14) | 0.909 | 0.98 (0.85, 1.13) | 0.937 | ||
24-month ASQ-3 | Crude | Adjusted | ||||
cOR (95% CI) | Q value | cOR (95% CI) | Q value | |||
NAD | ||||||
Communication | 1.35 (1.02, 1.79) | 0.077 | 1.28 (0.95, 1.71) | 0.170 | ||
Gross motor | 1.28 (0.96, 1.72) | 0.168 | 1.40 (1.02, 1.93) | 0.088 | ||
Fine motor | 1.08 (0.85, 1.39) | 0.596 | 1.13 (0.86, 1.48) | 0.474 | ||
Problem solving | 1.14 (0.87, 1.48) | 0.486 | 1.25 (0.94, 1.67) | 0.191 | ||
Personal–social | 1.13 (0.86, 1.47) | 0.486 | 1.28 (0.95, 1.72) | 0.170 | ||
NMN | ||||||
Communication | 1.13 (1.03, 1.24) | 0.034 | * | 1.15 (1.04, 1.28) | 0.024 | * |
Gross motor | 1.13 (1.03, 1.24) | 0.034 | * | 1.16 (1.04, 1.29) | 0.024 | * |
Fine motor | 1.12 (1.03, 1.22) | 0.034 | * | 1.14 (1.04, 1.24) | 0.024 | * |
Problem solving | 1.20 (1.09, 1.31) | 0.003 | * | 1.18 (1.07, 1.30) | 0.008 | * |
Personal–social | 1.15 (1.05, 1.26) | 0.015 | * | 1.21 (1.09, 1.34) | 0.004 | * |
NAM | ||||||
Communication | 1.04 (0.91, 1.19) | 0.596 | 1.00 (0.86, 1.17) | 0.952 | ||
Gross motor | 0.93 (0.81, 1.06) | 0.477 | 0.92 (0.78, 1.08) | 0.404 | ||
Fine motor | 1.02 (0.90, 1.15) | 0.799 | 1.01 (0.87, 1.16) | 0.952 | ||
Problem solving | 0.95 (0.84, 1.07) | 0.486 | 0.96 (0.83, 1.10) | 0.629 | ||
Personal–social | 0.87 (0.77, 0.99) | 0.077 | 0.85 (0.72, 0.99) | 0.092 |
N | Median (IQR) | Mean ± SD | |
---|---|---|---|
At birth | |||
Weight-for-length Z-score | 143 | −0.5 (−1.3, 0.1) | −0.7 ± 1.2 |
Length-for-age Z-score | 150 | −0.1 (−0.7, 0.7) | −0.1 ± 1.1 |
Weight-for-age Z-score | 150 | −0.4 (−1.2, 0.1) | −0.5 ± 0.9 |
Head-circumference-for-age Z-score | 150 | −0.3 (−1.2, 0.1) | −0.4 ± 1.2 |
1 months | |||
Weight-for-length Z-score | 124 | 0.0 (−0.6, 0.7) | 0.0 ± 1.0 |
Length-for-age Z-score | 124 | −0.5 (−1.2, 0.3) | −0.5 ± 1.1 |
Weight-for-age Z-score | 124 | −0.4 (−1.1, 0.3) | −0.4 ± 0.9 |
Head-circumference-for-age Z-score | 121 | −0.1 (−0.6, 0.7) | −0.1 ± 1.0 |
5 months | |||
Weight-for-length Z-score | 142 | 0.2 (−0.2, 0.8) | 0.2 ± 0.9 |
Length-for-age Z-score | 142 | 0.0 (−0.7, 0.6) | −0.2 ± 1.0 |
Weight-for-age Z-score | 145 | 0.2 (−0.6, 0.6) | 0.0 ± 0.9 |
Head-circumference-for-age Z-score | 139 | 0.0 (−0.7, 0.8) | 0.0 ± 1.2 |
9 months | |||
Weight-for-length Z-score | 138 | 0.2 (−0.4, 0.8) | 0.2 ± 0.9 |
Length-for-age Z-score | 138 | −0.6 (−1.1, 0.1) | −0.6 ± 0.9 |
Weight-for-age Z-score | 138 | −0.1 (−0.9, 0.5) | −0.2 ± 0.9 |
Head-circumference-for-age Z-score | 135 | 0.1 (−0.5, 0.7) | 0.1 ± 1.1 |
18 months | |||
Weight-for-length Z-score | 133 | 0.0 (−0.6, 0.6) | 0.1 ± 0.9 |
Length-for-age Z-score | 134 | −0.8 (−1.4, −0.3) | −1.0 ± 2.3 |
Weight-for-age Z-score | 134 | −0.4 (−0.9, 0.1) | −0.4 ± 0.8 |
Crude | Adjusted | |||
---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | |
NMN | ||||
Weight-for-length Z-score | −0.005 (−0.034, 0.025) | 0.763 | −0.001 (−0.033, 0.030) | 0.931 |
Length-for-age Z-score | −0.018 (−0.063, 0.027) | 0.428 | −0.032 (−0.075, 0.010) | 0.136 |
Weight-for-age Z-score | −0.018 (−0.050, 0.014) | 0.262 | −0.029 (−0.059, 0.002) | 0.066 |
Head-circumference-for-age Z-score | −0.027 (−0.068, 0.014) | 0.191 | −0.037 (−0.077, 0.002) | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, Y.; Sato, K.; Jinno, S.; Nakamura, Y.; Nobukuni, T.; Ogishima, S.; Mizuno, S.; Koshiba, S.; Kuriyama, S.; Ohneda, K.; et al. Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Nutrients 2024, 16, 145. https://doi.org/10.3390/nu16010145
Saito Y, Sato K, Jinno S, Nakamura Y, Nobukuni T, Ogishima S, Mizuno S, Koshiba S, Kuriyama S, Ohneda K, et al. Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Nutrients. 2024; 16(1):145. https://doi.org/10.3390/nu16010145
Chicago/Turabian StyleSaito, Yoshie, Keigo Sato, Shinji Jinno, Yoshitaka Nakamura, Takahiro Nobukuni, Soichi Ogishima, Satoshi Mizuno, Seizo Koshiba, Shinichi Kuriyama, Kinuko Ohneda, and et al. 2024. "Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study" Nutrients 16, no. 1: 145. https://doi.org/10.3390/nu16010145
APA StyleSaito, Y., Sato, K., Jinno, S., Nakamura, Y., Nobukuni, T., Ogishima, S., Mizuno, S., Koshiba, S., Kuriyama, S., Ohneda, K., & Morifuji, M. (2024). Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Nutrients, 16(1), 145. https://doi.org/10.3390/nu16010145