Trends and Missing Links in (De)Hydration Research: A Narrative Review
Abstract
:1. Introduction
2. What Are the Current Trends and Gaps in Study Implementation?
3. Are Sample Sizes Powered Enough to Draw Meaningful Conclusions?
4. Who Is Being Studied, and Who Is Left Behind?
5. Are We Outlining the Most Relevant Study Strategy or Getting Stuck into a Loop?
6. Which Exercise Protocol Stimulates Dehydration? Are They All the Same?
7. Temperature and Humidity: Do They Play a Role?
8. Which Beverages and Nutritional Components Are in the Spotlight?
9. Does the Amount and the Way We Drink Matter?
10. Within-Session vs. In-Season Timing—Context Matters!
11. Are We Evaluating the Most Relevant (De)Hydration-Related Outcomes?
12. Let Us Not Put All the Eggs into the Same Basket: Future Research Priorities
13. Limitations
14. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Jequier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Torres, O.; Rodriguez-Longobardo, C.; Escribano-Tabernero, R.; Fernandez-Elias, V.E. Hydration, Hyperthermia, Glycogen, and Recovery: Crucial Factors in Exercise Performance-A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4442. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M. Water. In Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005; Chapter 4; pp. 73–185. [Google Scholar] [CrossRef]
- Baron, S.; Courbebaisse, M.; Lepicard, E.M.; Friedlander, G. Assessment of hydration status in a large population. Br. J. Nutr. 2015, 113, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Thornton, S.N. Thirst and hydration: Physiology and consequences of dysfunction. Physiol. Behav. 2010, 100, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Thornton, S.N. Thirst drives us to drink at least two litres of water a day. Aust. N. Z. J. Public. Health 2012, 36, 585. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Johnson, E.C. Water Intake, Water Balance, and the Elusive Daily Water Requirement. Nutrients 2018, 10, 1928. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.A.; Schwartz, J.; Ben, L.; Maselli, J.; Keil, L.C. Interactions between vasopressin and the renin–angiotensin system. Prog. Brain Res. 1983, 60, 475–491. [Google Scholar] [CrossRef]
- Kleiner, S.M. Water: An essential but overlooked nutrient. J. Am. Diet. Assoc. 1999, 99, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.C. Water: Neglected, unappreciated and under researched. Eur. J. Clin. Nutr. 2013, 67, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.S.; Kopetschny, B.H.; Badenhorst, C.E. The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med. 2022, 52, 349–375. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, H.T.; Ng, E.L.; Wee, J.; Taim, B.C.; Huynh, M.; Gastin, P.B.; Chia, M.; Low, C.Y.; Lee, J.K.W. Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics. Nutrients 2021, 13, 4073. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Nutritional approaches to counter performance constraints in high-level sports competition. Exp. Physiol. 2021, 106, 2304–2323. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Henri, S.; Baillot, M.; Sinnapah, S.; Uzel, A.P. Thermoregulation, hydration and performance over 6 days of trail running in the tropics. Int. J. Sports Med. 2014, 35, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.A.; Watson, G.; Peiffer, J.J.; Abbiss, C.R.; Siegel, R.; Laursen, P.B. Current hydration guidelines are erroneous: Dehydration does not impair exercise performance in the heat. Br. J. Sports Med. 2015, 49, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Caller, R.; Vaquero-Cristobal, R.; Gonzalez-Galvez, N.; Abenza-Cano, L.; Horcajo, J.; de la Vega-Marcos, R. Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis. Nutrients 2023, 15, 2700. [Google Scholar] [CrossRef] [PubMed]
- Buoite Stella, A.; Francescato, M.P.; Sims, S.T.; Morrison, S.A. Fluid intake behavior in athletes during typical training bouts. J. Sports Med. Phys. Fit. 2017, 57, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.; Gonzalez-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Von Duvillard, S.P.; Braun, W.A.; Markofski, M.; Beneke, R.; Leithäuser, R. Fluids and hydration in prolonged endurance performance. Nutrition 2004, 20, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.D.; Kregel, K.C.; Wall, P.T.; Gisolfi, C.V. Effects of ingesting carbohydrate beverages during exercise in the heat. Med. Sci. Sports Exerc. 1986, 18, 568–575. [Google Scholar] [CrossRef]
- Davis, J.M.; Burgess, W.A.; Slentz, C.A.; Bartoli, W.P.; Pate, R.R. Effects of ingesting 6% and 12% glucose/electrolyte beverages during prolonged intermittent cycling in the heat. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Lamb, D.R.; Pate, R.R.; Slentz, C.A.; Burgess, W.A.; Bartoli, W.P. Carbohydrate-electrolyte drinks: Effects on endurance cycling in the heat. Am. J. Clin. Nutr. 1988, 48, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.; Gisolfi, C.V. Fluid replacement during and after exercise in the heat. Med. Sci. Sports Exerc. 1989, 21, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.; Seifert, J.G.; Eddy, D.E.; Paul, G.L.; Halaby, G.A. Carbohydrate feeding and exercise: Effect of beverage carbohydrate content. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 59, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Burgess, W.A.; Slentz, C.A.; Bartoli, W.P. Fluid availability of sports drinks differing in carbohydrate type and concentration. Am. J. Clin. Nutr. 1990, 51, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.P.; Riedesel, M.L.; Meuli, L.E.; Chick, T.W. Effects of glycerol-induced hyperhydration prior to exercise in the heat on sweating and core temperature. Med. Sci. Sports Exerc. 1990, 22, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Lawler, J.; Dodd, S.; Tulley, R.; Landry, G.; Wheeler, K. Fluid replacement drinks during high intensity exercise: Effects on minimizing exercise-induced disturbances in homeostasis. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; Costill, D.L.; Fink, W.J. Fluid replacement during prolonged exercise: Effects of water, saline, or no fluid. Med. Sci. Sports Exerc. 1991, 23, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.J.; Navarre, A.E.; Gisolfi, C.V. Consumption of carbonated and noncarbonated sports drinks during prolonged treadmill exercise in the heat. Int. J. Sport Nutr. 1991, 1, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Seidman, D.S.; Ashkenazi, I.; Arnon, R.; Shapiro, Y.; Epstein, Y. The effects of glucose polymer beverage ingestion during prolonged outdoor exercise in the heat. Med. Sci. Sports Exerc. 1991, 23, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Criswell, D.; Renshler, K.; Powers, S.K.; Tulley, R.; Cicale, M.; Wheeler, K. Fluid replacement beverages and maintenance of plasma volume during exercise: Role of aldosterone and vasopressin. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.P.; Costill, D.L.; McConell, G.K.; Benedict, M.A.; Lambert, G.P.; Robergs, R.A.; Fink, W.J. Fluid replacement after dehydration: Influence of beverage carbonation and carbohydrate content. Int. J. Sports Med. 1992, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.L.; Sparling, P.B.; Rosskopf, L.B.; DiCarlo, L.J. Carbohydrate-electrolyte replacement improves distance running performance in the heat. Med. Sci. Sports Exerc. 1992, 24, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Widrick, J.J.; Costill, D.L.; Fink, W.J.; Hickey, M.S.; McConell, G.K.; Tanaka, H. Carbohydrate feedings and exercise performance: Effect of initial muscle glycogen concentration. J. Appl. Physiol. 1993, 74, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Meyer, F.; Bar-Or, O.; Salsberg, A.; Passe, D. Hypohydration during exercise in children: Effect on thirst, drink preferences, and rehydration. Int. J. Sport Nutr. 1994, 4, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.S.; Costill, D.L.; Trappe, S.W. Drinking behavior and exercise-thermal stress: Role of drink carbonation. Int. J. Sport Nutr. 1994, 4, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Owen, J.H.; Shirreffs, S.M.; Leiper, J.B. Post-exercise rehydration in man: Effects of electrolyte addition to ingested fluids. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Sparling, P.B.; Rosskopf, L.B.; Snow, T.K.; DiCarlo, L.J.; Hinson, B.T. Fluid intake in male and female runners during a 40-km field run in the heat. J. Sports Sci. 1995, 13, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Glickman-Weiss, E.L.; Hegsted, M.; Nelson, A.G.; Hearon, C.M.; Dunbar, C.C.; Tulley, R. A comparison of a carbohydrate–electrolyte beverage versus a placebo beverage in maintaining thermoregulatory and blood homeostasis during the training of fire fighters. Wilderness Environ. Med. 1995, 6, 377–384. [Google Scholar] [CrossRef]
- Wilk, B.; Bar-Or, O. Effect of drink flavor and NaCL on voluntary drinking and hydration in boys exercising in the heat. J. Appl. Physiol. 1996, 80, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Murton, P.; Selig, S.E.; Clark, S.A.; Lambert, D.L.; Angus, D.J.; Carey, M.F. Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Med. Sci. Sports Exerc. 1996, 28, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- el-Sayed, M.S.; Balmer, J.; Rattu, A.J. Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J. Sports Sci. 1997, 15, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Jackson, D.A.; Broadwell, M.S.; Queary, J.L.; Lambert, C.L. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int. J. Sport Nutr. 1997, 7, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Koulmann, N.; Melin, B.; Jimenez, C.; Charpenet, A.; Savourey, G.; Bittel, J. Effects of different carbohydrate-electrolyte beverages on the appearance of ingested deuterium in body fluids during moderate exercise by humans in the heat. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Rosskopf, L.B.; Snow, T.K.; Hinson, B.T. Water versus carbohydrate-electrolyte ingestion before and during a 15-km run in the heat. Int. J. Sport Nutr. 1997, 7, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Williams, C.; Simpson, M.; Ogaki, T. Influence of fluid intake pattern on short-term recovery from prolonged, submaximal running and subsequent exercise capacity. J. Sports Sci. 1998, 16, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Wilk, B.; Kriemler, S.; Keller, H.; Bar-Or, O. Consistency in preventing voluntary dehydration in boys who drink a flavored carbohydrate-NaCl beverage during exercise in the heat. Int. J. Sport Nutr. 1998, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.S.; Clancy, M.C.; Hawley, J.A.; Rodger, I.M.; Burke, L.M.; Noakes, T.D. Carbohydrate ingestion immediately before exercise does not improve 20 km time trial performance in well trained cyclists. Int. J. Sports Med. 1998, 19, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Brown, A.M.; Gutiérrez, R.; Gutiérrez, J.C.; Frontera, W.R.; Bar-Or, O. Drink composition, voluntary drinking, and fluid balance in exercising, trained, heat-acclimatized boys. J. Appl. Physiol. 1999, 86, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Vrijens, D.M.; Rehrer, N.J. Sodium-free fluid ingestion decreases plasma sodium during exercise in the heat. J. Appl. Physiol. 1999, 86, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Welsh, R.S.; De Volve, K.L.; Alderson, N.A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int. J. Sports Med. 1999, 20, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sanders, B.; Noakes, T.D.; Dennis, S.C. Water and electrolyte shifts with partial fluid replacement during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Utter, A.C.; Kang, J.; Nieman, D.C.; Williams, F.; Robertson, R.J.; Henson, D.A.; Davis, J.M.; Butterworth, D.E. Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.B.; Phillips, M.D.; Mercer, S.P.; Baylies, H.L.; Pizza, F.X. Postexercise rehydration: Effect of Na(+) and volume on restoration of fluid spaces and cardiovascular function. J. Appl. Physiol. 2000, 89, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Clapp, A.J.; Bishop, P.A.; Smith, J.F.; Mansfield, E.R. Effects of carbohydrate-electrolyte content of beverages on voluntary hydration in a simulated industrial environment. AIHAJ Am. Ind. Hyg. Assoc. 2000, 61, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Braun, W.; Pizz, F.; Forrest, M. Pre-exercise carbohydrate and fluid ingestion: Influence of glycemic response on 10-km treadmill running performance in the heat. J. Sports Med. Phys. Fit. 2000, 40, 41–50. [Google Scholar]
- Febbraio, M.A.; Chiu, A.; Angus, D.J.; Arkinstall, M.J.; Hawley, J.A. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J. Appl. Physiol. 2000, 89, 2220–2226. [Google Scholar] [CrossRef]
- Warber, J.P.; Patton, J.F.; Tharion, W.J.; Zeisel, S.H.; Mello, R.P.; Kemnitz, C.P.; Lieberman, H.R. The effects of choline supplementation on physical performance. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Niles, E.S.; Lachowetz, T.; Garfi, J.; Sullivan, W.; Smith, J.C.; Leyh, B.P.; Headley, S.A. Carbohydrate-protein drink improves time to exhaustion after recovery from endurance exercise. J. Exerc. Physiol. Online 2001, 4, 45–52. [Google Scholar]
- Wojcik, J.R.; Walber-Rankin, J.; Smith, L.L.; Gwazdauskas, F.C. Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Utter, A.C.; Kang, J.; Robertson, R.J.; Nieman, D.C.; Chaloupka, E.C.; Suminski, R.R.; Piccinni, C.R. Effect of carbohydrate ingestion on ratings of perceived exertion during a marathon. Med. Sci. Sports Exerc. 2002, 34, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Horie, S.; Tsutsui, T.; Miyazaki, S. Effect of dilution of sports drink on water balance and beverage preference of heat-exposed steel workers. J. UOEH 2003, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aoki, M.S.; Pontes, F.L., Jr.; Navarro, F.; Uchida, M.C.; Bacurau, R.F.P. Carbohydrate supplementation fails to revert the deleterious effects of endurance exercise upon subsequent strength performance. Rev. Bras. Med. Esporte 2003, 9, 282–287. [Google Scholar] [CrossRef]
- Williams, M.B.; Raven, P.B.; Fogt, D.L.; Ivy, J.L. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J. Strength Cond. Res. 2003, 17, 12–19. [Google Scholar] [PubMed]
- Saunders, M.J.; Kane, M.D.; Todd, M.K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med. Sci. Sports Exerc. 2004, 36, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Wingo, J.E.; Casa, D.J.; Berger, E.M.; Dellis, W.O.; Knight, J.C.; McClung, J.M. Influence of a Pre-Exercise Glycerol Hydration Beverage on Performance and Physiologic Function During Mountain-Bike Races in the Heat. J. Athl. Train. 2004, 39, 169–175. [Google Scholar] [PubMed]
- Finn, K.J.; Dolgener, F.A.; Williams, R.B. Effects of Carbohydrate Refeeding on Physiological Responses and Psychological and Physical Performance Following Acute Weight Reduction in Collegiate Wrestlers. J. Strength Cond. Res. 2004, 18, 328–333. [Google Scholar]
- Utter, A.C.; Kang, J.; Nieman, D.C.; Dumke, C.L.; McAnulty, S.R.; Vinci, D.M.; McAnulty, L.S. Carbohydrate supplementation and perceived exertion during prolonged running. Med. Sci. Sports Exerc. 2004, 36, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.L.; Sparling, P.B.; Rosskopf, L.B.; Snow, T.K. Should carbohydrate concentration of a sports drink be less than 8% during exercise in the heat? Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Backhouse, S.H.; Bishop, N.C.; Biddle, S.J.; Williams, C. Effect of carbohydrate and prolonged exercise on affect and perceived exertion. Med. Sci. Sports Exerc. 2005, 37, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Utter, A.C.; Kang, J.; Nieman, D.C.; Brown, V.A.; Dumke, C.L.; McAnulty, S.R.; McAnulty, L.S. Carbohydrate supplementation and perceived exertion during resistance exercise. J. Strength Cond. Res. 2005, 19, 939–943. [Google Scholar] [PubMed]
- De Carvalho, M.V.; Marins, J.C.; Silami-Garcia, E. The influence of water versus carbohydrate-electrolyte hydration on blood components during a 16-km military march. Mil. Med. 2007, 172, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Singh, R.; Sirisinghe, R. Rehydration with sodium-enriched coconut water after exercise-induced dehydration. Southeast Asian J. Trop. Med. Public Health 2007, 38, 769–785. [Google Scholar] [PubMed]
- Maughan, R.J.; Watson, P.; Evans, G.H.; Broad, N.; Shirreffs, S.M. Water balance and salt losses in competitive football. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.M.; Watson, P.; Maughan, R.J. Milk as an effective post-exercise rehydration drink. Br. J. Nutr. 2007, 98, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wilk, B.; Rivera-Brown, A.M.; Bar-Or, O. Voluntary drinking and hydration in non-acclimatized girls exercising in the heat. Eur. J. Appl. Physiol. 2007, 101, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Baty, J.J.; Hwang, H.; Ding, Z.; Bernard, J.R.; Wang, B.; Kwon, B.; Ivy, J.L. The effect of a carbohydrate and protein supplement on resistance exercise performance, hormonal response, and muscle damage. J. Strength Cond. Res. 2007, 21, 321–329. [Google Scholar] [PubMed]
- Shirreffs, S.M.; Aragon-Vargas, L.F.; Keil, M.; Love, T.D.; Phillips, S. Rehydration after exercise in the heat: A comparison of 4 commonly used drinks. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 244–258. [Google Scholar] [CrossRef]
- Luden, N.D.; Saunders, M.J.; Todd, M.K. Postexercise carbohydrate-protein- antioxidant ingestion decreases plasma creatine kinase and muscle soreness. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Goulet, E.D.; Rousseau, S.F.; Lamboley, C.R.; Plante, G.E.; Dionne, I.J. Pre-exercise hyperhydration delays dehydration and improves endurance capacity during 2 h of cycling in a temperate climate. J. Physiol. Anthropol. 2008, 27, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.J.; Bluck, L.J.; Davies, P.S. The hydration ability of three commercially available sports drinks and water. J. Sci. Med. Sport 2008, 11, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Brown, A.M.; Ramírez-Marrero, F.A.; Wilk, B.; Bar-Or, O. Voluntary drinking and hydration in trained, heat-acclimatized girls exercising in a hot and humid climate. Eur. J. Appl. Physiol. 2008, 103, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.M.; Chia, J.K.; Aziz, A.R.; Tan, B. Dehydration rates and rehydration efficacy of water and sports drink during one hour of moderate intensity exercise in well-trained flatwater kayakers. Ann. Acad. Med. Singap. 2008, 37, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.P.; Holt, C.; Pfluger, K.C.; La Budde, Z.; Afergan, D.; Stripling, R.; Miller, P.C.; Hall, E.E. Impact of prolonged exercise in the heat and carbohydrate supplementation on performance of a virtual environment task. Mil. Med. 2008, 173, 187–192. [Google Scholar] [CrossRef]
- Currell, K.; Jeukendrup, A.E. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med. Sci. Sports Exerc. 2008, 40, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Davison, G.W.; McClean, C.; Brown, J.; Madigan, S.; Gamble, D.; Trinick, T.; Duly, E. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res. Sports Med. 2008, 16, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Coso, J.D.; Estevez, E.; Baquero, R.A.; Mora-Rodriguez, R. Anaerobic performance when rehydrating with water or commercially available sports drinks during prolonged exercise in the heat. Appl. Physiol. Nutr. Metab. 2008, 33, 290–298. [Google Scholar] [CrossRef]
- Skillen, R.A.; Testa, M.; Applegate, E.A.; Heiden, E.A.; Fascetti, A.J.; Casazza, G.A. Effects of an amino acid carbohydrate drink on exercise performance after consecutive-day exercise bouts. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 473–492. [Google Scholar] [CrossRef] [PubMed]
- Green, M.S.; Corona, B.T.; Doyle, J.A.; Ingalls, C.P. Carbohydrate-protein drinks do not enhance recovery from exercise-induced muscle injury. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Valentine, R.J.; Saunders, M.J.; Todd, M.K.; St Laurent, T.G. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Abbey, E.L.; Rankin, J.W. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, C.A.; Kavouras, S.A.; Arnaoutis, G.; Gioxari, A.; Kollia, M.; Botoula, E.; Sidossis, L.S. Sodium replacement and plasma sodium drop during exercise in the heat when fluid intake matches fluid loss. J. Athl. Train. 2009, 44, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J. Athl. Train. 2009, 44, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, G.G.; Smith, J.D.; Lecheminant, J.D. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance. Int. J. Exerc. Sci. 2009, 2, 4–18. [Google Scholar] [PubMed]
- Valiente, J.S.; Utter, A.C.; Quindry, J.C.; Nieman, D.C. Effects of commercially formulated water on the hydration status of dehydrated collegiate wrestlers. J. Strength Cond. Res. 2009, 23, 2210–2216. [Google Scholar] [CrossRef] [PubMed]
- Currell, K.; Conway, S.; Jeukendrup, A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Duizer, L.; Foster, K.; Grigor, J.; Wei, W. Changes in sensory perception of sports drinks when consumed pre, during and post exercise. Physiol. Behav. 2011, 102, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Pumerantz, A.C.; Fiala, K.A.; Roti, M.W.; Kavouras, S.A.; Casa, D.J.; Maresh, C.M. Human hydration indices: Acute and longitudinal reference values. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kurdak, S.S.; Shirreffs, S.M.; Maughan, R.J.; Ozgünen, K.T.; Zeren, C.; Korkmaz, S.; Yazici, Z.; Ersöz, G.; Binnet, M.S.; Dvorak, J. Hydration and sweating responses to hot-weather football competition. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. S3), 133–139. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.; Leveritt, M.; Peake, J.M. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. Eur. J. Appl. Physiol. 2010, 110, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.L.; Brown, M.B.; Snow, T.K. Acute carbohydrate ingestion affects lactate response in highly trained swimmers. Int. J. Sports Physiol. Perform. 2010, 5, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, J.A.; Spriet, L.L.; Stellingwerff, T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Snell, P.G.; Ward, R.; Kandaswami, C.; Stohs, S.J. Comparative effects of selected non-caffeinated rehydration sports drinks on short-term performance following moderate dehydration. J. Int. Soc. Sports Nutr. 2010, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Young, J.C.; Golding, L.A.; Kruskall, L.J.; Tandy, R.D.; Conway-Klaassen, J.M.; Beck, T.W. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J. Strength Cond. Res. 2010, 24, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Kammer, L.M.; Wang, B.; Doerner, P.G.; Liu, Y.; Ivy, J.L. The effect of a low carbohydrate beverage with added protein on cycling endurance performance in trained athletes. J. Strength Cond. Res. 2010, 24, 2577–2586. [Google Scholar] [CrossRef] [PubMed]
- Gilson, S.F.; Saunders, M.J.; Moran, C.W.; Moore, R.W.; Womack, C.J.; Todd, M.K. Effects of chocolate milk consumption on markers of muscle recovery following soccer training: A randomized cross-over study. J. Int. Soc. Sports Nutr. 2010, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Alexy, U.; Cheng, G.; Libuda, L.; Hilbig, A.; Kersting, M. 24 h-Sodium excretion and hydration status in children and adolescents--results of the DONALD Study. Clin. Nutr. 2012, 31, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Chia, M.; Mukherjee, S. Hydration status of heat-acclimatized youth team players during competition. Sci. Sports 2012, 27, e51–e54. [Google Scholar] [CrossRef]
- Lee, J.K.; Nio, A.Q.; Ang, W.H.; Law, L.Y.; Lim, C.L. Effects of ingesting a sports drink during exercise and recovery on subsequent endurance capacity. Eur. J. Sport Sci. 2011, 11, 77–86. [Google Scholar] [CrossRef]
- Silva, M.R.; Carneiro, C.d.S.; Crispim, P.A.A.; Melo, N.C.S.; Sales, R.R. Effects of a carbohydrate-electrolyte drink on the hydration of young soccer players. Rev. Bras. Med. Esporte 2011, 17, 339–343. [Google Scholar] [CrossRef]
- Spaccarotella, K.J.; Andzel, W.D. The effects of low fat chocolate milk on postexercise recovery in collegiate athletes. J. Strength Cond. Res. 2011, 25, 3456–3460. [Google Scholar] [CrossRef] [PubMed]
- Blacker, S.D.; Williams, N.C.; Fallowfield, J.L.; Willems, M.E. The effect of a carbohydrate beverage on the physiological responses during prolonged load carriage. Eur. J. Appl. Physiol. 2011, 111, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.S.; Bonetti, D.L.; Hopkins, W.G. Unilateral fluid absorption and effects on peak power after ingestion of commercially available hypotonic, isotonic, and hypertonic sports drinks. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Arnaoutis, G.; Kavouras, S.A.; Christaki, I.; Sidossis, L.S. Water ingestion improves performance compared with mouth rinse in dehydrated subjects. Med. Sci. Sports Exerc. 2012, 44, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.P.; Gaetz, M. Fluid balance of elite female basketball players before and during game play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 347–352. [Google Scholar] [CrossRef]
- Kalman, D.S.; Feldman, S.; Krieger, D.R.; Bloomer, R.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, E.; Poulos, S.; Bishop, P. Hydration profile and influence of beverage contents on fluid intake by women during outdoor recreational walking. Eur. J. Appl. Physiol. 2012, 112, 3971–3982. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.L.; Craig, S.A.; Swensen, T. Effect of betaine supplementation on cycling sprint performance. J. Int. Soc. Sports Nutr. 2012, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Shirreffs, S.M.; Maughan, R.J. Effect of dilute CHO beverages on performance in cool and warm environments. Med. Sci. Sports Exerc. 2012, 44, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, K.; Ito, O.; Nagai, S.; Onishi, S. Electrolyte-carbohydrate beverage prevents water loss in the early stage of high altitude training. J. Med. Investig. 2012, 59, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Goh, Q.; Boop, C.A.; Luden, N.D.; Smith, A.G.; Womack, C.J.; Saunders, M.J. Recovery from cycling exercise: Effects of carbohydrate and protein beverages. Nutrients 2012, 4, 568–584. [Google Scholar] [CrossRef]
- Kamijo, Y.; Ikegawa, S.; Okada, Y.; Masuki, S.; Okazaki, K.; Uchida, K.; Sakurai, M.; Nose, H. Enhanced renal Na+ reabsorption by carbohydrate in beverages during restitution from thermal and exercise-induced dehydration in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R824–R833. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.A.; Galloway, S.D. Carbohydrate-electrolyte drink ingestion and skill performance during and after 2 hr of indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Bae, Y.J.; Lee, Y.S.; Kim, B.J. Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration. Nutr. Res. Pract. 2012, 6, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I.; James, L.; Croft, L.; Williams, C. The effect of carbohydrate-electrolyte beverage drinking strategy on 10-mile running performance. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.S.; Swift, M.; Ros, M.; Green, J.G. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl. Physiol. Nutr. Metab. 2012, 37, 425–436. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef] [PubMed]
- Price, M.J.; Cripps, D. The effects of combined glucose-electrolyte and sodium bicarbonate ingestion on prolonged intermittent exercise performance. J. Sports Sci. 2012, 30, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Jiménez, A.; Hernández-Torres, R.; Wall-Medrano, A.; Torres-Durán, P.; Juárez-Oropeza, M.; Ceballos, J.S. Acute physiological response to indoor cycling with and without hydration; case and self-control study. Nutr. Hosp. 2013, 28, 1487–1493. [Google Scholar] [PubMed]
- Baek, S.G. The effects of different beverage intake on blood components during exercise under high-temperature environment. J. Exerc. Rehabil. 2013, 9, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.; Teixeira, A.; Rama, L.; Swancott, A.J.; Hardy, L.D.; Lee, B.; Camões-Costa, V.; Gill, S.; Waterman, J.P.; Freeth, E.C.; et al. Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: An observational field based study. Nutr. J. 2013, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.L.; Pastre, C.M.; Ferreira, C.; de Abreu, L.C.; Valenti, V.E.; Vanderlei, L.C.M. Effects of an isotonic beverage on autonomic regulation during and after exercise. J. Int. Soc. Sports Nutr. 2013, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.; Wong, S.H. Effect of a carbohydrate drink on soccer skill performance following a sport-specific training program. J. Exerc. Sci. Fit. 2013, 11, 95–101. [Google Scholar] [CrossRef]
- Pross, N.; Demazieres, A.; Girard, N.; Barnouin, R.; Santoro, F.; Chevillotte, E.; Klein, A.; Le Bellego, L. Influence of progressive fluid restriction on mood and physiological markers of dehydration in women. Br. J. Nutr. 2013, 109, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Jansen, S.; Barrett, A.; Leveritt, M.D.; Irwin, C. Comparing the rehydration potential of different milk-based drinks to a carbohydrate–electrolyte beverage. Appl. Physiol. Nutr. Metab. 2014, 39, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, E.K.; Caufield, C.R.; Lowe, J.B.; Stevenson, M.C.; Davis, B.A.; Thigpen, L.K. 24-h fluid kinetics and perception of sweat losses following a 1-h run in a temperate environment. Nutrients 2013, 6, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Tarpey, M.D.; Kass, L.S.; Tarpey, R.J.; Roberts, M.G. Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J. Int. Soc. Sports Nutr. 2014, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.A.; Adams, J.D.; Brown, L.A.; Ridings, C.B.; Burchfield, J.M.; Robinson, F.B.; McDermott, J.L.; Schreiber, B.A.; Moyen, N.E.; Washington, T.A.; et al. No Change in 24-Hour Hydration Status Following a Moderate Increase in Fluid Consumption. J. Am. Coll. Nutr. 2016, 35, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Campos, C.; Dengo, A.L.; Moncada-Jimenez, J. Acute Consumption of an Energy Drink Does Not Improve Physical Performance of Female Volleyball Players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Newell, M.L.; Hunter, A.M.; Lawrence, C.; Tipton, K.D.; Galloway, S.D. The Ingestion of 39 or 64 g.h(-1) of Carbohydrate is Equally Effective at Improving Endurance Exercise Performance in Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Papacosta, E.; Nassis, G.P.; Gleeson, M. Effects of acute postexercise chocolate milk consumption during intensive judo training on the recovery of salivary hormones, salivary SIgA, mood state, muscle soreness, and judo-related performance. Appl. Physiol. Nutr. Metab. 2015, 40, 1116–1122. [Google Scholar] [CrossRef]
- Tran Trong, T.; Riera, F.; Rinaldi, K.; Briki, W.; Hue, O. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment. PLoS ONE 2015, 10, e0123815. [Google Scholar] [CrossRef]
- Malisova, O.; Athanasatou, A.; Pepa, A.; Husemann, M.; Domnik, K.; Braun, H.; Mora-Rodriguez, R.; Ortega, J.F.; Fernandez-Elias, V.E.; Kapsokefalou, M. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS). Nutrients 2016, 8, 204. [Google Scholar] [CrossRef]
- Mora-Rodriguez, R.; Ortega, J.F.; Fernandez-Elias, V.E.; Kapsokefalou, M.; Malisova, O.; Athanasatou, A.; Husemann, M.; Domnik, K.; Braun, H. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS). Nutrients 2016, 8, 252. [Google Scholar] [CrossRef]
- Schrader, M.; Treff, B.; Sandholtet, T.; Maassen, N.; Shushakov, V.; Kaesebieter, J.; Maassen, M. Carbohydrate supplementation stabilises plasma sodium during training with high intensity. Eur. J. Appl. Physiol. 2016, 116, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Baguley, B.; Zilujko, J.; Leveritt, M.D.; Desbrow, B.; Irwin, C. The Effect of Ad Libitum Consumption of a Milk-Based Liquid Meal Supplement vs. a Traditional Sports Drink on Fluid Balance After Exercise. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Fahey, T.D.; Larsen, J.D.; Brooks, G.A.; Colvin, W.; Henderson, S.; Lary, D. The effects of ingesting polylactate or glucose polymer drinks during prolonged exercise. Int. J. Sport Nutr. 1991, 1, 249–256. [Google Scholar] [CrossRef]
- Pryor, J.L.; Johnson, E.C.; Del Favero, J.; Monteleone, A.; Armstrong, L.E.; Rodriguez, N.R. Hydration Status and Sodium Balance of Endurance Runners Consuming Postexercise Supplements of Varying Nutrient Content. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 471–479. [Google Scholar] [CrossRef]
- Keen, D.A.; Constantopoulos, E.; Konhilas, J.P. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance. J. Int. Soc. Sports Nutr. 2016, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.P.; Bleiler, T.L.; Chang, R.T.; Johnson, A.K.; Gisolfi, C.V. Effects of carbonated and noncarbonated beverages at specific intervals during treadmill running in the heat. Int. J. Sport Nutr. 1993, 3, 177–193. [Google Scholar] [CrossRef]
- Mitchell, J.B.; Grandjean, P.W.; Pizza, F.X.; Starling, R.D.; Holtz, R.W. The effect of volume ingested on rehydration and gastric emptying following exercise-induced dehydration. Med. Sci. Sports Exerc. 1994, 26, 1135–1143. [Google Scholar] [CrossRef]
- Peart, D.J.; Hensby, A.; Shaw, M.P. Coconut Water Does Not Improve Markers of Hydration During Sub-maximal Exercise and Performance in a Subsequent Time Trial Compared with Water Alone. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 279–284. [Google Scholar] [CrossRef]
- Peschek, K.; Pritchett, R.; Bergman, E.; Pritchett, K. The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients 2013, 6, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Upshaw, A.U.; Wong, T.S.; Bandegan, A.; Lemon, P.W. Cycling Time Trial Performance 4 Hours After Glycogen-Lowering Exercise Is Similarly Enhanced by Recovery Nondairy Chocolate Beverages Versus Chocolate Milk. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 65–70. [Google Scholar] [CrossRef]
- Wilson, P.B.; Ingraham, S.J. Effects of glucose-fructose versus glucose ingestion on stride characteristics during prolonged treadmill running. Sports Biomech. 2016, 15, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Briars, G.L.; Gordon, G.S.; Lawrence, A.; Turner, A.; Perry, S.; Pillbrow, D.; Walston, F.E.; Molyneux, P. Swim drink study: A randomised controlled trial of during-exercise rehydration and swimming performance. BMJ Paediatr. Open 2017, 1, e000075. [Google Scholar] [CrossRef]
- Cebi, M. The Effect of Sports Drinks and Water Consumption on Electrolyte Levels of Football Players. Stud. Ethno-Med. 2015, 9, 197–201. [Google Scholar] [CrossRef]
- Demirhan, B.; Cengiz, A.; Gunay, M.; Türkmen, M.; Geri, S. The Effect of Drinking Water and Isotonic Sports Drinks in Elite Wrestlers. Anthropologist 2015, 21, 213–218. [Google Scholar] [CrossRef]
- Siow, P.C.; Tan, W.S.K.; Henry, C.J. Impact of Isotonic Beverage on the Hydration Status of Healthy Chinese Adults in Air-Conditioned Environment. Nutrients 2017, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Stevenson, E.J.; Rollo, I.; Russell, M. The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J. Sci. Med. Sport 2017, 20, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.S.; Heigenhauser, G.; Duong, M.; Spriet, L.L. Ingesting a sports drink enhances simulated ice hockey performance while reducing perceived effort. Int. J. Sports Med. 2017, 38, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W.; Krings, B.M.; Peterson, T.J.; Rountree, J.A.; Zak, R.B.; McAllister, M.J. Ingestion of an amino acid electrolyte beverage during resistance exercise does not impact fluid shifts into muscle or performance. Sports 2017, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W.; Krings, B.M.; Shepherd, B.D.; Waldman, H.S.; Basham, S.A.; McAllister, M.J. Effects of carbohydrate and branched-chain amino acid beverage ingestion during acute upper body resistance exercise on performance and postexercise hormone response. Appl. Physiol. Nutr. Metab. 2018, 43, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Giustiniani, P.; Rollo, I.; Witard, O.C.; Galloway, S.D. Ingesting a 12% carbohydrate-electrolyte beverage before each half of a soccer match simulation facilitates retention of passing performance and improves high-intensity running capacity in academy players. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 397–405. [Google Scholar] [CrossRef]
- Espino-González, E.; Muñoz-Daw, M.J.; Rivera-Sosa, J.M.; María, L.; Cano-Olivas, G.E.; De Lara-Gallegos, J.C.; Enríquez-Leal, M.C. The influence of an amaranth-based beverage on cycling performance: A pilot study. Biotecnia 2018, 20, 31–36. [Google Scholar] [CrossRef]
- Glace, B.W.; Kremenic, I.J.; McHugh, M.P. Effect of carbohydrate beverage ingestion on central versus peripheral fatigue: A placebo-controlled, randomized trial in cyclists. Appl. Physiol. Nutr. Metab. 2019, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Wingo, J.E.; Bishop, P.A.; Casey, J.C.; Aldrich, E.K. Ice slurry ingestion and physiological strain during exercise in non-compensable heat stress. Aerosp. Med. Hum. Perform. 2018, 89, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Schleh, M.W.; Dumke, C.L. Comparison of sports drink versus oral rehydration solution during exercise in the heat. Wilderness Environ. Med. 2018, 29, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Onitsuka, S.; Nakamura, D.; Onishi, T.; Arimitsu, T.; Takahashi, H.; Hasegawa, H. Ice slurry ingestion reduces human brain temperature measured using non-invasive magnetic resonance spectroscopy. Sci. Rep. 2018, 8, 2757. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Sugiyama, Y.; Okumura, J.; Fujii, N.; Kenny, G.P.; Nishiyasu, T.; Inoue, Y.; Kondo, N.; Sasagawa, K.; Enoki, Y. Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Exp. Physiol. 2019, 104, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.M.; Stanhewicz, A.E.; Wolf, S.T.; Cheuvront, S.N.; Kenefick, R.W.; Kenney, W.L. A randomized trial to assess beverage hydration index in healthy older adults. Am. J. Clin. Nutr. 2019, 109, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.R.; Keen, D.A.; Constantopoulos, E.; Weninger, S.N.; Hines, E.; Koppinger, M.P.; Khalpey, Z.I.; Konhilas, J.P. Fluid type influences acute hydration and muscle performance recovery in human subjects. J. Int. Soc. Sports Nutr. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Matias, A.; Dudar, M.; Kauzlaric, J.; Frederick, K.A.; Fitzpatrick, S.; Ives, S.J. Rehydrating efficacy of maple water after exercise-induced dehydration. J. Int. Soc. Sports Nutr. 2019, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Klimešová, I.; Krejčí, J.; Botek, M.; Neuls, F.; Sládečková, B.; Valenta, M.; Panská, S. Hydration status and the differences between perceived beverage consumption and objective hydration status indicator in the Czech elite deaf athletes. Acta Gymnica 2019, 49, 197–202. [Google Scholar] [CrossRef]
- Berry, C.W.; Wolf, S.T.; Murray, B.; Kenney, W.L. Hydration efficacy of a milk permeate-based oral hydration solution. Nutrients 2020, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- García-Berger, D.; Mackay, K.; Monsalves-Alvarez, M.; Jorquera, C.; Ramirez-Campillo, R.; Zbinden-Foncea, H.; Castro-Sepulveda, M. Effects of skim milk and isotonic drink consumption before exercise on fluid homeostasis and time-trial performance in cyclists: A randomized cross-over study. J. Int. Soc. Sports Nutr. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- McBride, C.; Boy, T.; Green, M.; O’NEAL, E.; Renfroe, L. Hydration efficiency of a protein beverage consumed in a bolus vs. metered pattern during recovery. Int. J. Exerc. Sci. 2020, 13, 1476–1486. [Google Scholar] [PubMed]
- Bradbury, K.E.; Berryman, C.E.; Wilson, M.A.; Luippold, A.J.; Kenefick, R.W.; Young, A.J.; Pasiakos, S.M. Effects of carbohydrate supplementation on aerobic exercise performance during acute high altitude exposure and after 22 days of acclimatization and energy deficit. J. Int. Soc. Sports Nutr. 2020, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.W.; Burns, S.F.; Lee, J.K.W. Efficacy of ingesting an oral rehydration solution after exercise on fluid balance and endurance performance. Nutrients 2020, 12, 3826. [Google Scholar] [CrossRef] [PubMed]
- Flood, T.R.; Montanari, S.; Wicks, M.; Blanchard, J.; Sharp, H.; Taylor, L.; Kuennen, M.R.; Lee, B.J. Addition of pectin-alginate to a carbohydrate beverage does not maintain gastrointestinal barrier function during exercise in hot-humid conditions better than carbohydrate ingestion alone. Appl. Physiol. Nutr. Metab. 2020, 45, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Kitson, O.; Rutherfurd-Markwick, K.; Foskett, A.; Lee, J.K.W.; Diako, C.; Wong, M.; Ali, A. Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat. Nutrients 2021, 13, 3313. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I.; Randell, R.K.; Baker, L.; Leyes, J.Y.; Medina Leal, D.; Lizarraga, A.; Mesalles, J.; Jeukendrup, A.E.; James, L.J.; Carter, J.M. Fluid balance, sweat Na+ losses, and carbohydrate intake of elite male soccer players in response to low and high training intensities in cool and hot environments. Nutrients 2021, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Nakamura, D.; Yasumatsu, M.; Takahashi, H. Effect of ice slurry ingestion on core temperature and blood pressure response after exercise in a hot environment. J. Therm. Biol. 2021, 98, 102922. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, J.; Okamoto, Y.; Fujii, N.; Enoki, Y.; Maejima, D.; Nishiyasu, T.; Amano, T. Effects of isomaltulose ingestion on thermoregulatory responses during exercise in a hot environment. Int. J. Environ. Res. Public Health 2021, 18, 5760. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Watanabe, D.; Otsuka, J.; Okamoto, Y.; Takada, S.; Fujii, N.; Kenny, G.P.; Enoki, Y.; Maejima, D. Comparison of hydration efficacy of carbohydrate-electrolytes beverages consisting of isomaltulose and sucrose in healthy young adults: A randomized crossover trial. Physiol. Behav. 2022, 249, 113770. [Google Scholar] [CrossRef] [PubMed]
- Bechke, E.E.; Zaplatosch, M.E.; Choi, J.-Y.; Adams, W.M. Utility of an isotonic beverage on hydration status and cardiovascular alterations. Nutrients 2022, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Heileson, J.L.; Peterson, M.; Adair, K.E.; Funderburk, L.K. Comparison of a Sucrose-Based and Rice-Based Sports Beverage on Hydration Status During a 19.3-km Foot March in ROTC Cadets. J. Strength Cond. Res. 2022, 36, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.J.; Lee, J.Y.; Jeon, M.; Oh, S.E.; Park, J.H.; Yoon, J. The effects of fluid absorption and plasma volume changes in athletes following consumption of various beverages. BMC Sports Sci. Med. Rehabil. 2022, 14, 207. [Google Scholar] [CrossRef]
- Capitán-Jiménez, C.; Aragón-Vargas, L.F. Post-exercise voluntary drinking cessation is associated with the normalization of plasma osmolality and thirst perception, but not of urine indicators or net fluid balance. Nutrients 2022, 14, 4188. [Google Scholar] [CrossRef] [PubMed]
- Molaeikhaletabadi, M.; Bagheri, R.; Hemmatinafar, M.; Nemati, J.; Wong, A.; Nordvall, M.; Namazifard, M.; Suzuki, K. Short-Term effects of Low-Fat chocolate milk on delayed onset muscle soreness and performance in players on a women’s university badminton team. Int. J. Environ. Res. Public Health 2022, 19, 3677. [Google Scholar] [CrossRef] [PubMed]
- Morito, A.; Inami, T.; Hirata, A.; Yamada, S.; Shimomasuda, M.; Haramoto, M.; Kato, K.; Tahara, S.; Oguma, Y.; Ishida, H. Ice slurry ingestion improves physical performance during high-intensity intermittent exercise in a hot environment. PLoS ONE 2022, 17, e0274584. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Saito, T.; Morito, A.; Yamada, S.; Shimomasuda, M.; Nakamura, M. Pre-cooling with ingesting a high-carbohydrate ice slurry on thermoregulatory responses and subcutaneous interstitial fluid glucose during heat exposure. J. Physiol. Anthropol. 2022, 41, 34. [Google Scholar] [CrossRef] [PubMed]
- Takada, S.; Otsuka, J.; Okamoto, Y.; Watanabe, D.; Aoki, M.; Fujii, N.; Kenny, G.P.; Enoki, Y.; Maejima, D.; Amano, T. Effects of ingestion of isomaltulose beverage on plasma volume and thermoregulatory responses during exercise in the heat. Eur. J. Appl. Physiol. 2022, 122, 2615–2626. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Akerman, A.P.; Rehrer, N.J.; Thornton, S.N.; Cotter, J.D. Limited Effect of Dehydrating via Active vs. Passive Heat Stress on Plasma Volume or Osmolality, Relative to the Effect of These Stressors per Se. Nutrients 2023, 15, 904. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.R.; Stout, J.R.; Wells, A.J.; Antonio, J.; Vasenina, E.; Fukuda, D.H. Carbohydrate-Protein drink is effective for restoring endurance capacity in masters class athletes after a two-Hour recovery. J. Int. Soc. Sports Nutr. 2023, 20, 2178858. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Wingo, J.E. Effect of Ice Slurry Beverages on Voluntary Fluid Intake and Exercise Performance. J. Strength Cond. Res. 2023, 37, e376–e383. [Google Scholar] [CrossRef] [PubMed]
- Bachle, L.; Eckerson, J.; Albertson, L.; Ebersole, K.; Goodwin, J.; Petzel, D. The effect of fluid replacement on endurance performance. J. Strength Cond. Res. 2001, 15, 217–224. [Google Scholar]
- Skopec, M.; Issa, H.; Reed, J.; Harris, M. The role of geographic bias in knowledge diffusion: A systematic review and narrative synthesis. Res. Integr. Peer Rev. 2020, 5, 2. [Google Scholar] [CrossRef]
- Chakravarti, A. Perspectives on Human Variation through the Lens of Diversity and Race. Cold Spring Harb. Perspect. Biol. 2015, 7, a023358. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. The Young Researcher’s Guide to Starting a Cohort Study. Indian. J. Psychol. Med. 2022, 44, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef] [PubMed]
- Speed, H.D.; Andersen, M.B. What exercise and sport scientists don’t understand. J. Sci. Med. Sport 2000, 3, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Sainani, K.; Chamari, K. Wish List for Improving the Quality of Statistics in Sport Science. Int. J. Sports Physiol. Perform. 2022, 17, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Skorski, S.; Hecksteden, A. Coping With the “Small Sample-Small Relevant Effects” Dilemma in Elite Sport Research. Int. J. Sports Physiol. Perform. 2021, 16, 1559–1560. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Thapa, R.K.; Afonso, J.; Perez-Castilla, A.; Bishop, C.; Byrne, P.J.; Granacher, U. Effects of Plyometric Jump Training on the Reactive Strength Index in Healthy Individuals Across the Lifespan: A Systematic Review with Meta-analysis. Sports Med. 2023, 53, 1029–1053. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Kemp, C.L.; Hafejee, M.; Peckham, N.; Jain, V.; McCann, G.P.; Pallikadavath, S. The Underrepresentation of Females in Studies Assessing the Impact of High-Dose Exercise on Cardiovascular Outcomes: A Scoping Review. Sports Med. Open 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Olivares-Jabalera, J.; Fernandes, R.J.; Clemente, F.M.; Rocha-Rodrigues, S.; Claudino, J.G.; Ramirez-Campillo, R.; Valente, C.; Andrade, R.; Espregueira-Mendes, J. Effectiveness of Conservative Interventions After Acute Hamstrings Injuries in Athletes: A Living Systematic Review. Sports Med. 2023, 53, 615–635. [Google Scholar] [CrossRef]
- Thorborg, K.; Krohn, L.; Bandholm, T.; Jacobsen, J.S.; Rathleff, M.S.; Klakk, H.; Kotila, K. ‘More Walk and Less Talk’: Changing gender bias in sports medicine. Br. J. Sports Med. 2020, 54, 1380–1381. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Maguire, M.S.; Rubin, K.R.; Maresh, C.M. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med. Sci. Sports Exerc. 1990, 22, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Halsey, L.G.; Careau, V.; Pontzer, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Variability in energy expenditure is much greater in males than females. J. Hum. Evol. 2022, 171, 103229. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health, Age. 2023. Available online: https://www.nih.gov/nih-style-guide/age (accessed on 12 January 2024).
- Deissler, L.; Wirth, R.; Frilling, B.; Janneck, M.; Rosler, A. Hydration Status Assessment in Older Patients. Dtsch. Arztebl. Int. 2023, 120, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiao, X.; Zhang, X. Hydration Status in Older Adults: Current Knowledge and Future Challenges. Nutrients 2023, 15, 2609. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Veroutsos, E. The Most Popular Sports In The World. Available online: https://www.worldatlas.com/articles/what-are-the-most-popular-sports-in-the-world.html (accessed on 12 January 2024).
- Maughan, R.J.; Shirreffs, S.M. Dehydration and rehydration in competative sport. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. S3), 40–47. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, S.A. Assessing hydration status. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 519–524. [Google Scholar] [CrossRef] [PubMed]
- ECA Foundation. “Ambient”, “Room Temperature”, “Cold “—What Is What? Available online: https://www.gmp-compliance.org/gmp-news/ambient-room-temperature-cold-what-is-what (accessed on 22 January 2024).
- National Asthma Council Australia. Indoor Humidity and Your Family’s Health. Available online: https://www.nationalasthma.org.au/news/2016/indoor-humidity (accessed on 23 January 2024).
- Baker, L.B.; Jeukendrup, A.E. Optimal composition of fluid-replacement beverages. Compr. Physiol. 2014, 4, 575–620. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, A.J. Modelling sodium requirements of athletes across a variety of exercise scenarios—Identifying when to test and target, or season to taste. Eur. J. Sport Sci. 2023, 23, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Snow, T.K.; Jones, M.L.; Suh, H. The Beverage Hydration Index: Influence of Electrolytes, Carbohydrate and Protein. Nutrients 2021, 13, 2933. [Google Scholar] [CrossRef] [PubMed]
- Sterns, R.H. Treatment of Severe Hyponatremia. Clin. J. Am. Soc. Nephrol. 2018, 13, 641–649. [Google Scholar] [CrossRef]
- Heck, K.; Zeppieri, G., Jr.; Bruner, M.; Moser, M.; Farmer, K.W.; Pozzi, F. Preseason Upper Extremity Range of Motion and Strength in Relation to In-Season Injuries in NCAA Division I Gymnasts. Orthop. J. Sports Med. 2021, 9, 2325967120977090. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Oliver, J.L.; Pedley, J.S.; Lloyd, R.S.; Granacher, U. Programming Plyometric-Jump Training in Soccer: A Review. Sports 2022, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Maresh, C.M.; Castellani, J.W.; Bergeron, M.F.; Kenefick, R.W.; LaGasse, K.E.; Riebe, D. Urinary indices of hydration status. Int. J. Sport Nutr. 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Shirreffs, S.M. Markers of hydration status. Eur. J. Clin. Nutr. 2003, 57 (Suppl. S2), S6–S9. [Google Scholar] [CrossRef] [PubMed]
- Garrett, D.C.; Rae, N.; Fletcher, J.R.; Zarnke, S.; Thorson, S.; Hogan, D.B.; Fear, E.C. Engineering Approaches to Assessing Hydration Status. IEEE Rev. Biomed. Eng. 2018, 11, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Brown, A.M.; Frontera, W.R. Principles of exercise physiology: Responses to acute exercise and long-term adaptations to training. PMR 2012, 4, 797–804. [Google Scholar] [CrossRef] [PubMed]
Exercise | No. of Articles (k) | Mean | Mode | Range (Min–Max) |
---|---|---|---|---|
Duration (min) | 110 | 112.6 | 90 (k = 22) | 4–930 |
Sets (rounds of the same exercise) | 8 | 5.5 | 3 and 5 (k = 2) | 3–10 |
Reps (repetitions within the same round) | 6 | 44 | 10 (k = 2) | 6–200 |
Kilometers (kms) | 24 | 31.7 | 20 (k = 3) | 3–93 |
% body weight lost | 23 | 2.3 | 2 (k = 14) | 1.7–4.1 |
Until exhaustion | 29 | - | - | - |
Intake Strategy | No. of Articles (k) | Mean | Mode | Range (Min–Max) |
---|---|---|---|---|
Ad libitum | 35 | - | - | - |
% of body weight loss | 21 | 112.3 | 100 (k = 13) | 50–150 |
% of sweat loss | 5 | 130 | 150 (k = 3) | 100–150 |
mL of fluid per kg body mass | 23 | 20.8 | 8 (k = 3) | 4–100 |
% kg body mass | 1 | 2.8 | - | - |
Concrete fluid volume (mL) | 71 | 2671.9 | 1000 (k = 15) | 275–85,349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo-Marques, A.; Coelho-Ribeiro, B.; De Sousa Lages, A.; Andrade, R.; Afonso, J.; Pereira, R.; Batista, A.S.; Teixeira, V.H.; Jácome, C. Trends and Missing Links in (De)Hydration Research: A Narrative Review. Nutrients 2024, 16, 1709. https://doi.org/10.3390/nu16111709
Rebelo-Marques A, Coelho-Ribeiro B, De Sousa Lages A, Andrade R, Afonso J, Pereira R, Batista AS, Teixeira VH, Jácome C. Trends and Missing Links in (De)Hydration Research: A Narrative Review. Nutrients. 2024; 16(11):1709. https://doi.org/10.3390/nu16111709
Chicago/Turabian StyleRebelo-Marques, Alexandre, Bruna Coelho-Ribeiro, Adriana De Sousa Lages, Renato Andrade, José Afonso, Rogério Pereira, Ana Sofia Batista, Vitor Hugo Teixeira, and Cristina Jácome. 2024. "Trends and Missing Links in (De)Hydration Research: A Narrative Review" Nutrients 16, no. 11: 1709. https://doi.org/10.3390/nu16111709
APA StyleRebelo-Marques, A., Coelho-Ribeiro, B., De Sousa Lages, A., Andrade, R., Afonso, J., Pereira, R., Batista, A. S., Teixeira, V. H., & Jácome, C. (2024). Trends and Missing Links in (De)Hydration Research: A Narrative Review. Nutrients, 16(11), 1709. https://doi.org/10.3390/nu16111709