Preventive Intake of a Multiple Micronutrient Supplement during Mild, Acute SARS-CoV-2 Infection to Reduce the Post-Acute COVID-19 Condition: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Study Population
2.3. Micronutrients: Sample Collection and Measurements
2.4. Macronutrients: Recording and Interpretation
2.5. Interventions: Randomization and Sequence Generation
2.6. Outcomes
2.7. Treatment-Related Side Effects
2.8. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Recruitment
3.3. Baseline Data
3.4. Main Results
3.4.1. Primary Outcomes
3.4.2. Secondary Outcomes
Micronutrient Status
Neurological Impairment and Quality of Life
Safety Outcomes
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anand, S.T.; Vo, A.D.; La, J.; Do, N.V.; Fillmore, N.R.; Brophy, M.; Branch-Elliman, W.; Monach, P.A. Severe COVID-19 in Vaccinated Adults with Hematologic Cancers in the Veterans Health Administration. JAMA Netw. Open. 2024, 7, e240288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Choudhary, M.C.; Regan, J.; Boucau, J.; Nathan, A.; Speidel, T.; Liew, M.Y.; Edelstein, G.E.; Kawano, Y.; Uddin, R.; et al. SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency. Sci. Transl. Med. 2024, 16, eadk1599. [Google Scholar] [CrossRef] [PubMed]
- DeVries, A.; Shambhu, S.; Sloop, S.; Overhage, J.M. One-Year Adverse Outcomes Among US Adults with Post-COVID-19 Condition vs Those without COVID-19 in a Large Commercial Insurance Database. JAMA Health Forum. 2023, 4, e230010, Erratum in JAMA Health Forum. 2023, 4, e232428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niemi, M.E.K.; Daly, M.J.; Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. 2022, 23, 533–546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020, 12, 3198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomasa-Irriguible, T.M.; Bielsa-Berrocal, L.; Bordejé-Laguna, L.; Tural-Llàcher, C.; Barallat, J.; Manresa-Domínguez, J.M.; Torán-Monserrat, P. Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites 2021, 11, 565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q. Understanding the burden of post-COVID-19 condition. BMJ 2023, 381, 932. [Google Scholar] [CrossRef] [PubMed]
- Malkova, A.; Kudryavtsev, I.; Starshinova, A.; Kudlay, D.; Zinchenko, Y.; Glushkova, A.; Yablonskiy, P.; Shoenfeld, Y. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens 2021, 10, 1408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baimukhamedov, C. How long is long COVID. Int. J. Rheum. Dis. 2023, 26, 190–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lancet, T. Long COVID: 3 years in. Lancet 2023, 401, 795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, Q.; Joyce, E.E.; Ebrahimi, O.V.; Didriksen, M.; Lovik, A.; Sævarsdóttir, K.S.; Magnúsdóttir, I.; Mikkelsen, D.H.; Unnarsdóttir, A.B.; Hauksdóttir, A.; et al. COVID-19 illness severity and 2-year prevalence of physical symptoms: An observational study in Iceland, Sweden, Norway and Denmark. Lancet Reg. Health Eur. 2023, 35, 100756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.T.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; Duda, S.N.; et al. The REDCap consortium: Building an international community of software partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Nyenhuis, D.; Black, S.E.; Law, L.S.; Lo, E.S.; Kwan, P.W.; Au, L.; Chan, A.Y.; Wong, L.K.; Nasreddine, Z.; et al. Montreal Cognitive Assessment 5-minute protocol is a brief, valid, reliable, and feasible cognitive screen for telephone administration. Stroke 2015, 46, 1059–1064. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, G.; Garin, O.; Pardo, Y.; Vilagut, G.; Pont, À.; Suárez, M.; Neira, M.; Rajmil, L.; Gorostiza, I.; Ramallo-Fariña, Y.; et al. Validity of the EQ-5D-5L and reference norms for the Spanish population. Qual. Life Res. 2018, 27, 2337–2348. [Google Scholar] [CrossRef] [PubMed]
- Michelutti, M.; Furlanis, G.; Buoite Stella, A.; Bellavita, G.; Frezza, N.; Torresin, G.; Ajčević, M.; Manganotti, P. Sex-dependent characteristics of Neuro-Long-COVID: Data from a dedicated neurology ambulatory service. J. Neurol. Sci. 2022, 441, 120355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E.; et al. Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaichana, U.; Man, K.K.C.; Chen, A.; Wong, I.C.K.; George, J.; Wilson, P.; Wei, L. Definition of Post–COVID-19 Condition Among Published Research Studies. JAMA Netw. Open. 2023, 6, e235856. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; Asensio, S.; Sanchez, R.; Ruiz-Torregrosa, P.; Galan, I.; et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: A systematic review and meta-analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated with Post-COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Richard, S.A.; Pollett, S.D.; Fries, A.C.; Berjohn, C.M.; Maves, R.C.; Lalani, T.; Smith, A.G.; Mody, R.M.; Ganesan, A.; Colombo, R.E.; et al. Persistent COVID-19 Symptoms at 6 Months after Onset and the Role of Vaccination Before or after SARS-CoV-2 Infection. JAMA Netw. Open. 2023, 6, e2251360, Erratum in JAMA Netw. Open. 2023, 6, e230734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Català, M.; Mercadé-Besora, N.; Kolde, R.; Trinh, N.T.H.; Roel, E.; Burn, E.; Rathod-Mistry, T.; Kostka, K.; Man, W.Y.; Delmestri, A.; et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: Staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir. Med. 2024, 12, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Ballouz, T.; Menges, D.; Anagnostopoulos, A.; Domenghino, A.; Aschmann, H.E.; Frei, A.; Fehr, J.S.; A Puhan, M. Recovery and symptom trajectories up to two years after SARS-CoV-2 infection: Population based, longitudinal cohort study. BMJ 2023, 381, e074425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Martin, E.M.; Reuken, P.A.; Scholcz, A.; Ganse-Dumrath, A.; Srowig, A.; Utech, I.; Kozik, V.; Radscheidt, M.; Brodoehl, S.; et al. Long COVID is associated with severe cognitive slowing: A multicentre cross-sectional study. eClinicalMedicine 2024, 68, 102434. [Google Scholar] [CrossRef]
- Manganotti, P.; Michelutti, M.; Furlanis, G.; Deodato, M.; Buoite Stella, A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin. Neurophysiol. 2023, 151, 83–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Díez-Cirarda, M.; Yus, M.; Gómez-Ruiz, N.; Polidura, C.; Gil-Martínez, L.; Delgado-Alonso, C.; Jorquera, M.; Gómez-Pinedo, U.; Matias-Guiu, J.; Arrazola, J.; et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 2023, 146, 2142–2152. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Jaywant, A.; Gunning, F.M.; Oberlin, L.E.; Santillana, M.; Ognyanova, K.; Druckman, J.N.; Baum, M.A.; Lazer, D.; Perlis, R.H. Cognitive Symptoms of Post-COVID-19 Condition and Daily Functioning. JAMA Netw. Open. 2024, 7, e2356098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, X.; Ding, S.; Lu, J.; Li, Y. Global, regional, and national burdens of common micronutrient deficiencies from 1990 to 2019: A secondary trend analysis based on the Global Burden of Disease 2019 study. eClinicalMedicine 2022, 44, 101299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pham, H.; Rahman, A.; Majidi, A.; Waterhouse, M.; Neale, R.E. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: A systematic review and meta-analysis. Int. J. Environ. Res. Public. Health 2019, 16, 3020. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Holt, H.; Greenig, M.; Talaei, M.; Perdek, N.; Pfeffer, P.; Vivaldi, G.; Maltby, S.; Symons, J.; Barlow, N.L.; et al. Effect of a Test-and-Treat Approach to Vitamin D Supplementation on Risk of All Cause Acute Respiratory Tract Infection and COVID-19: Phase 3 Randomised Controlled Trial (CORONAVIT). BMJ 2022, 378, e071230. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Vollbracht, C.; Kraft, K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front. Pharmacol. 2022, 13, 899198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Renaud, D.; Höller, A.; Michel, M. Potential Drug–Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin—A Review of the Literature. Nutrients 2024, 16, 950. [Google Scholar] [CrossRef] [PubMed]
- Karadima, V.; Kraniotou, C.; Bellos, G.; Tsangaris, G.T. Drug-micronutrient interactions: Food for thought and thought for action. EPMA J. 2016, 7, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jennings, S.; Corrin, T.; Waddell, L. A systematic review of the evidence on the associations and safety of COVID-19 vaccination and post COVID-19 condition. Epidemiol. Infect. 2023, 151, e145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Ellingjord-Dale, M.; Brunvoll, S.H.; Søraas, A. Prospective Memory Assessment before and after Covid-19. N. Engl. J. Med. 2024, 390, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Rosen, C.J. Long Covid and Impaired Cognition—More Evidence and More Work to Do. N. Engl. J. Med. 2024, 390, 858–860. [Google Scholar] [CrossRef] [PubMed]
- Gentilotti, E.; Górska, A.; Tami, A.; Gusinow, R.; Mirandola, M.; Rodríguez Baño, J.; Palacios Baena, Z.R.; Rossi, E.; Hasenauer, J.; Lopes-Rafegas, I.; et al. Clinical phenotypes and quality of life to define post-COVID-19 syndrome: A cluster analysis of the multinational, prospective ORCHESTRA cohort. eClinicalMedicine 2023, 62, 102107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huskisson, E.; Maggini, S.; Ruf, M. The Influence of Micronutrients on Cognitive Function and Performance. J. Int. Med. Res. 2007, 35, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.-W.; Choi, B.-Y.; Son, S.-Y.; Oh, K.-H.; Min, J.-Y.; Min, K.-B. Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults. Nutrients 2024, 16, 1001. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.; Devason, A.S.; Umana, I.C.; Cox, T.O.; Dohnalová, L.; Litichevskiy, L.; Perla, J.; Lundgren, P.; Etwebi, Z.; Izzo, L.T.; et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023, 186, 4851–4867.e20. [Google Scholar] [CrossRef] [PubMed]
Level | Overall | Placebo Group | MMS Group | Missing | |
---|---|---|---|---|---|
n | 246 | 128 | 118 | ||
Age (mean (SD)) | 46.83 (16.32) | 46.83 (16.36) | 46.83 (16.36) | 0 | |
Height (mean (SD)) | 165.90 (8.65) | 167.03 (9.26) | 167.03 (7.81) | 1.2 | |
Weight (mean (SD)) | 71.13 (15.84) | 69.72 (17.00) | 72.65 (14.39) | 1.2 | |
BMI (mean (SD)) | 25.73 (4.85) | 25.51 (5.11) | 25.98 (4.57) | 1.2 | |
Sex (%) | Male | 78 (31.7) | 41 (32.0) | 37 (31.4) | 0 |
Female | 168 (68.3) | 87 (68.0) | 81 (68.6) | ||
Race (%) | White | 223 (91.0) | 117 (91.4) | 106 (90.6) | 0.4 |
Black | 1 (0.4) | 0 (0.0) | 1 (0.9) | ||
Hispanic | 14 (5.7) | 8 (6.2) | 6 (5.1) | ||
Asian | 1 (0.4) | 1 (0.8) | 0 (0.0) | ||
Other | 6 (2.4) | 2 (1.6) | 4 (3.4) | ||
Smoking (%) | Smoker | 60 (24.8) | 34 (27.2) | 26 (22.2) | 1.6 |
Former smoker a | 51 (21.1) | 28 (22.4) | 23 (19.7) | ||
Never smoker | 131 (54.1) | 63 (50.4) | 68 (58.1) | ||
Drinking (%) | Abstemious | 111 (45.9) | 55 (44.0) | 56 (47.9) | 1.6 |
Low | 122 (50.4) | 64 (51.2) | 58 (49.6) | ||
High | 9 (3.7) | 6 (4.8) | 3 (2.6) | ||
Chronic health conditions (%) | 0 | ||||
Diabetes mellitus | 20 (8.1) | 11 (8.6) | 9 (7.6) | ||
Hypertension | 45 (18.3) | 22 (17.2) | 23 (19.5) | ||
Obesity | 30 (12.2) | 14 (10.9) | 16 (13.6) | ||
Dyslipidemia | 34 (13.8) | 20 (15.6) | 14 (11.9) | ||
Respiratory conditions (%) | 0 | ||||
COPD | 6 (2.4) | 2 (1.6) | 4 (3.4) | ||
Asthma | 21 (8.5) | 12 (9.4) | 9 (7.6) | ||
Chronic bronchitis | 3 (1.2) | 2 (1.6) | 1 (0.8) | ||
Other | 10 (4.1) | 4 (3.1) | 6 (5.1) | ||
Cardiological (%) | 0 | ||||
Arrhythmia | 7 (2.8) | 4 (3.1) | 3 (2.5) | ||
Heart failure | 1 (0.4) | 1 (0.8) | 0 (0.0) | ||
Valve disease | 2 (0.8) | 1 (0.8) | 1 (0.8) | ||
Ischemic b | 2 (0.8) | 2 (1.6) | 0 (0.0) | ||
Other (%) | 13 (5.3) | 6 (4.7) | 7 (5.9) | ||
Gastrointestinal (%) | 0 | ||||
CAAG | 3 (1.2) | 2 (1.6) | 1 (0.8) | ||
GI surgery | 3 (1.2) | 2 (1.6) | 1 (0.8) | ||
IBD | 1 (0.4) | 0 (0.0) | 1 (0.8) | ||
Other | 22 (8.9) | 9 (7.0) | 13 (11.0) | ||
Previous COVID-19 episode (%) | 1.2 | ||||
Yes | 77 (31.7) | 38 (30.2) | 39 (33.3) | ||
No | 166 (68.3) | 88 (69.8) | 78 (66.7) | ||
SARS-CoV-2 vaccine (%) | 0 | ||||
Yes | 227 (93.0) | 120 (95.2) | 107 (90.7) | ||
No | 17 (7.0) | 6 (4.8) | 11 (9.3) | ||
Type of vaccine (%) | 19.5 | ||||
Pfizer/BioNTech | 150 (75.8) | 78 (70.9) | 72 (81.8) | ||
Moderna | 26 (13.1) | 14 (12.7) | 12 (13.6) | ||
AstraZeneca | 20 (10.1) | 17 (15.5) | 3 (3.4) | ||
Johnson & Johnson | 2 (1.0) | 1 (0.9) | 1 (1.1) | ||
Vaccine and boosters (%) | 0 | ||||
1st dose | 225 (91.5) | 119 (93.0) | 106 (89.8) | ||
2nd dose | 221 (89.8) | 115 (89.8) | 106 (89.8) | ||
3rd dose | 163 (66.3) | 80 (62.5) | 83 (70.3) | ||
4th dose | 18 (7.3) | 7 (5.5) | 11 (9.3) | ||
Time in days from vaccination and booster to the actual episode of COVID-19 (mean (SD)) | |||||
Since 1st dose | 465.55 (178.16) | 452.42 (172.06) | 480.18 (184.42) | 8.9 | |
Since 2nd dose | 438.74 (175.73) | 427.84 (160.55) | 450.45 (190.80) | 10.6 | |
Since 3rd dose | 232.24 (126.15) | 225.87 (112.28) | 238.30 (138.48) | 34.1 |
Symptoms | Overall | Placebo Group | MMS Group | p Value | |
---|---|---|---|---|---|
n | 206 | 112 | 94 | ||
Patients with persistent symptoms (%) | 54 (26.2) | 28 (25.0) | 26 (27.7) | 0.785 | |
Patients with respiratory symptoms (%) | 18 (8.7) | 11 (9.8) | 7 (7.4) | 0.724 | |
Dyspnea | 12 | 8 | 4 | ||
Hoarseness | 1 | 0 | 1 | ||
Cough | 2 | 2 | 0 | ||
Rhinitis | 1 | 1 | 0 | ||
Mucus | 4 | 2 | 2 | ||
Patients with cardiovascular symptoms (%) | 2 (0.97) | 0 | 2 (22.2) | 0.402 | |
Palpitations | 2 | 0 | 2 (100) | ||
Patients with digestive symptoms (%) | 5 (2.4) | 3 (2.7) | 2 (2.1) | 1.000 | |
Diarrhea | 2 | 2 | 0 | ||
Constipation | 2 | 0 | 2 | ||
Anorexia | 1 | 1 | 0 | ||
Abdominal pain | 1 | 1 | 0 | ||
Patients with psychological symptoms (%) | 4 (1.9) | 4 (3.6) | 0 | 0.742 | |
Apathy | 1 | 0 | 1 | ||
Anxiety | 5 | 5 | 0 | ||
Patients with neurological symptoms (%) | 29 (14.1) | 14 (12.5) | 15 (16.0) | 0.610 | |
Memory loss | 16 | 8 | 8 | ||
Ataxia | 2 | 1 | 1 | ||
Confusion | 1 | 1 | 0 | ||
Headache | 6 | 2 | 4 | ||
Insomnia | 3 | 1 | 2 | ||
Lack of focus | 2 | 1 | 1 | ||
Mental fog | 3 | 1 | 2 | ||
Patients with neurosensory symptoms (%) | 21 (10.2) | 7 (6.2) | 14 (14.9) | 0.070 | |
Fatigue | 18 | 5 | 13 | ||
Pain | 7 | 5 | 2 | ||
Anosmia/dysgeusia | 4 | 2 | 2 | ||
Patients with other symptoms (%) | 13 (6.3) | 6 (5.4) | 7 (7.4) | 0.744 | |
Alopecia | 5 | 2 | 3 | ||
Menstruation disorders | 2 | 1 | 1 | ||
Dry skin | 1 | 0 | 1 | ||
Somnolence | 1 | 0 | 1 | ||
Clueless | 1 | 0 | 1 | ||
Claustrophobia | 1 | 1 | 0 | ||
Joint pain | 3 | 1 | 2 |
Units | Overall | 0 Deficit a | 1 Deficit a | >1 Deficit a | Missing | |
---|---|---|---|---|---|---|
Baseline availability (%) | 225 (91.5) | 102 | 64 | 59 | ||
Vitamin A | 1.3 | |||||
(Mean (SD)) | mg/dL | 0.49 (0.17) | 0.51 (0.14) | 0.53 (0.18) | 0.42 (0.19) | |
BLR (%) | (<0.300 mg/dL) | 26 (11.7) | 0 (0.0) | 5 (7.9) | 21 (35.6) | |
Vitamin B1 | 2.2 | |||||
(Mean (SD)) | ng/mL | 64.56 (15.36) | 64.51 (13.55) | 66.82 (15.63) | 62.20 (17.62) | |
BLR (%) | (<28.00 ng/mL) | 1 (0.5) | 0 (0.0) | 0 (0.0) | 1 (1.7) | |
Vitamin B6 | 2.7 | |||||
(Mean (SD)) | ng/mL | 9.63 (6.10) | 10.91 (5.93) | 9.12 (3.92) | 7.98 (7.73) | |
BLR (%) | (<3.6 ng/mL) | 19 (8.7) | 0 (0.0) | 4 (6.5) | 15 (25.9) | |
Vitamin B9 | 1.8 | |||||
(Mean (SD)) | ng/mL | 7.38 (3.67) | 7.76 (3.55) | 7.22 (2.84) | 6.88 (4.57) | |
BLR (%) | (<3.5 ng/mL) | 19 (8.6) | 0 (0.0) | 4 (6.3) | 15 (25.9) | |
Vitamin B12 | 1.8 | |||||
(Mean (SD)) | pg/mL | 448.03 (191.74) | 493.47 (188.09) | 413.56 (147.27) | 407.11 (224.10) | |
BLR (%) | (<187 pg/mL) | 10 (4.5) | 0 (0.0) | 1 (1.6) | 9 (15.5) | |
Vitamin C | 2.7 | |||||
(Mean (SD)) | mg/dL | 0.93 (0.47) | 1.12 (0.42) | 0.86 (0.41) | 0.70 (0.50) | |
BLR (%) | (<0.40 mg/dL) | 35 (16.0) | 0 (0.0) | 10 (16.1) | 25 (42.4) | |
Vitamin D | 1.3 | |||||
(Mean (SD)) | ng/mL | 25.25 (12.22) | 30.64 (9.11) | 23.49 (14.53) | 18.11 (9.73) | |
BLR (%) | (<20 ng/mL) | 71 (32.0) | 0 (0.0) | 30 (46.9) | 41 (69.5) | |
Vitamin E | 1.3 | |||||
(Mean (SD)) | mg/L | 13.09 (3.48) | 13.27 (3.43) | 14.01 (3.78) | 11.81 (2.85) | |
BLR (%) | (<5 mg/L) | 1 (0.5) | 0 (0.0) | 0 (0.0) | 1 (1.7) | |
Copper | 0.4 | |||||
(Mean (SD)) | μg/dL | 130.85 (38.69) | 131.14 (35.41) | 131.98 (36.90) | 129.15 (45.94) | |
BLR (%) | (<70 μg/dL) | 10 (4.5) | 0 (0.0) | 2 (3.1) | 8 (13.6) | |
Selenium | 1.8 | |||||
(Mean (SD)) | μg/L | 85.66 (15.13) | 89.50 (14.31) | 87.66 (15.96) | 77.03 (12.05) | |
BLR (%) | (<60 μg/L) | 8 (3.6) | 0 (0.0) | 3 (4.8) | 5 (8.5) | |
Zinc | 0.4 | |||||
(Mean (SD)) | μg/dL | 84.25 (21.50) | 87.60 (17.36) | 86.77 (27.12) | 75.77 (18.94) | |
BLR (%) | (<59 μg/dL) | 17 (7.6) | 0 (0.0) | 5 (7.8) | 12 (20.3) |
Overall | 0 Deficits a | 1 Deficit a | >1 Deficit a | p | Missing | |
---|---|---|---|---|---|---|
n | 225 | 102 | 64 | |||
Chronic medication (%) | 140 (62.2) | 60 (58.8) | 44 (68.8) | 36 (61.0) | 0.428 | 0.0 |
Inhaled bronchodilators (%) | 19 (8.4) | 7 (6.9) | 8 (12.5) | 4 (6.8) | 0.386 | 0.0 |
Inhaled corticosteroids (%) | 11 (4.9) | 3 (2.9) | 2 (3.1) | 6 (10.2) | 0.091 | 0.0 |
Oral corticosteroids (%) | 6 (2.7) | 3 (2.9) | 1 (1.6) | 2 (3.4) | 0.799 | 0.0 |
Immunosuppressants b (%) | 3 (1.3) | 1 (1.0) | 1 (1.6) | 1 (1.7) | 0.914 | 0.0 |
Oral antidiabetic agents (%) | 18 (8.0) | 3 (2.9) | 7 (10.9) | 8 (13.6) | 0.034 | 0.0 |
Insulin (%) | 5 (2.2) | 0 (0.0) | 2 (3.1) | 3 (5.1) | 0.091 | 0.0 |
Diuretics (%) | 4 (1.8) | 1 (1.0) | 0 (0.0) | 3 (5.1) | 0.073 | 0.0 |
ACE inhibitors (%) | 26 (11.6) | 6 (5.9) | 10 (15.6) | 10 (16.9) | 0.052 | 0.0 |
ARBs (%) | 11 (4.9) | 5 (4.9) | 5 (7.8) | 1 (1.7) | 0.291 | 0.0 |
Antihypertensive drugs (%) | 19 (8.4) | 4 (3.9) | 9 (14.1) | 6 (10.2) | 0.063 | 0.0 |
PPIs (%) | 34 (15.1) | 10 (9.8) | 11 (17.2) | 13 (22.0) | 0.097 | 0.0 |
Statins (%) | 33 (14.7) | 6 (5.9) | 17 (26.6) | 10 (16.9) | 0.001 | 0.0 |
NSAIDs (%) | 7 (3.1) | 4 (3.9) | 1 (1.6) | 2 (3.4) | 0.688 | 0.0 |
Anxiolytics (%) | 12 (5.3) | 6 (5.9) | 4 (6.2) | 2 (3.4) | 0.738 | 0.0 |
SSRIs (%) | 22 (9.8) | 10 (9.8) | 6 (9.4) | 6 (10.2) | 0.989 | 0.0 |
Probiotics c (%) | 2 (0.9) | 1 (1.0) | 1 (1.6) | 0 (0.0) | 0.648 | 0.0 |
Other (%) | 111 (49.3) | 44 (43.1) | 35 (54.7) | 32 (54.2) | 0.238 | 0.0 |
Level | Overall | Placebo Group | MMS Group | p | Missing | |
---|---|---|---|---|---|---|
n | 91 | 52 | 39 | |||
D1 MoCA-BLIND (mean (SD)) | 17.59 (3.42) | 17.52 (3.74) | 17.69 (2.97) | 0.812 | 0.0 | |
D180 MoCA-BLIND (mean (SD)) | 18.43 (3.25) | 18.13 (3.49) | 18.82 (2.90) | 0.322 | 0.0 | |
D180-D1 Difference (mean (SD)) | 0.84 (2.31) | 0.62 (2.50) | 1.13 (2.02) | 0.296 | 0.0 | |
D180-D1 Difference (%) | Worse | 22 (24.2) | 16 (30.8) | 6 (15.4) | 0.233 | 0.0 |
Equal | 16 (17.6) | 8 (15.4) | 8 (20.5) | |||
Better | 53 (58.2) | 28 (53.8) | 25 (64.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasa-Irriguible, T.M.; Monfà, R.; Miranda-Jiménez, C.; Morros, R.; Robert, N.; Bordejé-Laguna, L.; Vidal, S.; Torán-Monserrat, P.; Barriocanal, A.M. Preventive Intake of a Multiple Micronutrient Supplement during Mild, Acute SARS-CoV-2 Infection to Reduce the Post-Acute COVID-19 Condition: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Nutrients 2024, 16, 1631. https://doi.org/10.3390/nu16111631
Tomasa-Irriguible TM, Monfà R, Miranda-Jiménez C, Morros R, Robert N, Bordejé-Laguna L, Vidal S, Torán-Monserrat P, Barriocanal AM. Preventive Intake of a Multiple Micronutrient Supplement during Mild, Acute SARS-CoV-2 Infection to Reduce the Post-Acute COVID-19 Condition: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Nutrients. 2024; 16(11):1631. https://doi.org/10.3390/nu16111631
Chicago/Turabian StyleTomasa-Irriguible, Teresa Maria, Ramon Monfà, Cristina Miranda-Jiménez, Rosa Morros, Neus Robert, Luisa Bordejé-Laguna, Sandra Vidal, Pere Torán-Monserrat, and Ana Maria Barriocanal. 2024. "Preventive Intake of a Multiple Micronutrient Supplement during Mild, Acute SARS-CoV-2 Infection to Reduce the Post-Acute COVID-19 Condition: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial" Nutrients 16, no. 11: 1631. https://doi.org/10.3390/nu16111631
APA StyleTomasa-Irriguible, T. M., Monfà, R., Miranda-Jiménez, C., Morros, R., Robert, N., Bordejé-Laguna, L., Vidal, S., Torán-Monserrat, P., & Barriocanal, A. M. (2024). Preventive Intake of a Multiple Micronutrient Supplement during Mild, Acute SARS-CoV-2 Infection to Reduce the Post-Acute COVID-19 Condition: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Nutrients, 16(11), 1631. https://doi.org/10.3390/nu16111631