Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemicals and Test Products
2.3. Donor Pre-Screening via Short-Term Fecal Batch Fermentations
2.4. Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)
2.5. Analysis of the Microbial Metabolic Activity
2.6. Microbial Community Analysis through Quantitative 16S-Targeted Illumina Sequencing
2.7. Evolution of the Gut Microbiome Activity Using Targeted Metabolomics
2.8. Data Processing and Statistical Analysis
3. Results
3.1. Short-Term Fecal Batch Fermentation Experiment
3.2. Long-Term SHIME® Experiment
3.2.1. The SHIME® Model as a Tool for the In Vitro Simulation of the Gut Microbiota Present in the Different Colon Regions
3.2.2. Metabolic Activity
3.2.3. Microbial Community Composition
3.2.4. Metabolomics
3.2.5. Correlation Analysis between Metabolites and Metagenomic Families
4. Discussion
4.1. The SHIME® Model as a Tool for the In Vitro Simulation of the Gut Microbiota Present in the Different Colon Regions
4.2. Effect of Boabab Fiber and/or Arabic Gum on the Overall Gut Microbial Activity
4.3. Effect of Boabab Fiber and/or Arabic Gum on the Gut Microbial Community Composition
4.4. Effect of Baobab Fiber and/or Arabic Gum on the Metabolomic Profile
4.5. Correlation between the Different Metagenomic Taxa and the Metabolites of Interest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Steer, T.; Carpenter, H.; Tuohy, K.; Gibson, G.R. Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics. Nutr. Res. Rev. 2000, 13, 229–254. [Google Scholar] [CrossRef] [PubMed]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Van der Beek, C.M.; Dejong CH, C.; Troost, F.J.; Masclee, A.A.M.; Lenaerts, K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 2017, 75, 286–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.X.; Deng, X.R.; Zhang, C.H.; Yuan, H.J. Gut microbiota and metabolic syndrome. Chin. Med. J. 2020, 133, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shen, J.; Ran, Z.H. Association between Faecalibacterium prausnitzii Reduction and Inflammatory Bowel Disease: A Meta-Analysis and Systematic Review of the Literature. Gastroenterol. Res. Pract. 2014, 2014, 872725. [Google Scholar] [CrossRef] [PubMed]
- Rebersek, M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021, 21, 1325. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef]
- Walker, A.W.; Duncan, S.H.; McWilliam Leitch, E.C.; Child, M.W.; Flint, H.J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 2005, 71, 3692–3700. [Google Scholar] [CrossRef]
- Richardson, A.J.; McKain, N.; Wallace, R.J. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol. 2013, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Gibson, G.R.; Cummings, J.H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 1992, 72, 57–64. [Google Scholar] [CrossRef]
- Verbeken, D.; Dierckx, S.; Dewettinck, K. Exudate gums: Occurrence, production, and applications. Appl. Microbiol. Biotechnol. 2003, 63, 10–21. [Google Scholar] [CrossRef]
- Ahallil, H.; Abdullah, A.; Maskat, M.Y.; Sarbini, S.R. Fermentation of gum arabic by gut microbiota using in vitro colon model. AIP Conf. Proc. 2019, 2111, 050004. [Google Scholar] [CrossRef]
- Rhazi, L.; Lakahal, L.; Andrieux, O.; Niamba, N.; Depeint, F.; Guillemet, D. Relationship between the molecular characteristics of Acacia gum and its functional properties. Food Chem. 2020, 328, 126860. [Google Scholar] [CrossRef]
- Daguet, D.; Pinheiro, I.; Verhelst, A.; Possemiers, S.; Marzorati, M. Acacia gum improves the gut barrier functionality in vitro. Agro Food Ind. Hi-Tech. 2015, 26, 29–33. [Google Scholar]
- Daguet, D.; Pinheiro, I.; Verhelst, A.; Possemiers, S.; Marzorati, M. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the Simulator of the Human Intestinal Microbial Ecosystem. J. Funct. Foods 2016, 20, 369–379. [Google Scholar] [CrossRef]
- Cherbut, C.; Michel, C.; Raison, V.; Kravtchenko, T.; Severine, M. Acacia Gum is a Bifidogenic Dietary Fibre with High Digestive Tolerance in Healthy Humans. Microb. Ecol. Health Dis. 2003, 15, 43–50. [Google Scholar] [CrossRef]
- Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C.; Siemensma, A.D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 2008, 100, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.; Gannon, J.; Walker, W.A. Protective nutrients and functional foods for the gastrointestinal tract. Am. J. Clin. Nutr. 2002, 75, 789–808. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.S.A.; Sabir, O.M.; Mshelbwala, M.; Gadour, M.O.E.H. Gum Arabic a superb anti-diarrheal agent. Sudan J. Med. Sci. 2012, 7, 83–88. [Google Scholar]
- Elamin, S.; Alkhawaja, M.J.; Bukhamsin, A.Y.; Idris, M.A.S.; Abdelrahman, M.M.; Abutaleb, N.K.; Housawi, A.A. Gum Arabic Reduces C-Reactive Protein in Chronic Kidney Disease Patients without Affecting Urea or Indoxyl Sulfate Levels. Int. J. Nephrol. 2017, 2017, 9501470. [Google Scholar] [CrossRef] [PubMed]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The use of photo chemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Varudharaj, T.; Periyannan, M.; Narayanan, J.; Rajkishore, V.B. A Review on Adansonia digitata—Potential Herb. Res. J. Pharmacogn. Phytochem. 2015, 7, 57–60. [Google Scholar] [CrossRef]
- Coe, S.A.; Clegg, M.; Armengol, M.; Ryan, L. The polyphenol-rich baobab fruit (Adansonia digitata L.) reduces starch digestion and glycemic response in humans. Nutr. Res. 2013, 33, 888–896. [Google Scholar] [CrossRef]
- Gadour, M.O.; Khidir, H.B.; Adam, I.; Gasim, G.I. Effects of a powder of the fruit of Adansonia digitata (Tabaldia, Gongolase, or baobab tree) on serum lipids. J. Herb. Med. 2017, 8, 14–16. [Google Scholar] [CrossRef]
- Garvey, R.; Clegg, M.; Coe, S. The acute effects of baobab fruit (Adansonia digitata) on satiety in healthy adults. Nutr. Health 2017, 23, 83–86. [Google Scholar] [CrossRef]
- Foltz, M.; Zahradnik, A.C.; Van den Abbeele, P.; Ghyselinck, J.; Marzorati, M. A pectin-rich, baobab fruit pulp powder exerts prebiotic potential on the human gut microbiome in vitro. Microorganisms 2021, 9, 1981. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mahmoud, M.G.; Asker, M. Anti-inflammatory and Antioxidant Activities of Polysaccharide from Adansonia digitata: An in vitro Study. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 174–182. [Google Scholar]
- Van den Abbeele, P.; Taminiau, B.; Pinheiro, I.; Duysburgh, C.; Jacobs, H.; Pijls, L.; Marzorati, M. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. J. Agric. Food Chem. 2018, 66, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Molly, K.; Vande Woestyne, M.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Smeets-Peeters, M.; Bernalier, A.; Marol-Bonnin, S.; Havenaar, R.; Marteau, P.; Alric, M.; Fonty, G.; Huis’in’t Veld, J.H. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999, 53, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Blaut, M.; Collins, M.D.; Welling, G.W.; Doré, J.; van Loo, J.; de Vos, W. Molecular biological methods for studying the gut microbiota: The EU human gut flora project. Br. J. Nutr. 2007, 87, S203–S211. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.N.; Amand, A.L.S.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, D.; Kathagen, G.; D’hoe, K.; Vieira-Silva, S.; Valles-Colomer, M.; Sabino, J.; Wang, J.; Tito, R.Y.; De Commer, L.; Darzi, Y.; et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017, 551, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Idris, O.H.M.; Williams, P.A.; Phillips, G.O. Characterisation of gum from Acacolonizgal trees of different age and location using multidetection gel permeation chromatography. Food Hydrocoll. 1998, 12, 379–388. [Google Scholar] [CrossRef]
- Possemiers, S.; Verthé, K.; Uyttendaele, S.; Verstraete, W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 2004, 49, 495–507. [Google Scholar] [CrossRef]
- De Weirdt, R.; Possemiers, S.; Vermeulen, G.; Moerdijk-Poortvliet, T.C.W.; Boschker, H.T.S.; Verstraete, W.; Van de Wiele, T. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol. Ecol. 2010, 74, 601–611. [Google Scholar] [CrossRef]
- Duysburgh, C.; Van den Abbeele, P.; Krishnan, K.; Bayne, T.F.; Marzorati, M. A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro. Int. J. Pharm X 2019, 1, 100021. [Google Scholar] [CrossRef]
- Props, R.; Kerckhof, F.-M.; Rubbens, P.; De Vrieze, J.; Hernandez Sanabria, E.; Waegeman, W.; Monsieurs, P.; Hammes, F.; Boon, N. Absolute quantification of microbial taxon abundances. ISME J. 2017, 11, 584–587. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 2011, 77, 3219–3226. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef]
- Senthamarai Kannan, K.; Manoj, K.; Arumugam, S. Labeling methods for identifying outliers. Int. J. Stat. Syst. 2015, 10, 231–238. [Google Scholar]
- Kooperberg, C.; Stone, C.J. Logspline Density Estimation for Censored Data. J. Comput. Graph. Stat. 1992, 1, 301–328. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 14 May 2024).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; Northwestern University: Evanston, IL, USA, 2024. [Google Scholar]
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix. (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 14 May 2024).
- Laterza, L.; Rizzatti, G.; Gaetani, E.; Chiusolo, P.; Gasbarrini, A. The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016025. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Grootaert, C.; Marzorati, M.; Possemiers, S.; Verstraete, W.; Gérard, P.; Rabot, S.; Bruneau, A.; El Aidy, S.; Derrien, M.; et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 2010, 76, 5237–5246. [Google Scholar] [CrossRef] [PubMed]
- Van Herreweghen, F.; Van den Abbeele, P.; De Mulder, T.; De Weirdt, R.; Geirnaert, A.; Hernandez-Sanabria, E.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Belzer, C.; et al. In vitolonizationion of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Benef. Microbes 2017, 8, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, D.R.; Garge, N.; Zhang, X.; O’Connell, T.M.; Sun, W.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gibson, G.R.; Costabile, A.; Sailer, M.; Theis, S.; Rastall, R.A. Prebiotic Supplementation of In Vitro Fecal Fermentations Inhibits Proteolysis by Gut Bacteria, and Host Diet Shapes Gut Bacterial Metabolism and Response to Intervention. Appl. Environ. Microbiol. 2019, 85, e02749-18. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, A.; Ushida, K.; Philips, G.O.; Ogasawara, T.; Sasaki, Y. Identification of Intestinal bacteria Responsible for Fermentation of Gum Arabic in Pig Model. Curr. Microbiol. 2006, 53, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Gonzalez-Sarrias, A.; Romo-Vaquero, M.; Garcia-Villalba, R.; Cortes-Martin, A.; Selma, M.V.; Carlos Espin, J. The Endotoxemia Marker Lipopolysaccharide-Binding Protein is Reduced in Overweight-Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial. Mol. Nutr. Food Res. 2018, 62, e1800160. [Google Scholar] [CrossRef]
- Morotomi, M.; Nagai, F.; Watanabe, Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2012, 62, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Mazier, W.; Le Corf, K.; Martinez, C.; Tudela, H.; Kissi, D.; Kropp, C.; Coubard, C.; Soto, M.; Elustondo, F.; Rawadi, G.; et al. A New Strain of Christensenella minuta as a Potential Biotherapy for Obesity and Associated Metabolic Diseases. Cells 2021, 10, 823. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; de Vos, W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Anhê, F.F.; Roy, D.; Pilon, G.; Dudonné, S.; Matamoros, S.; Varin, T.V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E.; et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015, 64, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.-R.; Lee, J.-C.; Lee, H.-Y.; Kim, M.-S.; Whon, T.W.; Lee, M.-S.; Bae, J.-W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, V.M.; Kärkkäinen, O.; Borewicz, K.; Zarei, I.; Jokkala, J.; Micard, V.; Rosa-Sibakov, N.; Auriola, S.; Aura, A.-M.; Smidt, H.; et al. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome 2019, 7, 103. [Google Scholar] [CrossRef]
- Ueland, P.M.; Holm, P.I.; Hustad, S. Betaine: A key modulator of one-carbon metabolism and homocysteine status. Clin. Chem. Lab. Med. 2005, 43, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Bingül, İ.; Başaran-Küçükgergin, C.; Fatih Aydın, A.; Çoban, J.; Doğan-Ekici, I.; Doğru-Abbasoğlu, S.; Uysal, M. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis. Environ. Toxicol. Pharmacol. 2016, 45, 170–178. [Google Scholar] [CrossRef]
- Pegg, A.E.; Casero, R.A., Jr. Current status of the polyamine research field. Methods Mol. Biol. 2011, 720, 3–35. [Google Scholar] [CrossRef] [PubMed]
- Rider, J.E.; Hacker, A.; Mackintosh, C.A.; Pegg, A.E.; Woster, P.M.; Casero, R.A., Jr. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 2007, 33, 231–240. [Google Scholar] [CrossRef]
- Sadasivan, S.; Vasamsetti, B.; Singh, J.; Marikunte, V.V.; Oommen, A.M.; Jagannath, M.R.; Pralhada Rao, R. Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice. Eur. J. Pharmacol. 2014, 729, 94–99. [Google Scholar] [CrossRef]
- Fernandez, A.; Bárcena, C.; Martínez-García, G.G.; Tamargo-Gómez, I.; Suárez, M.F.; Pietrocola, F.; Castoldi, F.; Esteban, L.; Sierra-Filardi, E.; Boya, P.; et al. Autophagy counteracts weight gain, lipotoxicity and pancreatic β-cell death upon hypercaloric pro-diabetic regimens. Cell Death Dis. 2017, 8, e2970. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 1996, 81, 288–302. [Google Scholar] [CrossRef]
- Drazic, A.; Miura, H.; Peschek, J.; Le, Y.; Bach, N.C.; Kriehuber, T.; Winter, J. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl. Acad. Sci. USA 2013, 110, 9493–9498. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.; Margolis, K.G. Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 319–342. [Google Scholar] [CrossRef]
- Pinto, M.C.; Simão, F.; da Costa, F.L.P.; Rosa, D.V.; de Paiva, M.J.N.; Resende, R.R.; Romano-Silva, M.A.; Gomez, M.V.; Gomez, R.S. Sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia. Neuroscience 2014, 271, 160–169. [Google Scholar] [CrossRef]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Morotomi, M.; Nagai, F.; Sakon, H.; Tanaka, R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- Moens, F.; De Vuyst, L. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Benef. Microbes 2017, 8, 473–490. [Google Scholar] [CrossRef] [PubMed]
- Van der Ark, K.C.H.; Aalvink, S.; Suarez-Diez, M.; Schaap, P.J.; de Vos, W.M.; Belzer, C. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 2018, 11, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl Sulfate. Toxins 2016, 9, 52. [Google Scholar] [CrossRef]
- Choo, J.M.; Kanno, T.; Mohd Zain, N.M.; Leong, L.E.X.; Abell, G.C.J.; Keeble, J.E.; Bruce, K.D.; James Mason, A.; Rogers, G.B. Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions. mSphere 2017, 2, e00005-17. [Google Scholar] [CrossRef]
BF | AG | BF + AG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | DC | PC | DC | PC | DC | |||||||
C | T | C | T | C | T | C | T | C | T | C | T | |
Acetate (mM) | 30.4 ± 1.6 | 61.0 ± 8.8 | 41.0 ± 2.1 | 74.0 ± 11.8 | 25.7 ± 2.1 | 57.9 ± 14.8 | 42.6 ± 2.4 | 80.7 ± 15.8 | 28.7 ± 1.0 | 41.3 ± 4.7 | 42.6 ± 0.9 | 59.5 ± 6.8 |
Propionate (mM) | 28.1 ± 2.3 | 32.3 ± 3.4 | 29.0 ± 2.3 | 29.4 ± 2.1 | 23.3 ± 1.7 | 33.0 ± 4.0 | 24.9 ± 1.8 | 33.7 ± 3.7 | 26.0 ± 1.7 | 32.0 ± 2.2 | 25.7 ± 0.9 | 31.4 ± 2.8 |
Butyrate (mM) | 14.6 ± 2.1 | 26.8 ± 4.8 | 15.3 ± 1.3 | 21.0 ± 3.6 | 15.1 ± 1.5 | 25.4 ± 5.9 | 15.5 ± 1.3 | 21.3 ± 3.6 | 13.4 ± 1.1 | 19.3 ± 3.6 | 13.8 ± 0.6 | 16.4 ± 2.6 |
Lactate (mM) | 0.015 ± 0.005 | 0.035 ± 0.004 | 0.008 ± 0.004 | 0.026 ± 0.007 | 0.017 ± 0.002 | 0.027 ± 0.004 | 0.009 ± 0.001 | 0.017 ± 0.003 | 0.018 ± 0.003 | 0.025 ± 0.006 | 0.008 ± 0.004 | 0.018 ± 0.007 |
bCFA (mM) | 2.49 ± 0.14 | 1.57 ± 0.18 | 2.93 ± 0.13 | 1.84 ± 0.32 | 2.40 ± 0.15 | 1.79 ± 0.19 | 2.88 ± 0.11 | 1.89 ± 0.30 | 2.38 ± 0.16 | 1.89 ± 0.18 | 2.83 ± 0.09 | 2.08 ± 0.26 |
Ammonium (mg/L) | 284 ± 25 | 166 ± 39 | 402 ± 21 | 228 ± 63 | 266 ± 28 | 189 ± 41 | 351 ± 58 | 210 ± 57 | 265 ± 31 | 192 ± 28 | 347 ± 49 | 247 ± 46 |
Phylum | Family | PC | DC | ||||
---|---|---|---|---|---|---|---|
BF | AG | BF + AG | BF | AG | BF + AG | ||
Actinobacteria | Bifidobacteriaceae | 0.51 * | 0.29 | 0.55 * | 0.31 | 0.20 * | 0.00 |
Coriobacteriaceae | 0.44 | −0.59 * | −0.73 * | 0.55 * | −0.56 * | −0.46 * | |
Microbacteriaceae | 0.87 | −0.92 | −0.76 | 0.49 | −0.87 | −0.73 * | |
Micrococcaceae | −0.50 | 0.23 | 0.07 | 0.11 | 0.14 | 0.13 | |
Total | 0.48 * | 0.23 | 0.40 * | 0.31 * | 0.13 | −0.07 | |
Bacteroidetes | Bacteroidaceae | −0.80 * | −0.08 | −0.41 * | 0.22 * | 0.25 * | 0.28 * |
Marinifilaceae | <LOQ | <LOQ | <LOQ | 0.67 | 0.39 | 0.29 | |
Prevotellaceae | 1.40 * | 2.96 * | 1.34 * | 0.68 | 1.59 * | 0.75 | |
Rikenellaceae | −0.72 * | <LOQ | <LOQ | 0.28 | 0.11 | 0.21 | |
Tannerellaceae | −0.98 * | 0.44 * | 0.10 | −0.37 * | −0.23 * | −0.01 | |
Total | −0.47 * | 0.13 | −0.34 * | 0.20 * | 0.25 * | 0.27 * | |
Firmicutes | Acidaminococcaceae | −0.88 * | −0.21 | −0.45 | −0.23 | 0.08 | 0.04 |
Christensenellaceae | <LOQ | <LOQ | <LOQ | 0.48 | −0.56 * | 1.14 * | |
Clostridiaceae_1 | <LOQ | −0.31 | −1.03 | <LOQ | <LOQ | <LOQ | |
Enterococcaceae | <LOQ | −0.46 | −0.25 | <LOQ | −0.56 * | 0.65 | |
Eubacteriaceae | <LOQ | <LOQ | <LOQ | 0.65 * | 0.31 | 0.45 * | |
Family_XIII | <LOQ | <LOQ | <LOQ | 0.10 | −0.55 * | −0.14 | |
Lachnospiraceae | −0.09 | 0.46 * | 0.00 | 0.12 | 0.23 * | 0.04 | |
Ruminococcaceae | 0.82 | 0.72 | 0.91 | 0.85 * | 0.71 * | 0.67 * | |
Veillonellaceae | −0.09 | −0.18 | −0.22 * | −0.39 | −0.16 * | −0.03 | |
Total | −0.08 | −0.05 | −0.19 * | −0.11 | 0.03 | 0.03 | |
Lentisphaerae | vadinBE97 | <LOQ | <LOQ | <LOQ | −0.16 * | −0.86 * | −0.65 * |
Victivallaceae | <LOQ | <LOQ | <LOQ | 0.55 | −0.99 * | 0.10 | |
Total | <LOQ | <LOQ | <LOQ | 0.41 | −0.95 * | −0.32 * | |
Proteobacteria | Burkholderiaceae | −0.47 * | 0.17 | −0.48 | −0.04 | −0.02 | −0.09 |
Desulfovibrionaceae | −1.48 | <LOQ | 0.15 | −0.17 | −0.31 | −0.08 | |
Enterobacteriaceae | 0.09 | −0.74 | −0.58 | 0.28 | −0.99 | 0.42 | |
Pseudomonadaceae | 0.19 | −0.30 | −0.71 | 0.26 | 0.17 | 0.38 * | |
uncultured | −1.89 * | <LOQ | <LOQ | −0.57 | 0.87 | 1.34 | |
Total | −0.22 | −0.54 | −0.59 | −0.02 | −0.18 | 0.21 | |
Verrucomicrobia | Akkermansiaceae | <LOQ | <LOQ | <LOQ | 0.95 * | −0.11 | 1.26 * |
Puniceicoccaceae | <LOQ | <LOQ | <LOQ | 0.96 | <LOQ | −0.11 | |
Total | <LOQ | <LOQ | <LOQ | 0.95 * | −0.33 | 0.75 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duysburgh, C.; Govaert, M.; Guillemet, D.; Marzorati, M. Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties. Nutrients 2024, 16, 1570. https://doi.org/10.3390/nu16111570
Duysburgh C, Govaert M, Guillemet D, Marzorati M. Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties. Nutrients. 2024; 16(11):1570. https://doi.org/10.3390/nu16111570
Chicago/Turabian StyleDuysburgh, Cindy, Marlies Govaert, Damien Guillemet, and Massimo Marzorati. 2024. "Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties" Nutrients 16, no. 11: 1570. https://doi.org/10.3390/nu16111570
APA StyleDuysburgh, C., Govaert, M., Guillemet, D., & Marzorati, M. (2024). Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties. Nutrients, 16(11), 1570. https://doi.org/10.3390/nu16111570