Human Milk Microbiome—A Review of Scientific Reports
Abstract
:1. Introduction
2. Origin of Microbiota in Human Milk
2.1. Child’s Mouth Cavity
2.2. Mother’s Skin
2.3. Maternal Digestive Tract
3. Microorganisms in Human Milk
3.1. Archaea
3.2. Viruses
3.3. Bacteria
3.4. Fungi
3.5. Protozoa
4. Factors Influencing the Microbiome of Human Milk
4.1. The Influence of Environmental and Cultural Factors on the Microbiome of Human Milk
4.2. The Influence of Maternal Factors on the Microbiome of Human Milk
Maternal Factor | Number of Women; Residence | Microbiota Analysis Method | Microbiota Diversity | References |
---|---|---|---|---|
Overweight/obesity of a breastfeeding woman | normal-weight (n = 8) and obese (n = 10) mothers | 16S rRNA gene sequencing | ● higher number of Staphylococcus spp., but lower number of Bifidobacterium spp. in obese women compared to normal-weight women. | Cabrera et al. [48] |
Antibiotic therapy | 160 women (40.62% had received antibiotherapy) | 16S rRNA gene sequencing | ● lower number of the genera Lactobacillus, Bifidobacterium, Eubacterium, and Staphylococcus in women receiving antibiotic therapy compared to women who did not use antibiotics during pregnancy and lactation. | Soto et al. [71] |
Chemotherapy | 8 healthy women/8 women undergoing the ABVD chemotherapy | 16S sequencing and the metabolome by gas chromatography–mass spectrometry | ● lower number of Lactobacillus, Bifidobacterium, Eubacterium, Staphylococcus, and Cloacibacterium spp. In women undergoing the ABVD chemotherapy compared to healthy women. | Urbaniak et al. [99] |
Celiac disease | 12 healthy mothers/12 mothers with CD | PCR; MOLECULAR MASS | ● lower number of Bifidobacterium spp. and Bacteroidesfragilis in women with CD compared to healthy women. | Olivares et. al. [127] |
HIV | 121 women (23% with HIV) | Culture | ● higher bacterial diversity and higher number of Lactobacillus spp. In milk samples with HIV RNA than in samples without it. | Gonzalez et al. [98] |
Lactation phases | 18 women/colostrum and mature milk | 16S rRNA gene sequencing | ● colostrum samples were dominated by Weisella, Leuconostoc, Staphylococcus, Streptococcus, and Lactococcus; ● colostrum showed different patterns of bacterial diversity compared to 6-month-old milk samples; ● lower number of Bifidobacterium spp. in breast milk 6-month-old milk samples were related to higher maternal BMI. | Cabrera et al. [48] |
Antibiotics/Caesarean section/diet | 120 women divided into: ● Cluster I (high intake of plant protein, fiber, and carbohydrates) and Cluster II (high intake of animal protein and lipids) ● Caesarean section/natural birth Taking antibiotics/not taking antibiotics | 16S rRNA gene sequencing | ● in group II/section C/exposure to antibiotics, a lower number of Lactobacillus, Bacteroides and Sediminibacterium genera was observed compared to other groups. | Cortes-Maicas [125] |
Probiotics (Lactobacillus Salivarius CECT5713 and Lactobacillus Fermentum CECT5716 strains) | Women with (n = 23) and without (n = 8) symptoms of mastitis received three daily doses (109 CFU) of Lactobacillus salivarius PS2 for 21 days. | PCR | ● supplemented strains were detected in milk; ● reducing the number of bacteria in milk | Espinaso et al. [128] |
Mastitis | 50 breast milk samples, including 16 subacute mastitis (SAM), 16 acute mastitis (AM) and 18 healthy control samples | 16S rRNA gene sequencing | ● higher number of Aeromonas, Staphylococcus, Ralstonia, Klebsiella, Serratia, Enterococcus, and Pseudomonas in SAM and AM samples; ● lower number of Acinetobacter, Ruminococcus, Clostridium, Faecalibacterium, and Eubacterium in SAM and AM samples. | Patel et al. [107] |
Diet | 113 milk samples | PCR | ● 1 g increase in fiber content in cereals was associated with reduced incidence of Fusobacteria and Streptococcus and an increase in Acinebacterium; ● trans fats showed a positive relationship with the occurrence of Staphylococcus and Gemella; ● A 1 g increase in monounsaturated fat intake was associated with an increased incidence of Acinetobacter and Gemella; ● negative associations were observed between the consumption of polyunsaturated fats and the incidence of Acinetobacter. | LeMay-Nedjelski et al. [129] |
Lactation phase | 47 breastfeeding women | MALDI-TOF-MS | ● total number of bacteria higher in colostrum than mature milk. | Damaceno et al. [106] |
Mastitis | 20 women (10 healthy, 10 mastitis) | MALDI-TOF-MS | ● high absolute abundance of S. aureus in women with acute mastitis and S. epidermidis in women with subacute mastitis. | Jiménez et al. [33] |
A type of breast pumping | 393 women | 16S rRNA gene sequencing | ● higher content of Gemellaceae, Vogesella, and Nocardioides with manually expressed milk, higher relative abundance of Enterobacteriaceae and Pseudomonas in milk expressed by a breast pump. | Moossavi et al. [45] |
BMI | 21 women | 16S rRNA gene sequencing | ● women with higher BMI had higher abundance of Granulicatella and lower relative abundance of Bacteroides. | Williams et al. [120] |
Lactation phases | 50 women | 16S rRNA gene sequencing | ● higher number of anaerobic bacteria in mature milk compared to colostrum. | Drago et al. [104] |
Taking antibiotics | 20 women | 16S rRNA gene sequencing | ● milk from women taking 25% IAP (ampicillin 5) showed a lower total bacterial count (104–106 CFU/mL). | Solis et al. [68] |
Lactation phases | 22 women | Culture | ● higher number of Enterococcus, Lactobacillus and Streptococcus spp. in mature milk | Moles et al. [130] |
4.3. Perinatal Factors
Perinatal Factor | Number of Study Group | Microbiota Analysis Method | Microbiota Diversity | References |
---|---|---|---|---|
Method of delivery | 46 newborns (n = 23 born vaginally, n = 23 born by cesarean section) | PCR | ● lower numbers of Bifidobacterium and Bacteroides in infants born by cesarean section compared to infants born vaginally. | Biasucci et al. [159] |
Method of delivery | 116 newborns (n = 99 born vaginally, n = 17 born by cesarean section) | PCR and culture | ● higher abundance of Escherichia coli in newborns born vaginally; ● in newborns born by cesarean section, a higher number of enterobacteria, i.e., Klebsiella and Enterobacter; ● Bacteroides colonization delayed up to 1 year in children born by cesarean section. | Adlerberth et al. [160] |
Method of delivery | 64 newborns (n = 34 born vaginally, n = 30 born by cesarean section) | culture | ● Clostridium perfringens colonization rate statistically higher in the group of children born by cesarean section than in the group of children born vaginally in the first month of life (57% vs. 17%); ● colonization rates of Bifidobacterium-like and Lactobacillus-like bacteria reached the colonization rate of vaginally delivered children after 1 month and 10 days, respectively; ● Bacteroides colonization was not detected in any stool sample from infancy in children born by cesarean section until the age of 2 months. | Minna-Maija et al. [161] |
Method of delivery | 10 newborns (n = 4 born vaginally, n = 6 born by cesarean section) | multiplexed pyrosequencing of the 16S rRNA gene | ● Lactobacillus dominance in infants after vaginal delivery; ● Prevotella or Sneathia spp., in infants after cesarean section, the dominance of Staphylococcus, Corynebacterium, and Cutibacterium spp. | Dominguez-Bello et al. [132] |
Duration of pregnancy | 29 premature babies (28 and 32 weeks of pregnancy) | 16S rRNA gene sequencing | ● the most numerous phylum Proteobacteria; ● current shift patterns: increase in Clostridium and Bacteroides and decrease over time in early life; ● higher numbers of Clostridiates and lower numbers of Enterobacterium in girls than in boys. | Cong et al. [139] |
Duration of pregnancy | 120 children (n = 25 children born between 23 and 25 weeks of pregnancy; n = 22, 26–27 weeks of pregnancy; n = 11, 28–29 weeks of pregnancy, n = 11, 30–31 weeks of pregnancy, n = 18, 32–33 weeks of pregnancy; n = 8, 34–35 weeks of pregnancy; n = 25, 37 weeks of pregnancy and above | 16S rRNA gene sequence | ● in premature infants, the most numerous phylum of Bacilli, Proteobacteria, Clostridia (87%); ● Actinobacteria and Bacteroidia 6.5% and 5.1%, respectively. | Grier et al. [140] |
Duration of pregnancy | 58 children (n = 15 children born < 26 weeks of gestation; n = 20, 26–28 weeks of pregnancy; n = 23, >28 weeks of pregnancy | 16S rRNA gene pyrosequencing | ● the intestinal microbiota of premature infants changes from Bacilli to Gammaproteobacteria to Clostridia. | La Rosa et al. [144] |
Duration of pregnancy | 40 children (n = 27 children born between 24 and 32 weeks of pregnancy; n = 13 children born between 37 and 41 weeks of pregnancy) | 16S rRNA gene sequence | ● in premature babies in the first months of life, a lower number of the Bacteroidaceae family and a higher number of Lactobacillaceae compared to full-term children. | Arboleya et al. [162] |
Duration of pregnancy | 41 children (n = 21 children born between 30 and 35 weeks of pregnancy; n = 20 children born between 38 and 41 weeks of pregnancy) | qPCR | ● in premature infants, increased number of facultative anaerobes Enterobacteriaceae, Enterococcaceae and Lactobacillus (including Weissella); ● in premature babies, reduced numbers of anaerobic bacteria, including Bifidobacterium, Bacteroides, and Atopobium, | Arboleya et al. [163] |
Duration of pregnancy | 29 premature babies (born between 27 and 29 weeks of pregnancy) | 16S rRNA gene sequence | ● increase in the number of operational taxonomic units by 0.45 units/week—with staphylococci being the main group; ● little represented bacteria of the Bifidobacterium genus. | Jacquot et al. [164] |
Duration of pregnancy | 29 children born between 24 and 37 weeks of pregnancy | 16S rRNA gene sequence, PCR | ● dominant bacteria in premature babies: Escherichia coli, Enterococcus spp. and Klebsiella pneumoniae | Schwiertz et al. [165] |
NEC | 32 children | 16S rRNA gene sequence | ●Firmicutes and Proteobacteria predominate in children with NEC; ● no Cutibacterium spp. present in children with NEC. | Morrow et al. [166] |
NEC | 122 children | 16S rRNA gene sequence | ● NEC in very low birth weight infants preceded by an increased abundance of Gammaproteobacteria and a deficiency of anaerobic bacteria (especially Negativicutes). | Warner et al. [167] |
NEC | 369 children | 16S rRNA gene sequence | ● presence genus of Clostridium and Klebsiella in children with NEC. | Sim et al. [143] |
NICU | 58 children | 16S rRNA gene pyrosequencing | ● presence of Proteobacteria (54%), Bacillus (19.3%) and Clostridia (18.4%). | La Rosa et al. [144] |
NICU | 16 private-style NICU rooms | 16S rRNA gene sequence, PCR | ● over 50% of microorganisms were associated with the skin (Corynebacterium), then the oral cavity (Streptococcus) and the nose (Staphylococcus). | Brooks et al. [146] |
Antibiotic therapy | 606 children | 16S rRNA gene sequence | ● increase in the number of Enterobacter in infants treated with antibiotics; ● reduction in the number of Bacteroides and Atopobium clusters in children of mothers using antibiotic therapy. | Fallani et al. [151] |
Antibiotic therapy | 61 women | 16S rRNA gene sequence | ● lack of Bifidobacterium spp. bacteria in the milk of women who received intrapartum antibiotic therapy. | Hermansson [124] |
Reproduction | 22 women (16 primiparous, 6 multiparous) | 16S rRNA gene sequence, PCR | ● higher numbers of Staphylococcus, Collinsella and Haemophilus in multiparous women. | Kim et al. [147] |
Feeding method | 393 women | PCR | ● higher numbers of Bifidobacterium spp. in children fed directly by breast milk compared to children fed with expressed mother’s milk; ● in children who are directly breastfed, a relatively higher abundance of Gemellaceae, Vogesella and Nocardioides; ● in children fed with expressed breast milk, a relatively higher number of Enterobacteriaceae and Pseudomonas. | Moossavi [45] |
Feeding method | 1032 children | 16S rRNA gene sequence, PCR | ● higher numbers of E coli, C difficile, Bacteroides and Lactobacillus in children fed with formula milk. | Penders et al. [156] |
Feeding method | 684 children | 16S rRNA gene sequence | ● in the first 6 months of life, higher numbers of Bacteroidetes and Firmicutes in formula-fed children. | Ho et al. [157] |
Feeding method | 98 dyads (mother-child) | culture | ● in children fed with formula milk, lower numbers of Bifidobacterium and higher numbers of Clostridium and Enterobacteriaceae (E. coli); ● in 4-month-old exclusively breastfed children, a higher abundance of taxa used as probiotics, such as L. johnsonii/L.gasseri, L. paracasei/L. casei and B. longum; ● in 4-month-old children fed with formula milk, higher numbers of Clostridioides difficile, Granulicatella adiacens, Citrobacter spp., Enterobacter cloacae, and Bilophila wadsworthia. | Bäckhed et al. [155] |
Feeding method | 29 premature babies (28 and 32 weeks of pregnancy) | 16S rRNA gene sequencing | ● significantly higher abundance of Clostridiales and Lactobacillales in premature babies fed with human milk compared to children fed with formula. | Cong et al. [139] |
Feeding method | 45 premature babies | 16S rRNA gene sequencing | ● the development of the microbiota took place in four phases, with the dominance of Staphylococcus, Enterococcus, Enterobacter and finally Bifidobacterium. | Korpela et al. [158] |
5. Composition of Human Milk and the Microbiome
6. Microbiota Modulation—During Pregnancy and after Childbirth
Type of Material Collected | Number of Women; Residence | Microbiota Analysis Method | Microbiota Diversity | References |
---|---|---|---|---|
Placenta | 320 women | 16S rRNA gene sequencing | ● nonpathogenic commensal microbiota from the Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria phyla. | Aagaard et al. [171] |
Placenta | 37 overweight and obese women | 16S rRNA gene sequencing | ● in the Firmicutes phylum, the dominant genera are Streptococcus, Lactobacillus, and Veillonella; ● in the Proteobacteria phylum, the dominant genera are Pseudomonas, Haemophilus, and Acinetobacter. | Gomez-Arango et al. [172] |
Placenta | 1391 women | 16S rRNA gene sequencing | ● the dominant species in fetal membranes are Lactobacillus iners, Gardnerella vaalis, and Sneathia sanguinegens; ● Acinetobacter spp. And Enterobacteriaceae predominant species in placental tissues. | Doyle et al. [173] |
Placenta | 64 women | 16S rRNA gene sequencing | ● three species of Candida fungi have been identified: C. albicans, C. tropicalis, and C. glabrata ● 30 species of bacteria were identified; Escherichia coli belonging to the Enterobacteriaceae family constituted 57.71% of the isolated strains, and Enterococcus faecalis belonging to the Enterococcaceae family constituted 21.03% of the isolated strains. | Zhu et al. [174] |
Placenta/amniotic fluid/meconium | 15 mother–infant pairs | 16S rRNA gene pyrosequencing, quantitative PCR | ● in the amniotic fluid and placenta, the dominant species are Enterobacter and Escherichia/Shigella, followed by Cutibacterium (also detectable in meconium); ● small amount of Streptococcus genus in amniotic fluid, placenta, and meconium (<1%); ● relative abundance of the Streptococcus genus in colostrum (12%) and infant feces (24%); ● low relative abundance of the Staphylococcus genus in amniotic fluid (<1%) and placenta (<1%) compared to meconium (20%); ● Lactobacillus genus present in samples of amniotic fluid (1.15%), placenta (<1%), colostrum (2.15%) and meconium (2.53%); ● presence of Propionibacteria and Staphylococci in the placenta and amniotic fluid; ● at the phylum level, meconium microbiota dominated by Firmicutes; ● the Staphylococcaceae most frequently detected in meconium samples. | Collado et al. [175] |
Placenta | 34 women | PCR | ● presence of Bifidobacterium spp. in 25 placenta samples from vaginal delivery and 8 placenta samples from cesarean section; ● presence of L. rhammosus in 23 placenta samples from vaginal delivery and 8 placenta samples from cesarean section; ● in 5 placenta samples from vaginal delivery, a representative colony of Staphylococcus spp., Corynebacterium spp., and Lactobacillus crispatus; ● in 1 placenta sample from a cesarean section, a representative colony of Clostridium spp. | Satokari et al. [179] |
Meconium | 301 newborns | 16S rRNA gene sequencing | ● dominant: Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria and Bacteroidetes. | Dong et al. [180] |
Meconium | 21 newborns | PCR | ● dominant genera Enterococcus and Staphylococcus. | Jiménez et al. [41] |
Meconium | 330 very preterm infants (gestational ages 28 to 32 weeks) | 16S rRNA gene sequencing | ● dominant genera Bifidobacterium, Staphylococcus and Enterococcus. | Klopp et al. [181] |
Meconium | 117 preterm neonates | 16S rRNA gene sequencing, PCR | ● the most numerous phylum Proteobacteria; ● the most numerous genus, Bifidobacterium. | Morais et al. [182] |
Meconium | 63 preterm infants born < 33 weeks gestational age | 16S rRNA sequencing using PGM | ● dominant phylum: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. | Terrazzan Nutricionist et al. [183] |
Cord blood | 20 healthy neonates born by cesarean section. | 16S rRNA gene sequencing, PCR | ● presence of Enterococcus faecium, Cutibacterium acnes, Staphylococcus epidermidis and Streptococcus sanguinis. | Jiménez et al. [177] |
7. Does the Composition of Human Milk Influence the Formation of a Newborn’s Microbiota?
8. Microbiome Assessment Methods
9. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Horta, B.L.; Victora, C.G. World Health Organization. Long-Term Effects of Breastfeeding: A Systematic Review; WHO: Geneva, Switzerland, 2013; pp. 13–56. [Google Scholar]
- Lawrence, M.; Morton, G.J.; Lawrence, R.A.; Naylor, A.J.; Hare, O.D.; Schandler, R.J.; Eidelman, A.I. American Academy of Pediatrics. Section on breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012, 129, 827–841. [Google Scholar] [CrossRef]
- Ahmadizar, F.; Vijverberg, S.J.H.; Arets, H.G.M.; de Boer, A.; Garssen, J.; Kraneveld, A.D.; Maitland-van der Zee, A.H. Breastfeeding is associated with a decreased risk of childhood asthma exacerbations later in life. Pediatr. Allergy Immunol. 2017, 28, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Donnot, J.; Vauclair, J.; Bréjard, V. Newborn right-holding is related to depressive symptoms in bottle-feeding mothers but not in breastfeeding mothers. Infant. Behav. Dev. 2008, 31, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Bailey, L.R.; Trichopoulos, D. History of breast-feeding in relation to breast cancer risk: A review of the epidemiologic literature. J. Natl. Cancer Inst. 2000, 92, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jiang, J.; Xiao, H.; Wu, K.; Qia, C.; Sund, J. Changes in metabolites profile of breast milk over lactation stages and their relationship with dietary intake in Chinese women: HPLC-QTOFMS based metabolomic analysis. Food Funct. 2018, 9, 5189–5197. [Google Scholar] [CrossRef] [PubMed]
- Francois, C.A.; Connor, S.L.; Wander, R.C.; Connor, W.E. Acute effects of dietary fatty acids on the fatty acids of human milk. Am. J. Clin. Nutr. 1998, 67, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Karcz, K.; Królak-Olejnik, B. Vegan or vegetarian diet and breast milk composition—A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1081–1098. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; de Pablo, A.L.; de Pipaón, M.S.; Ramiro-Cortijo, D. A review of bioactive factors in human breastmilk: A focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bode, L. Human milk oligosaccharides: Prebiotics and beyond. Nutrition 2009, 67, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Guo, M. Chemical composition of humanmilk. In Human Milk Biochemistry and Infant Formula Manufacturing Technology; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Murphey, D.K.; Buescher, E.S. Human colostrum has antiinflammatory activity in a rat subcutaneous air pouch model of inflammation. Pediatr. Res. 1993, 34, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, M.F.; Fredriksson, J.; Hellquist, A.; Jenmalm, M.C. Effects of breast milk from allergic and non-allergic mothers on mitogen- and allergen-induced cytokine production. Pediatr. Allergy Immunol. 2003, 14, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chattertona, D.E.W.; Nguyena, D.N.; Bering, S.B.; Sangild, P.B. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell Biol. 2013, 45, 1730–1747. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, S.P.; Evans, M.K.; Pearce, C.L.; Sheridan, M.J.; Wientzen, R.; Cole, M.F. Immunoglobulin A subclasses in infants’ saliva and in saliva and milk from their mothers. J. Pediatr. 1994, 124, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Yoshida, M.; Ichijo, M.; Ishizaka, S.; Tsujii, T. Transforming growth factor-beta (TGF-beta) in human milk. Clin. Exp. Immunol. 1993, 94, 220–224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macias, C.; Schweigert, F.J. Changes in the concentration of carotenoids, vitamin A, alpha-tocopherol and total lipids in human milk throughout early lactation. Ann. Nutr. Metab. 2001, 45, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Xavier, A.A.O.; Díaz-Salido, E.; Arenilla-Vélez, I.; Aguayo-Maldonado, J.; Garrido-Fernández, J.; Fontecha, J.; Sánchez-García, A.; Pérez-Gálvez, A. Carotenoid content in human colostrum is associated to preterm/full-term birth condition. Nutrients 2018, 10, 1654–1669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- L’Abbe, M.R.; Friel, J.K. Superoxide dismutase and glutathione peroxidase content of human milk from mothers of premature and full-term infants during the first 3 months of lactation. J. Pediatr. Gastroenterol. Nutr. 2003, 31, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Martin, S.M.; Langdon, M.; Herzberg, G.R.; Buettner, G.R. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr. Res. 2002, 51, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Sindi, A.S.M.; Cheema, A.S.; Lai, C.T.; Mühlhäusler, B.S.; Wlodek, M.E.; Payne, M.S.; Geddes, D.T. The human milk microbiome: Who, what, when, where, why, and how? Nutr. Rev. 2021, 79, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, F.; Salvatori, G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front. Cell Infect. Microbiol. 2012, 2, 94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funkhouser, L.J.; Bordenstein, S.R. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013, 11, e1001631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomez-Gallego, C.; Garcia-Mantrana, I.; Salminen, S.; Collado, M.C. The human milk microbiome and factors influencing its composition and activity. Semin. Fetal Neonatal Med. 2016, 6, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Selma-Royo, M.; Calvo Lerma, J.; Cortés-Macías, E.; Collado, M.C. Human milk microbiome: From actual knowledge to future perspective. Semin. Perinatol. 2021, 6, 151450. [Google Scholar] [CrossRef] [PubMed]
- Boix-Amorós, A.; Collado, M.C.; Mira, A. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation. Front. Microbiol. 2016, 7, 492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beghetti, I.; Biagi, E.; Martini, S.; Brigidi, P.; Corvaglia, L.; Aceti, A. Human Milk’s Hidden Gift: Implications of the Milk Microbiome for Preterm Infants’ Health. Nutrients 2019, 11, 2944. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demmelmair, H.; Jiménez, E.; Collado, M.C.; Salminen, S.; McGuire, M.K. Maternal and Perinatal Factors Associated with the Human Milk Microbiome. Curr. Dev. Nutr. 2020, 4, nzaa027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez Leyva, L.; Brereton, N.J.B.; Koski, K.G. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. Comput. Struct. Biotechnol. J. 2020, 19, 121–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moubareck, C.A. Human milk microbiota and oligosaccharides: A glimpse into benefits, diversity, and correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, T.L.; Hosid, S.; Ioshikhes, I.; Altosaar, I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013, 13, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiménez, E.; de Andrés, J.; Manrique, M.; Pareja-Tobes, P.; Tobes, R.; Martínez-Blanch, J.F.; Codoñer, F.M.; Ramón, D.; Fernández, L.; Rodríguez, J.M. Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women. J. Hum. Lact. 2015, 3, 406–415. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; McGuire, M.A. Human milk: Mother nature’s prototypical probiotic food? Adv. Nutr. 2015, 6, 112–123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodríguez, J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv. Nutr. 2014, 5, 779–784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biagi, E.; Aceti, A.; Quercia, S.; Beghetti, I.; Rampelli, S.; Turroni, S.; Soverini, M.; Zambrini, A.V.; Faldella, G.; Candela, M.; et al. Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants. Front. Microbiol. 2018, 9, 2512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jost, T.; Lacroix, C.; Braegger, C.P.; Rochat, F.; Chassard, C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014, 9, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Bacigalupe, R.; García-Carral, C.; Boix-Amoros, A.; Argüello, H.; Silva, C.B.; de Los Angeles Checa, M.; Mira, A.; Rodríguez, J.M. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci. Rep. 2019, 9, 8435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Shehri, S.S.; Sweeney, E.L.; Cowley, D.M.; Liley, H.G.; Ranasinghe, P.D.; Charles, B.G.; Shaw, P.N.; Vagenas, D.; Duley, J.A.; Knox, C.L. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: A comparison of breast-fed and formula-fed infants. Sci. Rep. 2016, 6, 38309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiménez, E.; Delgado, S.; Maldonado, A.; Arroyo, R.; Albújar, M.; García, N.; Jariod, M.; Fernández, L.; Gómez, A.; Rodríguez, J.M. Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 2008, 8, 143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boix-Amorós, A.; Puente-Sánchez, F.; du Toit, E.; Linderborg, K.M.; Zhang, Y.; Yang, B.; Salminen, S.; Isolauri, E.; Tamames, J.; Mira, A.; et al. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Appl. Environ. Microbiol. 2019, 85, e02994-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boix-Amorós, A.; Martinez-Costa, C.; Querol, A.; Collado, M.C.; Mira, A. Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci. Rep. 2017, 7, 13016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moossavi, S.; Atakora, F.; Miliku, K.; Sepehri, S.; Robertson, B.; Duan, Q.L.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; et al. Integrated Analysis of Human Milk Microbiota With Oligosaccharides and Fatty Acids in the CHILD Cohort. Front. Nutr. 2019, 6, 58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collado, M.C.; Delgado, S.; Maldonado, A.; Rodríguez, J.M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 2009, 5, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Heilig, H.G.; Zoetendal, E.G.; Jiménez, E.; Fernández, L.; Smidt, H.; Rodríguez, J.M. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res. Microbiol. 2007, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012, 3, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Addis, M.F.; Chassard, C.; Nader-Macias, M.E.F.; Grant, I.; Delbès, C.; Bogni, C.I.; Le Loir, Y.; Even, S. Milk Microbiota: What Are We Exactly Talking About? Front. Microbiol. 2020, 11, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.M.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011, 6, e21313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez, P.F.; Doré, J.; Leclerc, M.; Levenez, F.; Benyacoub, J.; Serrant, P.; Segura-Roggero, I.; Schiffrin, E.J.; Donnet-Hughes, A. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? Pediatrics 2007, 119, e724–e732. [Google Scholar] [CrossRef] [PubMed]
- de Andrés, J.; Jiménez, E.; Chico-Calero, I.; Fresno, M.; Fernández, L.; Rodríguez, J.M. Physiological Translocation of Lactic Acid Bacteria during Pregnancy Contributes to the Composition of the Milk Microbiota in Mice. Nutrients 2017, 10, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiménez, E.; Marín, M.L.; Martín, R.; Odriozola, J.M.; Olivares, M.; Xaus, J.; Fernández, L.; Rodríguez, J.M. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008, 159, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Stearns, J.C.; Zulyniak, M.A.; de Souza, R.J.; Campbell, N.C.; Fontes, M.; Shaikh, M.; Sears, M.R.; Becker, A.B.; Mandhane, P.J.; Subbarao, P.; et al. Ethnic and diet-related differences in the healthy infant microbiome. Genome Med. 2017, 9, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Togo, A.H.; Grine, G.; Khelaifia, S.; des Robert, C.; Brevaut, V.; Caputo, A.; Baptiste, E.; Bonnet, M.; Levasseur, A.; Drancourt, M.; et al. Culture of Methanogenic Archaea from Human Colostrum and Milk. Sci. Rep. 2019, 9, 18653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bang, C.; Schmitz, R.A. Archaea associated with human surfaces: Not to be underestimated. FEMS Microbiol. Rev. 2015, 39, 631–648. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Armanini, F.; Turroni, F.; James, K.; Ferretti, P.; Gorfer, V.; Ferrario, C.; Milani, C.; et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, E.S.; Zhou, Y.; Zhao, G.; Bauer, I.K.; Droit, L.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Wang, D.; Holtz, L.R. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 2015, 21, 1228–1234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pannaraj, P.S.; Ly, M.; Cerini, C.; Saavedra, M.; Aldrovandi, G.M.; Saboory, A.A.; Johnson, K.M.; Pride, D.T. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front. Microbiol. 2018, 1, 1162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stagno, S.; Cloud, G.A. Working parents: The impact of day care and breast-feeding on cytomegalovirus infections in offspring. Proc. Natl. Acad. Sci. USA 1994, 91, 2384–2389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkola, M.; Rintala, M.; Grénman, S.; Syrjänen, S. Human papillomavirus DNA detected in breast milk. Pediatr. Infect. Dis. J. 2008, 27, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Glenn, W.K.; Whitaker, N.J.; Lawson, J.S. High risk human papillomavirus and Epstein Barr virus in human breast milk. BMC Res. Notes 2012, 5, 477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sissoko, D.; Keïta, M.; Diallo, B.; Aliabadi, N.; Fitter, D.L.; Dahl, B.A.; Akoi Bore, J.; Raymond Koundouno, F.; Singethan, K.; Meisel, S.; et al. Ebola Virus Persistence in Breast Milk After No Reported Illness: A Likely Source of Virus Transmission From Mother to Child. Clin. Infect. Dis. 2017, 64, 513–516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Centeno-Tablante, E.; Medina-Rivera, M.; Finkelstein, J.L.; Rayco-Solon, P.; Garcia-Casal, M.N.; Rogers, L.; Ghezzi-Kopel, K.; Ridwan, P.; Peña-Rosas, J.P.; Mehta, S. Transmission of SARS-CoV-2 through breast milk and breastfeeding: A living systematic review. Ann. N. Y Acad. Sci. 2021, 1484, 32–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, F.; Zozaya, C.; Zhou, Q.; De Castro, C.; Shah, P.S. SARS-CoV-2 genome and antibodies in breastmilk: A systematic review and meta-analysis. Arch. Dis. Child Fetal. Neonatal. Ed. 2021, 106, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Gueimonde, M.; Laitinen, K.; Salminen, S.; Isolauri, E. Breast milk: A source of bifidobacteria for infant gut development and maturation? Neonatology 2007, 92, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Jiménez, E.; Heilig, H.; Fernández, L.; Marín, M.L.; Zoetendal, E.G.; Rodríguez, J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 2009, 75, 965–969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solís, G.; de Los Reyes-Gavilan, C.G.; Fernández, N.; Margolles, A.; Gueimonde, M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010, 16, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Martín, V.; Mañes-Lázaro, R.; Rodríguez, J.M.; Maldonado-Barragán, A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int. J. Syst. Evol. Microbiol. 2011, 61, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Jeurink, P.V.; van Bergenhenegouwen, J.; Jiménez, E.; Knippels, L.M.; Fernández, L.; Garssen, J.; Knol, J.; Rodríguez, J.M.; Martín, R. Human milk: A source of more life than we imagine. Benef. Microbes 2013, 4, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.; Martín, V.; Jiménez, E.; Mader, I.; Rodríguez, J.M.; Fernández, L. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 78–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín, R.; Langa, S.; Reviriego, C.; Jimínez, E.; Marín, M.L.; Xaus, J.; Fernández, L.; Rodríguez, J.M. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 2003, 143, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Olivares, M.; Díaz-Ropero, M.P.; Martín, R.; Rodríguez, J.M.; Xaus, J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006, 101, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jara, S.; Sánchez, M.; Vera, R.; Cofré, J.; Castro, E. The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe 2011, 17, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Notarbartolo, V.; Giuffrè, M.; Montante, C.; Corsello, G.; Carta, M. Composition of Human Breast Milk Microbiota and Its Role in Children’s Health. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 194–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nikolopoulou, G.; Tsironi, T.; Halvatsiotis, P.; Petropoulou, E.; Genaris, N.; Vougiouklaki, D.; Antonopoulos, D.; Thomas, A.; Tsilia, A.; Batrinou, A.; et al. Analysis of the Major Probiotics in Healthy Women’s Breast Milk by Realtime PCR. Factors Affecting the Presence of Those Bacteria. Appl. Sci. 2021, 11, 9400. [Google Scholar] [CrossRef]
- Jost, T.; Lacroix, C.; Braegger, C.; Chassard, C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 2013, 110, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Martín, V.; Maldonado-Barragán, A.; Moles, L.; Rodriguez-Baños, M.; Campo, R.D.; Fernández, L.; Rodríguez, J.M.; Jiménez, E. Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact. 2012, 28, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Benito, D.; Lozano, C.; Jiménez, E.; Albújar, M.; Gómez, A.; Rodríguez, J.M.; Torres, C. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol. Ecol. 2015, 91, fiv007. [Google Scholar] [CrossRef] [PubMed]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; NIH Intramural Sequencing Center Comparative Sequencing Program; et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 2013, 498, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Li, N.; Li, J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 2014, 48, 513–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strati, F.; Di Paola, M.; Stefanini, I.; Albanese, D.; Rizzetto, L.; Lionetti, P.; Calabrò, A.; Jousson, O.; Donati, C.; Cavalieri, D.; et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 2016, 7, 1227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guého, E.; Midgley, G.; Guillot, J. The genus Malassezia with description of four new species. Antonie Van. Leeuwenhoek 1996, 69, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Bonametti, A.M.; Passos, J.N.; Koga da Silva, E.M.; Macedo, Z.S. Probable transmission of acute toxoplasmosis through breast feeding. J. Trop. Pediatr. 1997, 43, 116. [Google Scholar] [CrossRef] [PubMed]
- Khamsian, E.M.; Hajimohammadi, B.; Eslami, G.; Fallahzadeh, M.H.; Hosseini, S.S. Toxoplasma gondii in Milk of Human and Goat from the Desert Area in Central Iran. Iran. J. Parasitol. 2021, 16, 601–609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Norman, F.F.; López-Vélez, R. Chagas disease and breast-feeding. Emerg. Infect. Dis. 2013, 19, 1561–1566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazza, S.; Montaña, A.; Benitez, C.; Janzi, E.C. Transmisión de Schizotrypanum cruzi al niño por leche de la madre con enfermedad de Chagas. Mis. Est. Patol. Reg. Arg. (MEPRA) 1936, 28, 41–46. [Google Scholar]
- Medina-Lopes, M.D.; Macedo, V. Trypanossoma cruzi no colostro humano. Rev. Soc. Bras Med. Trop. 1983, 16, 170. [Google Scholar] [CrossRef]
- Jörg, M.E. Transmission of Trypansoma cruzi via human milk. Rev. Soc. Bras. Med. Trop. 1992, 25, 83. (In Spanish) [Google Scholar] [CrossRef]
- Medina-Lopes, M.D. Transmissao materno-infantil da doença de Chagas. Brasilia, 1983 (Dissertaçao de Mestrado-Nucleo de Medicina Tropical e Nutriçao da Universidade de Brasilia). In: Bittencourt, AL. Possible risk factors for vertical transmission of Chagas’ disease. Rev. Inst. Med. Trop. Sao Paulo 1992, 34, 403–408. [Google Scholar]
- Reiner, D.S.; Wang, C.S.; Gillin, F.D. Human Milk Kills Giardia lamblia by Generating Toxic Lipolytic Products. J. Infect. Dis. 1986, 154, 825–832. [Google Scholar] [CrossRef]
- Mota-Ferreira, D.M.; Gonçalves-Pires Mdo, R.; Júnior, A.F.; Sopelete, M.C.; Abdallah, V.O.; Costa-Cruz, J.M. Specific IgA and IgG antibodies in paired serum and breast milk samples in human strongyloidiasis. Acta Trop. 2009, 109, 103–107. [Google Scholar] [CrossRef] [PubMed]
- van den Elsen, L.W.J.; Verhasselt, V.; Egwang, T. Malaria Antigen Shedding in the Breast Milk of Mothers From a Region With Endemic Malaria. JAMA Pediatr. 2020, 174, 297–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petralanda, I.; Yarzabal, L.; Piessens, W.F. Parasite antigens are present in breast milk of women infected with Onchocerca volvulus. Am. J. Trop. Med. Hyg. 1988, 38, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, M.; Mirlohi, M.; Poursina, F.; Madani, G.; Khoshhali, M.; Bahreini, N.; Safaei, H.G. The influence of impact delivery mode, lactation time, infant gender, maternal age and rural or urban life on total number of Lactobacillus in breast milk Isfahan—Iran. Adv. Biomed. Res. 2015, 4, 141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinkiewicz, G.; Ljunggren, L. Occurrence of Lactobacillus reuteri in human breast milk. Microb. Ecol. Health Dis. 2008, 20, 122–126. [Google Scholar] [CrossRef]
- González, R.; Maldonado, A.; Martín, V.; Mandomando, I.; Fumadó, V.; Metzner, K.J.; Sacoor, C.; Fernández, L.; Macete, E.; Alonso, P.L.; et al. Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PLoS ONE 2013, 8, e80299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Urbaniak, C.; Angelini, M.; Gloor, G.B.; Reid, G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davé, V.; Street, K.; Francis, S.; Bradman, A.; Riley, L.; Eskenazi, B.; Holland, N. Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatr. Res. 2016, 79, 846–854. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- González, E.; Brereton, N.J.B.; Li, C.; Lopez Leyva, L.; Solomons, N.W.; Agellon, L.B.; Scott, M.E.; Koski, K.G. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front. Microbiol. 2021, 12, 557180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, H.; du Toit, E.; Kulkarni, A.; Aakko, J.; Linderborg, K.M.; Zhang, Y.; Nicol, M.P.; Isolauri, E.; Yang, B.; Collado, M.C.; et al. Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations. Front. Microbiol. 2016, 13, 1619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lackey, K.A.; Williams, J.E.; Meehan, C.L.; Zachek, J.A.; Benda, E.D.; Price, W.J.; Foster, J.A.; Sellen, D.W.; Kamau-Mbuthia, E.W.; Kamundia, E.W.; et al. What’s Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study. Front. Nutr. 2019, 17, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drago, L.; Toscano, M.; De Grandi, R.; Grossi, E.; Padovani, E.M.; Peroni, D.G. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2017, 11, 875–884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sakwinska, O.; Moine, D.; Delley, M.; Combremont, S.; Rezzonico, E.; Descombes, P.; Vinyes-Pares, G.; Zhang, Y.; Wang, P.; Thakkar, S.K. Microbiota in Breast Milk of Chinese Lactating Mothers. PLoS ONE 2016, 11, e0160856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, M.; Qi, C.; Yang, Z.Y.; Jiang, S.; Bi, Y.; Lai, J.; Sun, J. Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China. Food Funct. 2019, 10, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.H.; Vaidya, Y.H.; Patel, R.J.; Pandit, R.J.; Joshi, C.G.; Kunjadiya, A.P. Culture independent assessment of human milk microbial community in lactational mastitis. Sci. Rep. 2017, 7, 7804. [Google Scholar] [CrossRef] [PubMed]
- Albesharat, R.; Ehrmann, M.A.; Korakli, M.; Yazaji, S.; Vogel, R.F. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst. Appl. Microbiol. 2011, 34, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.S.; Cheng, C.C.; Tseng, S.Y.; Lin, Y.L.; Lo, H.M.; Chen, P.W. Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiologyopen 2019, 8, e00618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.W.; Tseng, S.Y.; Huang, M.S. Antibiotic Susceptibility of Commensal Bacteria from Human Milk. Curr. Microbiol. 2016, 72, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, M.P.; Saris, P.E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 2003, 95, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Quercia, S.; Aceti, A.; Beghetti, I.; Rampelli, S.; Turroni, S.; Faldella, G.; Candela, M.; Brigidi, P.; Corvaglia, L. The Bacterial Ecosystem of Mother’s Milk and Infant’s Mouth and Gut. Front. Microbiol. 2017, 30, 1214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obermajer, T.; Lipoglavšek, L.; Tompa, G.; Treven, P.; Lorbeg, P.M.; Matijašić, B.B.; Rogelj, I. Colostrum of healthy Slovenian mothers: Microbiota composition and bacteriocin gene prevalence. PLoS ONE 2015, 10, e0123324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bender, J.M.; Li, F.; Martelly, S.; Byrt, E.; Rouzier, V.; Leo, M.; Tobin, N.; Pannaraj, P.S.; Adisetiyo, H.; Rollie, A.; et al. Maternal HIV infection influences the microbiome of HIV-uninfected infants. Sci. Transl. Med. 2016, 8, 349ra100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cacho, N.T.; Harrison, N.A.; Parker, L.A.; Padgett, K.A.; Lemas, D.J.; Marcial, G.E.; Li, N.; Carr, L.E.; Neu, J.; Lorca, G.L. Personalization of the Microbiota of Donor Human Milk with Mother’s Own Milk. Front. Microbiol. 2017, 3, 1470. [Google Scholar] [CrossRef] [PubMed]
- Damaceno, Q.S.; Souza, J.P.; Nicoli, J.R.; Paula, R.L.; Assis, G.B.; Figueiredo, H.C.; Azevedo, V.; Martins, F.S. Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics Antimicrob. Proteins 2017, 4, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Katzer, D.; Pauli, L.; Mueller, A.; Reutter, H.; Reinsberg, J.; Fimmers, R.; Bartmann, P.; Bagci, S. Melatonin Concentrations and Antioxidative Capacity of Human Breast Milk According to Gestational Age and the Time of Day. J. Hum. Lact. 2016, 32, NP105–NP110. [Google Scholar] [CrossRef] [PubMed]
- Tie, W.J.; Gardner, H.; Lai, C.T.; Hepworth, A.R.; Al-Tamimi, Y.; Paech, M.J.; Hartmann, P.E.; Geddes, D.T. Changes in milk composition associated with pethidine-PCEA usage after Caesarean section. Matern. Child. Nutr. 2017, 13, e12275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.E.; Carrothers, J.M.; Lackey, K.A.; Beatty, N.F.; York, M.A.; Brooker, S.L.; Shafii, B.; Price, W.J.; Settles, M.L.; McGuire, M.A.; et al. Human Milk Microbial Community Structure Is Relatively Stable and Related to Variations in Macronutrient and Micronutrient Intakes in Healthy Lactating Women. J. Nutr. 2017, 147, 1739–1748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.W.; Watanabe, K.; Hsu, C.C.; Chao, S.H.; Yang, Z.H.; Lin, Y.J.; Chen, C.C.; Cao, Y.M.; Huang, H.C.; Chang, C.H.; et al. Bacterial Composition and Diversity in Breast Milk Samples from Mothers Living in Taiwan and Mainland China. Front. Microbiol. 2017, 30, 965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mediano, P.; Fernández, L.; Jiménez, E.; Arroyo, R.; Espinosa-Martos, I.; Rodríguez, J.M.; Marín, M. Microbial Diversity in Milk of Women With Mastitis: Potential Role of Coagulase-Negative Staphylococci, Viridans Group Streptococci, and Corynebacteria. J. Hum. Lact. 2017, 33, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Tuominen, H.; Rautava, S.; Collado, M.C.; Syrjänen, S.; Rautava, J. HPV infection and bacterial microbiota in breast milk and infant oral mucosa. PLoS ONE 2018, 13, e0207016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hermansson, H.; Kumar, H.; Collado, M.C.; Salminen, S.; Isolauri, E.; Rautava, S. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Front. Nutr. 2019, 4, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortés-Macías, E.; Selma-Royo, M.; Martínez-Costa, C.; Collado, M.C. Breastfeeding Practices Influence the Breast Milk Microbiota Depending on Pre-Gestational Maternal BMI and Weight Gain over Pregnancy. Nutrients 2021, 30, 1518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortes-Macías, E.; Selma-Royo, M.; García-Mantrana, I.; Calatayud, M.; González, S.; Martínez-Costa, C.; Collado, M.C. Maternal Diet Shapes the Breast Milk Microbiota Composition and Diversity: Impact of Mode of Delivery and Antibiotic Exposure. J. Nutr. 2021, 151, 330–340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olivares, M.; Albrecht, S.; De Palma, G.; Ferrer, M.D.; Castillejo, G.; Schols, H.A.; Sanz, Y. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur. J. Nutr. 2015, 54, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Martos, I.; Jiménez, E.; de Andrés, J.; Rodríguez-Alcalá, L.M.; Tavárez, S.; Manzano, S.; Fernández, L.; Alonso, E.; Fontecha, J.; Rodríguez, J.M. Milk and blood biomarkers associated to the clinical efficacy of a probiotic for the treatment of infectious mastitis. Benef. Microbes 2016, 7, 305–318. [Google Scholar] [CrossRef] [PubMed]
- LeMay-Nedjelski, L.; Yonemitsu, C.; Asbury, M.R.; Butcher, J.; Ley, S.H.; Hanley, A.J.; Kiss, A.; Unger, S.; Copeland, J.K.; Wang, P.W.; et al. Oligosaccharides and Microbiota in Human Milk Are Interrelated at 3 Months Postpartum in a Cohort of Women with a High Prevalence of Gestational Impaired Glucose Tolerance. J. Nutr. 2021, 151, 3431–3441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moles, L.; Manzano, S.; Fernández, L.; Montilla, A.; Corzo, N.; Ares, S.; Rodríguez, J.M.; Espinosa-Martos, I. Bacteriological, biochemical, and immunological properties of colostrum and mature milk from mothers of extremely preterm infants. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Forster, S.C.; Tsaliki, E.; Vervier, K.; Strang, A.; Simpson, N.; Kumar, N.; Stares, M.D.; Rodger, A.; Brocklehurst, P.; et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019, 574, 117–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neu, J.; Rushing, J. Cesarean versus vaginal delivery: Long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 2011, 38, 321–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gritz, E.C.; Bhandari, V. The human neonatal gut microbiome: A brief review. Front. Pediatr. 2015, 3, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beharry, K.D.; Latkowska, M.; Valencia, A.M.; Allana, A.; Soto, J.; Cai, C.L.; Golombek, S.; Hand, I.; Aranda, J.V. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023, 11, 2528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rutayisire, E.; Huang, K.; Liu, Y.; Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front. Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duchon, J.; Barbian, M.E.; Denning, P.W. Necrotizing Enterocolitis. Clin. Perinatol. 2021, 48, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Xu, W.; Janton, S.; Henderson, W.A.; Matson, A.; McGrath, J.M.; Maas, K.; Graf, J. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender. PLoS ONE 2016, 11, e0152751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grier, A.; Qiu, X.; Bandyopadhyay, S.; Holden-Wiltse, J.; Kessler, H.A.; Gill, A.L.; Hamilton, B.; Huyck, H.; Misra, S.; Mariani, T.J.; et al. Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth. Microbiome 2017, 5, 158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zimmermann, P.; Curtis, N. Factors Influencing the Intestinal Microbiome During the First Year of Life. Pediatr. Infect. Dis. J. 2018, 37, e315–e335. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, R.E., Jr.; Pickering, L.K. Necrotizing enterocolitis and infection. Clin. Perinatol. 1994, 21, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.; Shaw, A.G.; Randell, P.; Cox, M.J.; McClure, Z.E.; Li, M.S.; Haddad, M.; Langford, P.R.; Cookson, W.O.; Moffatt, M.F.; et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin. Infect. Dis. 2015, 60, 389–397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E., Jr.; Shaikh, N.; Linneman, L.A.; et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, H.; Johani, K.; Gosbell, I.B.; Jacombs, A.S.; Almatroudi, A.; Whiteley, G.S.; Deva, A.K.; Jensen, S.; Vickery, K. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: Combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J. Hosp. Infect. 2015, 91, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.; Olm, M.R.; Firek, B.A.; Baker, R.; Geller-McGrath, D.; Reimer, S.R.; Soenjoyo, K.R.; Yip, J.S.; Dahan, D.; Thomas, B.C.; et al. The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 2018, 6, 112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.Y.; Yi, D.Y. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp. Mol. Med. 2020, 52, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DiGiulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.L.; Goltsman, D.S.; Wong, R.J.; Shaw, G.; et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 2015, 112, 11060–11065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 2014, 16, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Chung, J.; Battaglia, T.; Henderson, N.; Jay, M.; Li, H.; Lieber, A.D.; Wu, F.; Perez-Perez, G.I.; Chen, Y.; et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016, 8, 343ra82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fallani, M.; Young, D.; Scott, J.; Norin, E.; Amarri, S.; Adam, R.; Aguilera, M.; Khanna, S.; Gil, A.; Edwards, C.A.; et al. Other Members of the INFABIO Team. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Leppälehto, E.; Pärtty, A.; Kalliomäki, M.; Löyttyniemi, E.; Isolauri, E.; Rautava, S. Maternal Intrapartum Antibiotic Administration and Infantile Colic: Is there a Connection? Neonatology 2018, 114, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonçalves, F.D.; de Carvalho, C.C. Phenotypic Modifications in Staphylococcus aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin. Front. Microbiol. 2016, 7, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.T.; Li, F.; Lee-Sarwar, K.A.; Tun, H.M.; Brown, B.P.; Pannaraj, P.S.; Bender, J.M.; Azad, M.B.; Thompson, A.L.; Weiss, S.T.; et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 2018, 9, 4169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korpela, K.; Blakstad, E.W.; Moltu, S.J.; Strømmen, K.; Nakstad, B.; Rønnestad, A.E.; Brække, K.; Iversen, P.O.; Drevon, C.A.; de Vos, W. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 2018, 8, 2453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biasucci, G.; Rubini, M.; Riboni, S.; Morelli, L.; Bessi, E.; Retetangos, C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 2010, 1, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Adlerberth, I.; Lindberg, E.; Aberg, N.; Hesselmar, B.; Saalman, R.; Strannegård, I.L.; Wold, A.E. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: An effect of hygienic lifestyle? Pediatr. Res. 2006, 59, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Minna-Maija, G.; Olli-Pekka, L.; Erkki, E.; Pentti, K. Fecal Microflora in Healthy Infants Born by Different Methods of Delivery: Permanent Changes in Intestinal Flora After Cesarean Delivery. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 19–25. [Google Scholar]
- Arboleya, S.; Sánchez, B.; Milani, C.; Duranti, S.; Solís, G.; Fernández, N.; de los Reyes-Gavilán, C.G.; Ventura, M.; Margolles, A.; Gueimonde, M. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J. Pediatr. 2015, 166, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Arboleya, S.; Binetti, A.; Salazar, N.; Fernández, N.; Solís, G.; Hernández-Barranco, A.; Margolles, A.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 2012, 79, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Jacquot, A.; Neveu, D.; Aujoulat, F.; Mercier, G.; Marchandin, H.; Jumas-Bilak, E.; Picaud, J.C. Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J. Pediatr. 2011, 158, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Gruhl, B.; Löbnitz, M.; Michel, P.; Radke, M.; Blaut, M. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr. Res. 2003, 54, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Morrow, A.L.; Lagomarcino, A.J.; Schibler, K.R.; Taft, D.H.; Yu, Z.; Wang, B.; Altaye, M.; Wagner, M.; Gevers, D.; Ward, D.V.; et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome 2013, 1, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warner, B.B.; Deych, E.; Zhou, Y.; Hall-Moore, C.; Weinstock, G.M.; Sodergren, E.; Shaikh, N.; Hoffmann, J.A.; Linneman, L.A.; Hamvas, A.; et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: A prospective case-control study. Lancet 2016, 387, 1928–1936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Younge, N.; McCann, J.R.; Ballard, J.; Plunkett, C.; Akhtar, S.; Araújo-Pérez, F.; Murtha, A.; Brandon, D.; Seed, P.C. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 2019, 4, e127806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Alam, D.; Danopoulos, S.; Grubbs, B.; Ali, N.A.B.M.; MacAogain, M.; Chotirmall, S.H.; Warburton, D.; Gaggar, A.; Ambalavanan, N.; Lal, C.V. Human Fetal Lungs Harbor a Microbiome Signature. Am. J. Respir. Crit. Care Med. 2020, 201, 1002–1006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kennedy, K.M.; de Goffau, M.C.; Perez-Muñoz, M.E.; Arrieta, M.C.; Bäckhed, F.; Bork, P.; Braun, T.; Bushman, F.D.; Dore, J.; de Vos, W.M.; et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023, 613, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.K.; Morrison, M.; Nitert, M.D. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci. Rep. 2017, 7, 2860. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.M.; Harris, K.; Kamiza, S.; Harjunmaa, U.; Ashorn, U.; Nkhoma, M.; Dewey, K.G.; Maleta, K.; Ashorn, P.; Klein, N. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS ONE 2017, 12, e0180167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, L.; Luo, F.; Hu, W.; Han, Y.; Wang, Y.; Zheng, H.; Guo, X.; Qin, J. Bacterial Communities in the Womb During Healthy Pregnancy. Front. Microbiol. 2018, 9, 2163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DiGiulio, D.B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonatal Med. 2012, 17, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Fernández, L.; Marín, M.L.; Martín, R.; Odriozola, J.M.; Nueno-Palop, C.; Narbad, A.; Olivares, M.; Xaus, J.; Rodríguez, J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005, 51, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.L.; Antony, K.M.; Chu, D.M.; Aagaard, K.M. The microbiome, parturition, and timing of birth: More questions than answers. J. Reprod. Immunol. 2014, 104–105, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Satokari, R.; Grönroos, T.; Laitinen, K.; Salminen, S.; Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 2009, 48, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Chen, T.; White, R.A.; Wang, X.; Hu, W.; Liang, Y.; Zhang, Y.; Lu, C.; Chen, M.; Aase, H.; et al. Meconium microbiome associates with the development of neonatal jaundice. Clin. Transl. Gastroenterol. 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klopp, J.; Ferretti, P.; Meyer, C.U.; Hilbert, K.; Haiß, A.; Marißen, J.; Henneke, P.; Hudalla, H.; Pirr, S.; Viemann, D.; et al. The PRIMAL Consortium. Meconium Microbiome of Very Preterm Infants across Germany. mSphere 2022, 7, e0080821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morais, J.; Marques, C.; Teixeira, D.; Durão, C.; Faria, A.; Brito, S.; Cardoso, M.; Macedo, I.; Pereira, E.; Tomé, T.; et al. Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates—The in utero microbial colonization hypothesis. Gut Microbes 2020, 12, 1785804. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terrazzan Nutricionist, A.C.; Procianoy, R.S.; Roesch, L.F.W.; Corso, A.L.; Dobbler, P.T.; Silveira, R.C. Meconium microbiome and its relation to neonatal growth and head circumference catch-up in preterm infants. PLoS ONE 2020, 15, e0238632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ardissone, A.N.; de la Cruz, D.M.; Davis-Richardson, A.G.; Rechcigl, K.T.; Li, N.; Drew, J.C.; Murgas-Torrazza, R.; Sharma, R.; Hudak, M.L.; Triplett, E.W.; et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 2014, 9, e90784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, W.; Jiang, W.; Hu, X.; Gao, L.; Ai, D.; Pan, H.; Niu, C.; Yuan, K.; Zhou, X.; Xu, C.; et al. Ecological Shifts of Supragingival Microbiota in Association with Pregnancy. Front. Cell Infect. Microbiol. 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.J.; Gur, T.L. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019, 42, 402–413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zakis, D.R.; Paulissen, E.; Kornete, L.; Kaan, A.M.M.; Nicu, E.A.; Zaura, E. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J. Reprod. Immunol. 2022, 149, 103455. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Schooley, R.T. The human microbiome: Implications for health and disease, including HIV infection. Top. Antivir. Med. 2018, 26, 75–78. [Google Scholar] [PubMed] [PubMed Central]
- Verstraelen, H.; Vilchez-Vargas, R.; Desimpel, F.; Jauregui, R.; Vankeirsbilck, N.; Weyers, S.; Verhelst, R.; De Sutter, P.; Pieper, D.H.; Van De Wiele, T. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ 2016, 4, e1602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansen, R.; Scott, K.P.; Khan, S.; Martin, J.C.; Berry, S.H.; Stevenson, M.; Okpapi, A.; Munro, M.J.; Hold, G.L. First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota. PLoS ONE 2015, 10, e0133320. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wahlqvist, M.L.; Krawetz, S.A.; Rizzo, N.S.; Dominguez-Bello, M.G.; Szymanski, L.M.; Barkin, S.; Yatkine, A.; Waterland, R.A.; Mennella, J.A.; Desai, M.; et al. Early-life influences on obesity: From preconception to adolescence. Ann. N. Y Acad. Sci. 2015, 1347, 1–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial Changes during Pregnancy, Birth, and Infancy. Front. Microbiol. 2016, 7, 1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero, R.; Hassan, S.S.; Gajer, P.; Tarca, A.L.; Fadrosh, D.W.; Nikita, L.; Galuppi, M.; Lamont, R.F.; Chaemsaithong, P.; Miranda, J.; et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2014, 2, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roger, L.C.; Costabile, A.; Holland, D.T.; Hoyles, L.; McCartney, A.L. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiol. (Reading) 2010, 156, 3329–3341. [Google Scholar] [CrossRef] [PubMed]
- Yanfei, B.I.A.N.; Zhihong, S.U.N.; Tiansong, S.U.N. Transmission of microbes from mother to infant: Research progress. Chin. J. Microecol. 2017, 29, 725–730. [Google Scholar] [CrossRef]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The Human Microbiome and Child Growth—First 1000 Days and Beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Yap, C.; Lytvyn, L.; Lo, C.K.; Beardsley, J.; Mertz, D.; Johnston, B.C. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev. 2017, 12, CD006095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Larsen, V.; Ierodiakonou, D.; Jarrold, K.; Cunha, S.; Chivinge, J.; Robinson, Z.; Geoghegan, N.; Ruparelia, A.; Devani, P.; Trivella, M.; et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018, 15, e1002507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sung, V.; D’Amico, F.; Cabana, M.D.; Chau, K.; Koren, G.; Savino, F.; Szajewska, H.; Deshpande, G.; Dupont, C.; Indrio, F.; et al. Lactobacillus reuteri to Treat Infant Colic: A Meta-analysis. Pediatrics 2018, 141, e20171811. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, K.; Pali-Schöll, I.; Roth-Walter, F.; Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020, 42, 75–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dogra, S.K.; Doré, J.; Damak, S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front. Microbiol. 2020, 11, 572921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lugli, G.A.; Milani, C.; Turroni, F.; Tremblay, D.; Ferrario, C.; Mancabelli, L.; Duranti, S.; Ward, D.V.; Ossiprandi, M.C.; Moineau, S.; et al. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 2016, 18, 2196–2213. [Google Scholar] [CrossRef] [PubMed]
- Garwolińska, D.; Namieśnik, J.; Kot-Wasik, A.; Hewelt-Belka, W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. J. Agric. Food Chem. 2018, 66, 11881–11896. [Google Scholar] [CrossRef] [PubMed]
- Munblit, D.; Peroni, D.G.; Boix-Amorós, A.; Hsu, P.S.; Van’t Land, B.; Gay, M.C.L.; Kolotilina, A.; Skevaki, C.; Boyle, R.J.; Collado, M.C.; et al. Human Milk and Allergic Diseases: An Unsolved Puzzle. Nutrients 2017, 9, 894. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holgerson, P.L.; Vestman, N.R.; Claesson, R.; Ohman, C.; Domellöf, M.; Tanner, A.C.; Hernell, O.; Johansson, I. Oral microbial profile discriminates breast-fed from formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 127–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, J.E.; Carrothers, J.M.; Lackey, K.A.; Beatty, N.F.; Brooker, S.L.; Peterson, H.K.; Steinkamp, K.M.; York, M.A.; Shafii, B.; Price, W.J.; et al. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J. Nutr. 2019, 149, 902–914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dzidic, M.; Collado, M.C.; Abrahamsson, T.; Artacho, A.; Stensson, M.; Jenmalm, M.C.; Mira, A. Oral microbiome development during childhood: An ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 2018, 12, 2292–2306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biesbroek, G.; Bosch, A.A.; Wang, X.; Keijser, B.J.; Veenhoven, R.H.; Sanders, E.A.; Bogaert, D. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am. J. Respir. Crit. Care Med. 2014, 190, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Biesbroek, G.; Tsivtsivadze, E.; Sanders, E.A.; Montijn, R.; Veenhoven, R.H.; Keijser, B.J.; Bogaert, D. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am. J. Respir. Crit. Care Med. 2014, 190, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Mira-Pascual, L.; Mira, A.; Collado, M.C. Impact of mode of delivery on the milk microbiota composition of healthy women. J. Dev. Orig. Health Dis. 2016, 7, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.A.; Meng, D. Breast Milk and Microbiota in the Premature Gut: A Method of Preventing Necrotizing Enterocolitis. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 103–112. [Google Scholar] [CrossRef] [PubMed]
Geographical Localization | Number of Women; Residence | Microbiota Analysis Method | Microbiota Diversity | References |
---|---|---|---|---|
Africa (Mozambique) | 121 samples of milk; Manhiça town and the surrounding villages | qPCR; culture | ● the most frequent genera isolated by culture were Staphylococcus (96.4%), Streptococcus (92.7%), and Lactobacillus (56.4%); ● the most frequent groups identified by PCR were Streptococcus (94.8%), Staphylococcus epidermidis (85.4%), Enterococcus spp. (83.9%), and Bifidobacterium spp. (81.8%); ● women who exclusively breastfed had a higher percentage of Streptococcus parasanguis compared to women who also used formula; ● women who were HIV positive had a higher absolute number of Lactobacillus spp. | González et al. [98] |
Africa (Republic of Burundi) | 30 women; urban | 16S rRNA gene sequencing | ● predominance of Aquabacterium, Serratia and Peptrostreptococcus in colostrum and Rhizobium, Dolosigranulum and in mature milk. | Drago et al. [104] |
Africa (South Africa) | 20 women; urban | PCR and sequencing | ● higher abundance of Proteobacteria in South Africa women compared to women from Finland, Spain, and China; ● Bifidobacteriaceae was found in women from South Africa, while no Bifidobacteriaceae was found in women from Finland, Spain and China. | Kumar et al. [102] |
Asia (China) | 20 women; urban | PCR and sequencing | ● higher abundance of Streptococcus spp. in Chinese women compared to women from Finland, Spain and South Africa; ● Enterococcaceae was found in samples from women from South Africa, Finland, and Spain, while no Enterococcaceae was found in women from China. | Kumar et al. [102] |
Asia (China) | 90 women (60 samples without special meaning and 30 samples collected aseptically); urban | 16S rRNA gene sequencing; qPCR for total bacteria loads | ● dominant species: Staphylococcus and Streptococcus; ● higher number of bacteria in milk collected using a standard protocol than in samples collected aseptically; ● low abundance of Bifidobacterium spp. and LAB; ● high number of Acinetobacter spp. (~32%) in samples collected using a standard protocol. | Sakwinska et al. [105] |
Asia (China, 11 cites) | 89 women; urban | 16S rRNA gene sequencing; qPCR | ● the dominant composition of the microbiome (in all regions) included the following species: Staphylococcus (100% of samples), Bacillus (87%), Enterococcus (76%), Streptococcus (76%), Lactobacillus (40%); ● the composition of the microbiome was region-specific: samples from women in the northwest and north of China showed greater diversity compared to other regions. | Ding et al. [106] |
Asia (India) | 50 women (32 with mastitis); urban | 16S rRNA gene sequencing | ● the dominant phyla are: Proteobacteria (50%) and Firmicutes (17%); ● at the genus level, control subjects had relatively more Acinetobacter, Ruminococcus, Clostridium, and Eubacterium compared to other groups; ● higher numbers of the following genera were found in the milk of women with mastitis: Aeromonas, Staphylococcus, Klebsiella, Ralstonia, Bacillus, Pantoea, Serratia, Enterococcus, and Pseudomonas. | Patel et al. [107] |
Asia (Syria) | 15 samples; villages | MALDI-TOF MS; 16S rRNA gene sequencing | ● 36 different species of the genus: Lactobacillus, Enterococcus, Weissella, Streptococcus, Staphylococcus, and Pediococcus. | Albesharat et al. [108] |
Asia (Taiwan) | 30 women; urban | PCR; culture | ● the number of bacteria in milk ranged from 4.0 × 101 to 7.1 × 105 CFU/mL; ● the presence of antibiotic-resistant strains of the following species: Staphylococcus, Streptococcus, Enterococcus, and Acinetobacter in milk samples. | Huang et al. [109] |
Asia (Taiwan) | 19 women; urban | Culture | ● approximately 20 types of bacteria were isolated, including Staphylococcus (6 species), Streptococcus (4 species), Enterococcus (2 species), Lactobacillus (1 species), and bacteria belonging to other genera (7 species); ● potentially pathogenic species present in milk: Kluyvera ascorbata, Klebsiella oxytoca, Klebsiella pneumoniae, Acinetobacter baumannii, Actinomyces bovis, and Staphylococcus aureus; ● the presence of bacteria resistant to antibiotics, including last resort, was demonstrated. | Chen et al. [110] |
Europe (Finland) | 40 women; urban | Culture; identification with RFLP | ● milk microbiome dominated by Staphylococcus spp. (64%), Streptococcus spp. (30%); ● LAB in 13% of the samples. | Heikkilä et al. [111] |
Europe (Finland, Spain) | 20 women; urban | PCR and sequencing | ● higher abundance of Bacteroidetes in Spanish women (natural childbirth) compared to women from South America and China; ● higher abundance of Firmicutes among women from Finland compared to women from South Africa and China; ● higher abundance of Cutibacterium and Pseudomonas spp. in Spanish women compared to women from South Africa and China. | Kumar et al. [102] |
Europe (Italy) | 20 women; urban | 16S rRNA gene sequencing | ● colostrum and mature milk showed high bacterial counts: > 200 generations/sample; ● higher relative abundance of anaerobic bacteria in mature milk compared to colostrum; ● predominance of Abiotrophia and Alloiococcus in colostrum and Parabacteroides in mature milk. | Drago et al. [104] |
Europe (Italy) | 36 women; urban | 16S rRNA gene sequencing; IluminaMiSeq | ● diverse profile of breast milk microbiota; ● dominant genus: Streptococcus, Staphylococcus, Bifidobacterium; ● the microbiota of breast milk was more diverse than the oral cavity and feces of breastfed infants. | Biagi et al. [112] |
Europe (Slovenia) | 45 women; urban | PCR; DGGE; qPCR | ● the dominant genera in colostrum are Staphylococcus and Streptococcus; ● high abundance of Enterobacteriaceae (100%), Clostridia (95.6%), Bacteroides-Prevotella (62.2%), and Bifidobacterium (53.3%) was confirmed in colostrum samples; ● Enterococcus spp. detected in 8.9% of colostrum samples. | Obermajer et al. [113] |
Europe (Spain) | 20 women (10 healthy, 10 mastitis); urban | MALDI-TOF MS; Shotgun sequencing | ● among the bacterial sequences, the dominant phyla were Proteobacteria, Firmicutes and Bacteroidetes; ● a healthy core microbiome included the genera Staphylococcus, Streptococcus, Bacteroides, Faecalibacterium, Ruminococcus, Lactobacillus, and Cutibacterium; ● S. aureus predominated in samples from women with acute mastitis, and S. epidermidis predominated in the milk of women with subacute mastitis. | Jiménez et al. [33] |
Europe (Spain, Madrid) | 10 women (5 mothers were born by vaginal delivery and 5 mothers by cesarean section); urban | 16S rRNA gene sequencing | ● the most frequently isolated species of the Staphylococcus genus was S. epidermidis, and of the Streptococcus genus—S. mitis; ● the dominant LAB species were Leuconostoc citreum and Lactococcus lactis. | Martín et al. [47] |
Europe (Spain, Gijon) | 20 women; urban | 16S rRNA gene sequencing | ● the most frequently isolated species of the Staphylococcus genus was S. epidermidis, and of the Streptococcus genus—S. salivarius; ● 5% of all isolates belonged to the genus Lactobacillus, and another 5% were Bifidobacterium spp.; ● the most frequently isolated LAB was Lactobacillus gasseri. | Solís et al. [68] |
Europe (Switzerland) | 7 women; urban | 16S rRNA gene sequencing; anaerobic culture | ● dominant species: Staphylococcus, Streptococcus, Cutibacterium; ● the presence of obligate anaerobes of the genera Bifidobacterium, Veillonella, and Bacteroides, as well as those synthesizing butyrate, i.e., Faecalibacterium spp. and Roseburia spp. | Jost et al. [78] |
North America (Canada) | 10 women; urban | Illumina sequencing | ● dominant phyla: Proteobacteria (65%) and Firmicutes (34%); ● at the genus level: 75% Staphylococcus, 15% Pseudomonas, 2% Edwardsiella, and 1% Pantoea, Treponema, Streptococcus, and Campylobacter, respectively. | Ward et al. [32] |
North America (Canada) | 39 Caucasian Canadian women recruited from London, Ontario, and the surrounding area | MALDI-TOF MS | ● higher number of bacteria in colostrum than in mature milk; ● L. gasseri only detected in women of normal weight and who delivered vaginally. | Urbaniak et al. [99] |
North America (Haiti) | 50 women (25 HIV-positive mothers and 25 HIV-negative mothers); urban | 16S rRNA gene sequencing | ● no differences in the microbiome between HIV-positive and HIV-negative women. | Bender et al. [114] |
North America (USA) | 16 women; urban | 16S rRNA gene sequencing | ● the most numerous genera in milk were Streptococcus, Staphylococcus, Serratia, and Corynebacterium; ● eight other genera accounted for ≥1% of the communities observed in the samples. | Hunt et al. [50] |
North America (USA) | 12 women; urban | 16S rRNA gene sequencing; IluminaHiSeq; culture | ● Genera: Acinetobacter, Staphylococcus, Halomonas, Bacillus, Stenotrophomonas, unclassified genus Enterobacteriaceae, Streptococcus, Shewanella, Pseudomonas, Serratia, Enterococcus, unclassified genus Methylobacteriaceae, unclassified genus Pseudomonadaceae, unclassified genus Xanthomonadaceae, and Bacteroides accounted for 85% of the sequences found in the milk of donor mothers; ● the most abundant genera in breast milk were Halomonas, Staphylococcus, Shewanella, Corynebacterium, genus Enterobacteriaceae, Acinetobacter, unclassified genus Methylobacteriaceae, unclassified genus Enterobacteriaceae, Bacteroides, Stenotrophomonas, and Lactobacillus. | Cacho et al. [115] |
South America (Brazil) | 47 women (of which two with mastitis); urban | MALDI-TOF MS | ● the total number of bacteria in breast milk ranged from 1.5 to 4.0 log10 CFU/mL; ● high number of bacteria in colostrum; ● among LAB the following were isolated: L. gasseri, Bifidobacterium breve, and S. salivarius. | Damaceno et al. [116] |
South America (Mexico) | 10 women; urban (low-income families) | 16S rRNA gene sequencing | ● the dominant genera in breast milk are: Streptococcus, Staphylococcus and Neisseria. | Davé et al. [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dombrowska-Pali, A.; Wiktorczyk-Kapischke, N.; Chrustek, A.; Olszewska-Słonina, D.; Gospodarek-Komkowska, E.; Socha, M.W. Human Milk Microbiome—A Review of Scientific Reports. Nutrients 2024, 16, 1420. https://doi.org/10.3390/nu16101420
Dombrowska-Pali A, Wiktorczyk-Kapischke N, Chrustek A, Olszewska-Słonina D, Gospodarek-Komkowska E, Socha MW. Human Milk Microbiome—A Review of Scientific Reports. Nutrients. 2024; 16(10):1420. https://doi.org/10.3390/nu16101420
Chicago/Turabian StyleDombrowska-Pali, Agnieszka, Natalia Wiktorczyk-Kapischke, Agnieszka Chrustek, Dorota Olszewska-Słonina, Eugenia Gospodarek-Komkowska, and Maciej W. Socha. 2024. "Human Milk Microbiome—A Review of Scientific Reports" Nutrients 16, no. 10: 1420. https://doi.org/10.3390/nu16101420
APA StyleDombrowska-Pali, A., Wiktorczyk-Kapischke, N., Chrustek, A., Olszewska-Słonina, D., Gospodarek-Komkowska, E., & Socha, M. W. (2024). Human Milk Microbiome—A Review of Scientific Reports. Nutrients, 16(10), 1420. https://doi.org/10.3390/nu16101420