Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies and Reagents
2.2. Animals and Insulin Assay
2.3. Cell Lines
2.4. β-Cell Mass and β-Cell Proliferation
2.5. Immunoprecipitation Analysis
2.6. Co-Culture Analysis
2.7. Statistical Analysis
3. Results
3.1. Islet β-Cell Development Is Unaffected by Phogrin Deletion
3.2. Phogrin Regulates High-Fat Diet-Induced Compensatory β-Cell Growth
3.3. Interaction of Phogrin with IR Was Detectable in HFD-Fed Mice Islets
3.4. Intercellular Binding of Mature Phogrin Proteins Inhibits Phogrin/IR Complex Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wasmeier, C.; Hutton, J.C. Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J. Biol. Chem. 1996, 271, 18161–18170. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, Q.; Xie, H.; Chen, Z.J.; Borovitskaya, A.E.; Maclaren, N.K.; Notkins, A.L.; Lan, M.S. Identification of a second transmembrane protein tyrosine phosphatase, IA-2beta, as an autoantigen in insulin-dependent diabetes mellitus: Precursor of the 37-kDa tryptic fragment. Proc. Natl. Acad. Sci. USA 1996, 93, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yu, W.; DeAizpurua, H.J.; Schmidli, R.S.; Pallen, C.J. Cloning and characterization of islet cell antigen-related protein-tyrosine phosphatase (PTP), a novel receptor-like PTP and autoantigen in insulin-dependent diabetes. J. Biol. Chem. 1996, 271, 24817–24823. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.K.; Flanagan, J.G. PTP-NP, a new member of the receptor protein tyrosine phosphatase family, implicated in development of nervous system and pancreatic endocrine cells. Development 1996, 122, 2239–2250. [Google Scholar] [CrossRef] [PubMed]
- Solimena, M.; Dirkx, R.; Hermel, J.M.; Pleasic-Williams, S.; A Shapiro, J.; Caron, L.; Rabin, D.U. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996, 15, 2102–2114. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, L.R.; Walton, K.M.; Dixon, J.E.; Largent, B.L. PTP NE-6: A brain-enriched receptor-type protein tyrosine phosphatase with a divergent catalytic domain. J. Neurochem. 1997, 68, 1820–1829. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.G.; Peters, G.H.; Andersen, H.S.; Hendriks, W.; Moller, N.P. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta). Biochem. J. 2003, 373 Pt 2, 393–401. [Google Scholar] [CrossRef]
- Torii, S.; Kubota, C.; Saito, N.; Kawano, A.; Hou, N.; Kobayashi, M.; Torii, R.; Hosaka, M.; Kitamura, T.; Takeuchi, T.; et al. The pseudophosphatase phogrin enables glucose-stimulated insulin signaling in pancreatic β cells. J. Biol. Chem. 2018, 293, 5920–5933. [Google Scholar] [CrossRef]
- Caromile, L.A.; Oganesian, A.; Coats, S.A.; Seifert, R.A.; Bowen-Pope, D.F. The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion. J. Biol. Chem. 2010, 285, 10487–10496. [Google Scholar] [CrossRef]
- Takeyama, N.; Ano, Y.; Wu, G.; Kubota, N.; Saeki, K.; Sakudo, A.; Momotani, E.; Sugiura, K.; Yukawa, M.; Onodera, T. Localization of insulinoma associated protein 2, IA-2 in mouse neuroendocrine tissues using two novel monoclonal antibodies. Life Sci. 2009, 84, 678–687. [Google Scholar] [CrossRef]
- Gomi, H.; Kubota-Murata, C.; Yasui, T.; Tsukise, A.; Torii, S. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells. J. Histochem. Cytochem. 2013, 61, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Franco, J.J.; Munoz-Cuevas, F.J.; Luján, R.; Jurado, S. Excitatory and inhibitory neurons in the hippocampus exhibit molecularly distinct large dense core vesicles. Front. Cell Neurosci. 2016, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Suckale, J.; Solimena, M. The insulin secretory granule as a signaling hub. Trends Endocrinol. Metab. 2010, 21, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Omar-Hmeadi, M.; Idevall-Hagren, O. Insulin granule biogenesis and exocytosis. Cell. Mol. Life Sci. CMLS 2021, 78, 1957–1970. [Google Scholar] [CrossRef]
- Saeki, K.; Zhu, M.; Kubosaki, A.; Xie, J.; Lan, M.S.; Notkins, A.L. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes 2002, 51, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Kubosaki, A.; Gross, S.; Miura, J.; Saeki, K.; Zhu, M.; Nakamura, S.; Hendriks, W.; Notkins, A.L. Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 2004, 53, 1684–1691. [Google Scholar] [CrossRef]
- Henquin, J.C.; Nenquin, M.; Szollosi, A.; Kubosaki, A.; Notkins, A.L. Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. J. Endocrinol. 2008, 196, 573–581. [Google Scholar] [CrossRef]
- Cai, T.; Hirai, H.; Zhang, G.; Zhang, M.; Takahashi, N.; Kasai, H.; Satin, L.S.; Leapman, R.D.; Notkins, A.L. Deletion of Ia-2 and/or Ia-2beta in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia 2011, 54, 2347–2357. [Google Scholar] [CrossRef]
- Torii, S.; Saito, N.; Kawano, A.; Hou, N.; Ueki, K.; Kulkarni, R.N.; Takeuchi, T. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes 2009, 58, 682–692. [Google Scholar] [CrossRef]
- Mziaut, H.; Kersting, S.; Knoch, K.P.; Fan, W.H.; Trajkovski, M.; Erdmann, K.; Bergert, H.; Ehehalt, F.; Saeger, H.D.; Solimena, M. ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs. Proc. Natl. Acad. Sci. USA 2008, 105, 674–679. [Google Scholar] [CrossRef]
- Terauchi, Y.; Takamoto, I.; Kubota, N.; Matsui, J.; Suzuki, R.; Komeda, K.; Hara, A.; Toyoda, Y.; Miwa, I.; Aizawa, S.; et al. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J. Clin. Investig. 2007, 117, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Porat, S.; Weinberg-Corem, N.; Tornovsky-Babaey, S.; Schyr-Ben-Haroush, R.; Hija, A.; Stolovich-Rain, M.; Dadon, D.; Granot, Z.; Ben-Hur, V.; White, P.; et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab. 2011, 13, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J. Type 2 diabetes-a matter of beta-cell life and death? Science 2005, 307, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Kubota, N.; Kadowaki, T. Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab. 2017, 25, 797–810. [Google Scholar] [CrossRef]
- Weir, G.C.; Gaglia, J.; Bonner-Weir, S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 2020, 8, 249–256. [Google Scholar] [CrossRef]
- Bader, E.; Migliorini, A.; Gegg, M.; Moruzzi, N.; Gerdes, J.; Roscioni, S.S.; Bakhti, M.; Brandl, E.; Irmler, M.; Beckers, J.; et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 2016, 535, 430–434. [Google Scholar] [CrossRef]
- Wang, Y.J.; Kaestner, K.H. Single-Cell RNA-Seq of the Pancreatic Islets—A Promise Not yet Fulfilled? Cell Metab. 2019, 29, 539–544. [Google Scholar] [CrossRef]
- Miranda, M.A.; Macias-Velasco, J.F.; Lawson, H.A. Pancreatic β-cell heterogeneity in health and diabetes: Classes, sources, and subtypes. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E716–E731. [Google Scholar] [CrossRef]
- Yasui, T.; Mashiko, M.; Obi, A.; Mori, H.; Ito-Murata, M.; Hayakawa, H.; Kikuchi, S.; Hosaka, M.; Kubota, C.; Torii, S.; et al. Insulin granule morphology and crinosome formation in mice lacking the pancreatic β cell-specific phogrin (PTPRN2) gene. Histochem. Cell Biol. 2023, in press. [Google Scholar] [CrossRef]
- Stamateris, R.E.; Sharma, R.B.; Hollern, D.A.; Alonso, L.C. Adaptive beta-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E149–E159. [Google Scholar] [CrossRef]
- Mosser, R.E.; Maulis, M.F.; Moulle, V.S.; Dunn, J.C.; Carboneau, B.A.; Arasi, K.; Pappan, K.; Poitout, V.; Gannon, M. High-fat diet-induced beta-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E573–E582. [Google Scholar] [CrossRef] [PubMed]
- Primo, M.E.; Jakoncic, J.; Noguera, M.E.; Risso, V.A.; Sosa, L.; Sica, M.P.; Solimena, M.; Poskus, E.; Ermácora, M.R. Protein-protein interactions in crystals of the human receptor-type protein tyrosine phosphatase ICA512 ectodomain. PLoS ONE 2011, 6, e24191. [Google Scholar] [CrossRef] [PubMed]
- Noguera, M.E.; Primo, M.E.; Jakoncic, J.; Poskus, E.; Solimena, M.; Ermácora, M.R. X-ray structure of the mature ectodomain of phogrin. J. Struct. Funct. Genom. 2015, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stamateris, R.E.; Sharma, R.B.; Kong, Y.; Ebrahimpour, P.; Panday, D.; Ranganath, P.; Zou, B.; Levitt, H.; Parambil, N.A.; O’Donnell, C.P.; et al. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor. Diabetes 2016, 65, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Maachi, H.; Fergusson, G.; Ethier, M.; Brill, G.N.; Katz, L.S.; Honig, L.B.; Metukuri, M.R.; Scott, D.K.; Ghislain, J.; Poitout, V. HB-EGF Signaling Is Required for Glucose-Induced Pancreatic β-Cell Proliferation in Rats. Diabetes 2020, 69, 369–380. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ristow, M.; Lin, X.; White, M.F.; Magnuson, M.A.; Hennighausen, L. RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J. Biol. Chem. 2006, 281, 2649–2653. [Google Scholar] [CrossRef]
- Song, J.; Xu, Y.; Hu, X.; Choi, B.; Tong, Q. Brain expression of Cre recombinase driven by pancreas-specific promoters. Genesis 2010, 48, 628–634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubota, C.; Torii, R.; Hosaka, M.; Takeuchi, T.; Gomi, H.; Torii, S. Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners. Nutrients 2024, 16, 169. https://doi.org/10.3390/nu16010169
Kubota C, Torii R, Hosaka M, Takeuchi T, Gomi H, Torii S. Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners. Nutrients. 2024; 16(1):169. https://doi.org/10.3390/nu16010169
Chicago/Turabian StyleKubota, Chisato, Ryoko Torii, Masahiro Hosaka, Toshiyuki Takeuchi, Hiroshi Gomi, and Seiji Torii. 2024. "Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners" Nutrients 16, no. 1: 169. https://doi.org/10.3390/nu16010169
APA StyleKubota, C., Torii, R., Hosaka, M., Takeuchi, T., Gomi, H., & Torii, S. (2024). Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners. Nutrients, 16(1), 169. https://doi.org/10.3390/nu16010169