Evaluating Preconception Health and Behaviour Change in Australian Women Planning a Pregnancy: The OptimalMe Program, a Digital Healthy Lifestyle Intervention with Remotely Delivered Coaching
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Population, Eligibility Criteria and Recruitment
2.3. Intervention Overview
2.4. Outcome Measures
2.5. Analyses
2.6. Ethics
3. Results
Participants
4. Baseline Preconception Health and Behaviour
Post-Intervention Preconception Health and Lifestyle Behaviour Change
5. Discussion
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health. Lancet 2018, 391, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, P.; Rasmussen, S.; Kesmodel, U. Effect of prepregnancy maternal overweight and obesity on pregnancy outcome. Obstetr. Gynecol. 2011, 118, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Usha Kiran, T.; Hemmadi, S.; Bethel, J.; Evans, J. Outcome of pregnancy in a woman with an increased body mass index. BJOG 2005, 112, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.L.; Boyle, J.A.; Harrison, C.L.; Black, M.H.; Li, N.; Hu, G.; Corrado, F. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Gibbons, K.S.; Flenady, V.J.; Callaway, L.K. Overweight and obesity in Australian mothers: Epidemic or endemic? Med. J. Aust. 2012, 196, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Global Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L. Association of gestational weight gain with maternal and infant outcomes: A systematic review and meta-analysis. JAMA 2017, 317, 2207–2225. [Google Scholar] [CrossRef]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Gluckman, P.D.; Hanson, M.A. Developmental origins of metabolic disease: Life course and intergenerational perspectives. Trends Endocrinol. Metab. 2010, 21, 199–205. [Google Scholar] [CrossRef]
- Phelan, S. Pregnancy: A “teachable moment” for weight control and obesity prevention. Am. J. Obstet. Gynecol. 2010, 202, 135.e1–135.e8. [Google Scholar] [CrossRef] [PubMed]
- Hotham, E.; Ali, R.; White, J.; Robinson, J. Pregnancy-related changes in tobacco, alcohol and cannabis use reported by antenatal patients at two public hospitals in South Australia. Aust. N. Z. J. Obstet. Gynaecol. 2008, 48, 248–254. [Google Scholar] [CrossRef] [PubMed]
- McBride, C.M.; Emmons, K.M.; Lipkus, I.M. Understanding the potential of teachable moments: The case of smoking cessation. Health Educ. Res. 2003, 18, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Royal Australian College of General Practitioners. Guidelines for Preventive Activities in General Practice: Royal Australian College of General Practitioners; Royal Australian College of General Practitioners: East Melbourne, VIC, Australia, 2012. [Google Scholar]
- Van Elten, T.M.; Karsten, M.D.; Geelen, A.; Van Oers, A.M.; Van Poppel, M.N.; Groen, H.; Gemke, R.J.; Mol, B.W.; Mutsaerts, M.A.; Roseboom, T.J. Effects of a preconception lifestyle intervention in obese infertile women on diet and physical activity; A secondary analysis of a randomized controlled trial. PLoS ONE 2018, 13, e0206888. [Google Scholar] [CrossRef] [PubMed]
- Wekker, V.; Huvinen, E.; Van Dammen, L.; Rono, K.; Painter, R.C.; Zwinderman, A.H.; Van De Beek, C.; Sarkola, T.; Mol, B.W.J.; Groen, H. Long-term effects of a preconception lifestyle intervention on cardiometabolic health of overweight and obese women. Eur. J. Public Health 2019, 29, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Den Harink, T.; Blom, N.A.; Gemke, R.J.; Groen, H.; Hoek, A.; Mol, B.W.; Painter, R.C.; Kuipers, I.M.; Roseboom, T.J.; van Deutekom, A.W. Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children. Int. J. Obes. 2022, 46, 1262–1270. [Google Scholar] [CrossRef]
- Van Dammen, L.; Bush, N.R.; de Rooij, S.; Mol, B.W.; Mutsaerts, M.; van Oers, A.; Groen, H.; Hoek, A.; Roseboom, T. A lifestyle intervention randomized controlled trial in obese women with infertility improved body composition among those who experienced childhood adversity. Stress Health 2021, 37, 93–102. [Google Scholar] [CrossRef]
- Kermack, A.J.; Lowen, P.; Wellstead, S.J.; Fisk, H.L.; Montag, M.; Cheong, Y.; Osmond, C.; Houghton, F.D.; Calder, P.C.; Macklon, N.S. Effect of a 6-week “Mediterranean” dietary intervention on in vitro human embryo development: The Preconception Dietary Supplements in Assisted Reproduction double-blinded randomized controlled trial. Fertil. Steril. 2020, 113, 260–269. [Google Scholar] [CrossRef]
- Nwolise, C.H.; Carey, N.; Shawe, J. Preconception care education for women with diabetes: A systematic review of conventional and digital health interventions. J. Med. Internet Res. 2016, 18, e291. [Google Scholar] [CrossRef]
- Hall, J.; Chawla, M.; Watson, D.; Jacob, C.M.; Schoenaker, D.; Connolly, A.; Barrett, G.; Stephenson, J. Addressing reproductive health needs across the life course: An integrated, community-based model combining contraception and preconception care. Lancet Public Health 2023, 8, e76–e84. [Google Scholar] [CrossRef]
- Wolfenden, L.; Foy, R.; Presseau, J.; Grimshaw, J.M.; Ivers, N.M.; Powell, B.J.; Taljaard, M.; Wiggers, J.; Sutherland, R.; Nathan, N.; et al. Designing and undertaking randomised implementation trials: Guide for researchers. BMJ 2021, 372, m3721. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.L.; Brammall, B.R.; Garad, R.; Teede, H. OptimalMe Intervention for Healthy Preconception, Pregnancy, and Postpartum Lifestyles: Protocol for a Randomized Controlled Implementation Effectiveness Feasibility Trial. JMIR Res. Protoc. 2022, 11, e33625. [Google Scholar] [CrossRef]
- Harrison, C.L.; Lombard, C.B.; Teede, H.J. Limiting postpartum weight retention through early antenatal intervention: The HeLP-her randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Kozica, S.; Lombard, C.; Harrison, C.; Teede, H. Evaluation of a large healthy lifestyle program: Informing program implementation and scale-up in the prevention of obesity. Implement. Sci. 2016, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Lombard, C.; Harrison, C.; Kozica, S.; Zoungas, S.; Ranasinha, S.; Teede, H. Preventing weight gain in women in rural communities: A cluster randomised controlled trial. PLoS Med. 2016, 13, e1001941. [Google Scholar] [CrossRef] [PubMed]
- Lombard, C.B.; Harrison, C.L.; Kozica, S.L.; Zoungas, S.; Keating, C.; Teede, H.J. Effectiveness and implementation of an obesity prevention intervention: The HeLP-her Rural cluster randomised controlled trial. BMC Public Health 2014, 14, 608. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Moran, L.J.; Teede, H.J.; Ranasinha, S.; Lombard, C.B.; Harrison, C.L. Diet quality in a weight gain prevention trial of reproductive aged women: A secondary analysis of a cluster randomized controlled trial. Nutrients 2019, 11, 49. [Google Scholar] [CrossRef]
- Bandura, A. The Explanatory and Predictive Scope of Self-Efficacy Theory. J. Soc. Clin. Psychol. 1986, 4, 359–373. [Google Scholar] [CrossRef]
- The Australian Dietary Guidelines and Infant Feeding Guidelines; Australian Government Department of Health, National Health & Medical Research Council: Canberra, ACT, Australia, 2013.
- Australian Government Department of Health and Ageing. Physical Activity Guidelines for Australian Adults. Available online: https://www.health.gov.au/topics/physical-activity-and-exercise/physical-activity-and-exercise-guidelines-for-all-australians (accessed on 27 September 2023).
- Department of Health. Clinical Practice Guidelines: Pregnancy Care; Australian Government Department of Health: Canberra, ACT, Australia, 2019. [Google Scholar]
- Australian Government Department of Health. Australian Dietary Guidelines; National Health & Medical Research Council: Canberra, ACT, Australia, 2013; pp. 1–226. [Google Scholar]
- Homer, C.S.; Oats, J.; Middleton, P.; Ramson, J.; Diplock, S. Updated clinical practice guidelines on pregnancy care. Med. J. Aust. 2018, 209, 409–412. [Google Scholar] [CrossRef]
- Dorney, E.; Black, K.I. Preconception care. Aust. J. Gen. Pract. 2018, 47, 424. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index—BMI. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 2 October 2019).
- Beasley, T.M.; Schumacker, R.E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 1995, 64, 79–93. [Google Scholar] [CrossRef]
- Li, C. Little’s test of missing completely at random. Stata J. 2013, 13, 795–809. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2033.0.55.001—Census of Population and Housing: Socio-Economic Indexes for Areas (SEFIA), Australia 2016. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/2033.0.55.0012016?OpenDocument (accessed on 14 September 2023).
- Australian Bureau of Statistics. Household Income and Wealth, Australia, 2019–20 Financial Year. Available online: https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-australia/latest-release (accessed on 14 September 2023).
- Hammond, I.; Canfell, K.; Saville, M. A new era for cervical screening in Australia: Watch this space! Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Chivers, B.R.; Boyle, J.A.; Lang, A.Y.; Teede, H.J.; Moran, L.J.; Harrison, C.L. Preconception health and lifestyle behaviours of women planning a pregnancy: A cross-sectional study. J. Clin. Med. 2020, 9, 1701. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Australia’s Mothers and Babies; AIHW: Canberra, ACT, Australia, 2022. [Google Scholar]
- Poels, M.; Koster, M.P.; Boeije, H.R.; Franx, A.; van Stel, H.F. Why do women not use preconception care? A systematic review on barriers and facilitators. Obstet. Gynecol. Surv. 2016, 71, 603–612. [Google Scholar] [CrossRef]
- Batra, P.; Mangione, C.M.; Cheng, E.; Steers, W.N.; Nguyen, T.A.; Bell, D.; Kuo, A.A.; Gregory, K.D. A cluster randomized controlled trial of the MyFamilyPlan online preconception health education tool. Am. J. Health Promot. 2018, 32, 897–905. [Google Scholar] [CrossRef]
- Phelan, S.; Jankovitz, K.; Hagobian, T.; Abrams, B. Reducing excessive gestational weight gain: Lessons from the weight control literature and avenues for future research. Women’s Health 2011, 7, 641–661. [Google Scholar] [CrossRef]
- VanWormer, J.J.; French, S.A.; Pereira, M.A.; Welsh, E.M. The impact of regular self-weighing on weight management: A systematic literature review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 54. [Google Scholar] [CrossRef]
- Agricola, E.; Pandolfi, E.; Gonfiantini, M.V.; Gesualdo, F.; Romano, M.; Carloni, E.; Mastroiacovo, P.; Tozzi, A.E. A cohort study of a tailored web intervention for preconception care. BMC Med. Inform. Decis. Mak. 2014, 14, 33. [Google Scholar] [CrossRef]
- Ethen, M.K.; Ramadhani, T.A.; Scheuerle, A.E.; Canfield, M.A.; Wyszynski, D.F.; Druschel, C.M.; Romitti, P.A. Alcohol consumption by women before and during pregnancy. Matern. Child Health J. 2009, 13, 274–285. [Google Scholar] [CrossRef]
- DeJong, K.; Olyaei, A.; Lo, J.O. Alcohol use in pregnancy. Clin. Obstet. Gynecol. 2019, 62, 142. [Google Scholar] [CrossRef] [PubMed]
- Traversy, G.; Chaput, J.-P. Alcohol consumption and obesity: An update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Jack, B.; Bickmore, T.; Hempstead, M.; Yinusa-Nyahkoon, L.; Sadikova, E.; Mitchell, S.; Gardiner, P.; Adigun, F.; Penti, B.; Schulman, D. Reducing preconception risks among African American women with conversational agent technology. J. Am. Board Fam. Med. 2015, 28, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Statista. Active Internet Users as Percentage of the Total Population in Australia from 2015 to 2022. 2022. Available online: https://www.statista.com/statistics/680142/australia-internet-penetration/ (accessed on 11 October 2023).
- World Health Organization. Preconception Care: Maximizing the Gains for Maternal and Child Health—WHO: Policy Brief; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Fewtrell, M.S.; Kennedy, K.; Singhal, A.; Martin, R.M.; Ness, A.; Hadders-Algra, M.; Koletzko, B.; Lucas, A. How much loss to follow-up is acceptable in long-term randomised trials and prospective studies? Arch. Dis. Child. 2008, 93, 458–461. [Google Scholar] [CrossRef]
Health Coaching Group | ||||
---|---|---|---|---|
Characteristic | All | Phone | Video | p-Value |
Age (years) mean (SD) | n = 298 | n = 153 | n = 145 | |
31.8 (4.3) | 32.2 (4.4) | 31.4 (4.2) | 0.123 | |
Country of birth | n = 298 | n = 153 | n = 145 | |
Australia | 211 (70.8) | 102 (66.7) | 109 (75.2) | 0.106 |
Outside Australia | 87 (29.2) | 51 (33.3) | 36 (24.8) | |
Ethnicity (identify as) | n = 298 | n = 153 | n = 145 | |
Asian * | 54 (18.1) | 34 (22.2) | 20 (13.8) | 0.093 |
European | 80 (26.8) | 40 (26.1) | 40 (27.6) | |
Indigenous Australian | 3 (1.0) | 3 (2.0) | 0 (0.0) | |
Oceanian ** | 119 (39.9) | 59 (38.6) | 60 (41.4) | |
Other | 42 (14.1) | 17 (11.1) | 25 (17.2) | |
Education | n = 298 | n = 153 | n = 145 | |
Bachelor degree & above | 240 (80.5) | 127 (83.0) | 113 (77.9) | 0.483 |
Certificate | 19 (6.4) | 10 (6.5) | 9 (6.2) | |
Diploma | 24 (8.1) | 10 (6.5) | 14 (9.7) | |
Year 10 or below | 1 (0.3) | 1 (0.7) | 0 (0.0) | |
Year 12 or equivalent | 16 (4.7) | 5 (3.3) | 9 (6.2) | |
Working status | n = 298 | n = 153 | n = 145 | |
Casual/temporary work | 12 (4.0) | 6 (3.9) | 6 (4.1) | 0.637 |
Full time paid work | 230 (77.2) | 115 (75.2) | 115 (79.3) | |
No paid work | 20 (6.7) | 13 (8.5) | 7 (4.8) | |
Part time paid work | 36 (12.1) | 19 (12.4) | 17 (11.7) | |
Weekly gross household income (AUD) | n = 298 | n = 153 | n = 145 | |
Less than AUD 999 per week (AUD 51,999 or less per year) | 9 (3.0) | 4 (2.6) | 5 (3.4) | 0.208 |
AUD 1000–1499 per week (AUD 52,000–77,999 per year) | 28 (9.4) | 13 (8.5) | 15 (10.3) | |
AUD 1500–1999 per week (AUD 78,000–103,999 per year) | 32 (10.7) | 21 (13.7) | 11 (7.6) | |
AUD 2000–2999 per week (AUD 104,000-155,999 per year) | 70 (23.5) | 32 (20.9) | 38 (26.2) | |
AUD 3000 or more per week (AUD 156,000 or more per year) | 115 (38.6) | 55 (35.9) | 60 (41.4) | |
I prefer not to answer | 44 (14.8) | 28 (18.3) | 16 (11.0) | |
Marital status | n = 298 | n = 153 | n = 145 | |
Married or de facto | 276 (92.6) | 140 (91.5) | 136 (93.8) | 0.722 |
Never married or single | 19 (6.4) | 11 (7.2) | 8 (5.5) | |
Separated or divorced | 3 (1.0) | 2 (1.3) | 1 (0.7) | |
Number of children | n = 298 | n = 153 | n = 145 | |
None (0) | 257 (86.2) | 128 (83.7) | 129 (89.0) | 0.213 |
One (1) | 32 (10.7) | 18 (11.8) | 14 (9.7) | |
Two (2) | 5 (1.7) | 3 (2.0) | 2 (1.3) | |
Three or more (≥3) | 4 (1.3) | 4 (2.6) | 0 (0.0) |
Health Coaching Group | ||||
---|---|---|---|---|
Characteristic/Factor or Action | All | Phone | Video | p-Value |
Weight (kg) mean (SD) | n = 2989 | n = 153 | n = 145 | |
70.5 (17.7) | 70.5 (18.4) | 70.4 (16.9) | 0.950 | |
BMI (kg/m2) mean (SD) | n = 298 | n = 153 | n = 145 | |
25.7 (6.1) | 25.9 (6.3) | 25.7 (5.9) | 0.644 | |
BMI category | n = 298 | n = 153 | n = 145 | |
Underweight | 9 (3.0) | 2 (1.3) | 7 (4.8) | 0.150 |
Healthy | 163 (54.7) | 91 (59.5) | 72 (49.7) | |
Overweight | 68 (22.8) | 31 (20.3) | 37 (25.5) | |
Obese | 58 (19.5) | 29 (19.0) | 29 (20.0) | |
Weighing behaviour | n = 298 | n = 153 | n = 145 | |
Frequent | 187 (62.8) | 103 (67.3) | 84 (57.9) | 0.094 |
Infrequent | 111 (37.2) | 50 (32.7) | 61 (42.1) | |
Chronic conditions/medical history | n = 298 | n = 153 | n = 145 | |
Asthma | 40 (13.4) | 19 (12.4) | 21 (14.5) | 0.601 |
Depression | 38 (12.8) | 17 (11.1) | 21 (14.5) | 0.383 |
Anxiety | 66 (22.1) | 31 (20.3) | 35 (24.1) | 0.421 |
Polycystic ovary syndrome (PCOS) | 37 (12.4) | 24 (15.7) | 13 (9.0) | 0.079 |
None | 154 (51.7) | 75 (49.0) | 79 (54.5) | 0.346 |
Reproductive history | n = 298 | n = 153 | n = 145 | |
Diabetes in pregnancy (GDM) | 5 (1.7) | 3 (2.0) | 2 (1.4) | 0.696 |
Pre-eclampsia | 3 (1.0) | 3 (2.0) | 0 (0.0) | 0.090 |
Miscarriage/stillbirth | 31 (10.4) | 15 (9.8) | 16 (11.0) | 0.728 |
Birth defect(s) | 3 (1.0) | 2 (1.3) | 1 (0.7) | 0.594 |
Pre-term birth | 6 (2.0) | 5 (3.3) | 1 (0.7) | 0.113 |
Genetic conditions (personal or family history) | n = 297 | n = 153 | n = 144 | |
No | 162 (54.5) | 87 (56.9) | 75 (52.1) | 0.602 |
Unsure | 86 (29.0) | 43 (28.1) | 43 (29.9) | |
Yes | 49 (16.5) | 23 (15.0) | 26 (18.1) | |
Diagnosed iron/vitamin D nutrient deficiency (current or previous) | n = 269 | n = 139 | n = 130 | |
Iron | 148 (55.0) | 70 (50.4) | 78 (60.0) | 0.267 |
Vitamin D | 112 (41.6) | 56 (40.3) | 56 (43.1) | 0.845 |
Unsure | 72 (26.8) | 40 (28.8) | 32 (24.6) | 0.700 |
Vaccines (up-to-date) | n = 271 | n = 140 | n = 131 | |
Measles, Mumps, Rubella (MMR) | 239 (88.2) | 124 (88.6) | 115 (87.8) | 0.923 |
Hepatitis B | 230 (84.9) | 123 (87.9) | 107 (81.7) | 0.344 |
Tetanus/Diphtheria/Pertussis (whooping cough) | 221 (81.5) | 119 (85.0) | 102 (77.9) | 0.299 |
Immunisation status (in most recent flu season) | n = 297 | n = 153 | n = 144 | |
Influenza vaccine | 184 (62.0) | 95 (62.1) | 89 (61.8) | 0.588 |
Immunisation status (virus/vaccine) | n = 297 | n = 153 | n = 144 | |
Chicken pox (Varicella) | 276 (92.9) | 141 (92.2) | 135 (93.8) | 0.510 |
Cervical screening | n = 297 | n = 153 | n = 144 | |
Up-to-date | 250 (84.2) | 129 (84.3) | 121 (84.0) | 0.588 |
Smoking status | n = 298 | n = 153 | n = 145 | |
No | 284 (95.3) | 145 (94.7) | 139 (95.9) | 0.402 |
No, I have stopped to prepare for pregnancy | 9 (3.0) | 4 (2.6) | 5 (3.4) | |
Yes | 5 (1.7) | 4 (2.6) | 1 (0.7) | |
Alcohol | n = 297 | n = 153 | n = 144 | |
No | 80 (26.9) | 42 (27.5) | 38 (26.3) | 0.411 |
No, I have stopped to prepare for pregnancy | 47 (15.8) | 20 (13.1) | 27 (18.8) | |
Yes | 170 (57.2) | 91 (59.4) | 79 (54.9) | |
Recreational drug * use | n = 297 | n = 153 | n = 144 | |
No | 292 (98.3) | 151 (98.7) | 141 (97.9) | 0.372 |
No, I have stopped to prepare for pregnancy | 4 (1.3) | 1 (0.7) | 3 (2.1) | |
Yes | 1 (0.3) | 1 (0.7) | 0 (0.0) | |
Taking preconception supplement | n = 297 | n = 153 | n = 144 | |
Both folic acid and iodine | 103 (34.7) | 58 (37.9) | 45 (31.3) | 0.348 |
Folic acid (folate) | 77 (25.9) | 38 (24.8) | 39 (27.1) | |
Iodine | 2 (0.7) | 0 (0.0) | 2 (1.4) | |
None of the above | 115 (38.7) | 57 (37.3) | 58 (40.3) | |
Using contraception | n = 297 | n = 153 | n = 144 | |
Yes | 97 (32.7) | 44 (28.8) | 53 (36.8) | 0.198 |
Health Coaching Group | ||||
---|---|---|---|---|
Factor or Action | All | Phone | Video | p-Value |
Weight (kg) mean (SD) | n = 203 | n = 110 | n = 93 | |
69.8 (18.4) | 70.5 (18.6) | 68.9 (18.2) | 0.531 | |
BMI (kg/m2) mean (SD) | n = 203 | n = 110 | n = 93 | |
25.5 (6.3) | 25.9 (6.2) | 25.1 (6.3) | 0.318 | |
BMI category | n = 203 | n = 110 | n = 93 | |
Underweight | 9 (4.4) | 1 (0.9) | 8 (8.6) | 0.031 * |
Healthy | 116 (57.1) | 67 (60.9) | 49 (52.7) | |
Overweight | 40 (19.7) | 19 (17.3) | 21 (22.6) | |
Obese | 38 (18.7) | 23 (20.9) | 15 (16.1) | |
Weighing behaviour | n = 214 | n = 113 | n = 101 | |
Frequent | 180 (84.1) | 94 (83.2) | 86 (85.1) | 0.670 |
Infrequent | 34 (15.9) | 19 (16.8) | 15 (14.9) | |
Genetic testing | n = 217 | n = 115 | n = 102 | |
42 (19.4) | 28 (24.3) | 14 (13.7) | 0.0.92 | |
Smoking | n = 217 | n = 115 | n = 102 | |
4 (1.8) | 3 (2.6) | 1 (1.0) | 0.463 | |
Alcohol | n = 217 | n = 115 | n = 102 | |
Any consumption | 99 (45.6) | 56 (48.7) | 43 (42.2) | 0.406 |
Four (4) or more drinks in one sitting | 27 (12.4) | 16 (13.9) | 11 (10.8) | 0.516 |
Taken recreational drugs | n = 217 | n = 115 | n = 102 | |
1 (0.5) | 0 (0.0) | 1 (1.0) | 0.367 | |
Had any vaccine ** (excluding COVID) | n = 217 | n = 115 | n = 102 | |
73 (33.6) | 35 (30.4) | 38 (37.3) | 0.369 | |
Cervical screening | n = 217 | n = 115 | n = 102 | |
57 (26.3) | 31 (27.0) | 26 (25.5) | 0.627 | |
STI screening | n = 217 | n = 115 | n = 102 | |
48 (22.1) | 27 (23.5) | 21 (20.6) | 0.567 | |
Taken a preconception supplement | n = 217 | n = 115 | n = 102 | |
158 (72.8) | 86 (74.8) | 72 (70.6) | 0.509 | |
Taken a Vitamin D supplement | n = 217 | n = 115 | n = 102 | |
107 (49.3) | 64 (55.7) | 43 (42.2) | 0.091 | |
Visited GP for PCC | n = 217 | n = 115 | n = 102 | |
158 (72.8) | 79 (68.7) | 79 (77.5) | 0.228 | |
Improved lifestyle behaviours (any) | n = 216 | n = 115 | n = 101 | |
I did not need to | 11 (5.1) | 7 (6.1) | 4 (4.0) | 0.649 |
No | 14 (6.5) | 7 (6.1) | 7 (6.9) | |
Unsure | 4 (1.9) | 3 (2.6) | 1 (1.0) | |
Yes | 187 (86.6) | 98 (85.2) | 89 (88.1) | |
Increased knowledge | n = 216 | n = 115 | n = 101 | |
Healthy food choices | 108 (50.0) | 58 (50.4) | 50 (49.5) | 0.820 |
Unhealthy food choices | 88 (40.7) | 49 (42.6) | 39 (38.6) | 0.476 |
Methods for physical activity | 104 (48.1) | 58 (50.4) | 46 (45.5) | 0.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brammall, B.R.; Garad, R.M.; Teede, H.J.; Harrison, C.L. Evaluating Preconception Health and Behaviour Change in Australian Women Planning a Pregnancy: The OptimalMe Program, a Digital Healthy Lifestyle Intervention with Remotely Delivered Coaching. Nutrients 2024, 16, 155. https://doi.org/10.3390/nu16010155
Brammall BR, Garad RM, Teede HJ, Harrison CL. Evaluating Preconception Health and Behaviour Change in Australian Women Planning a Pregnancy: The OptimalMe Program, a Digital Healthy Lifestyle Intervention with Remotely Delivered Coaching. Nutrients. 2024; 16(1):155. https://doi.org/10.3390/nu16010155
Chicago/Turabian StyleBrammall, Bonnie R., Rhonda M. Garad, Helena J. Teede, and Cheryce L. Harrison. 2024. "Evaluating Preconception Health and Behaviour Change in Australian Women Planning a Pregnancy: The OptimalMe Program, a Digital Healthy Lifestyle Intervention with Remotely Delivered Coaching" Nutrients 16, no. 1: 155. https://doi.org/10.3390/nu16010155
APA StyleBrammall, B. R., Garad, R. M., Teede, H. J., & Harrison, C. L. (2024). Evaluating Preconception Health and Behaviour Change in Australian Women Planning a Pregnancy: The OptimalMe Program, a Digital Healthy Lifestyle Intervention with Remotely Delivered Coaching. Nutrients, 16(1), 155. https://doi.org/10.3390/nu16010155