The Role of Diet in Multiple Sclerosis Onset: A Prospective Study Using UK Biobank
Abstract
:1. Introduction
2. Methods
2.1. Cohort Selection
2.2. Dietary Data Collection
2.3. Outcome Ascertainment
2.4. Statistical Analysis
3. Results
3.1. Lifestyle as a Risk Factor for MS in UK Biobank
3.2. Oily Fish and Alcohol Consumption as Protective Factors for MS
3.3. Adherence to Mediterranean Diet and MS risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naseri, A.; Nasiri, E.; Sahraian, M.A.; Daneshvar, S.; Talebi, M. Clinical Features of Late-Onset Multiple Sclerosis: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2021, 50, 102816. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Lo, C.H.; Gauthier, S.A.; Hickman, R.A.; Longbrake, E.; Airas, L.M.; Mao-Draayer, Y.; Riley, C.; De Jager, P.L.; Wesley, S.; et al. Toward Precision Phenotyping of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200025. [Google Scholar] [CrossRef] [PubMed]
- Steinman, L. Multiple Sclerosis: A Two-Stage Disease. Nat. Immunol. 2001, 2, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Multiple Sclerosis: Prevalence, Incidence and Smoking Status—Data Briefing—GOV.UK. Available online: https://www.gov.uk/government/publications/multiple-sclerosis-prevalence-incidence-and-smoking-status/multiple-sclerosis-prevalence-incidence-and-smoking-status-data-briefing#:~:text=Conclusions,-The%20purpose%20of&text=The%20estimate%20for%20the%20prevalence,cases%20per%20100%2C000%20population%20respectively (accessed on 19 May 2022).
- Barbero Mazzucca, C.; Cappellano, G.; Chiocchetti, A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS Neurol. Disord. Drug Targets 2023, 23, 573–587. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, C.; Swain, M.G. Liver-Brain Inflammation Axis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Yang, L.; Piccio, L.; Smith, L.; Firth, J.; Marx, W.; Giannelli, G.; Caruso, M.G.; Cisternino, A.M.; Notarnicola, M.; et al. Adherence to a Healthy Lifestyle and Multiple Sclerosis: A Case–Control Study from the UK Biobank. Nutr. Neurosci. 2020, 25, 1231–1239. [Google Scholar] [CrossRef]
- Guillet, C.; Rastmanesh, R.; Ruggieri, S.; De Giglio, L.; Felicetti, F.; Tommasin, S.; Petracca, M.; Gurreri, F.; Ianniello, A.; Nistri, R.; et al. Eating Hubs in Multiple Sclerosis: Exploring the Relationship Between Mediterranean Diet and Disability Status in Italy. Front. Nutr. 2022, 1, 882426. [Google Scholar] [CrossRef] [PubMed]
- Coe, S.; Tektonidis, T.G.; Coverdale, C.; Penny, S.; Collett, J.; Chu, B.T.Y.; Izadi, H.; Middleton, R.; Dawes, H. A Cross Sectional Assessment of Nutrient Intake and the Association of the Inflammatory Properties of Nutrients and Foods with Symptom Severity in a Large Cohort from the UK Multiple Sclerosis Registry. Nutr. Res. 2021, 85, 31–39. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet Quality Is Associated with Disability and Symptom Severity in Multiple Sclerosis. Neurology 2018, 90, E1–E11. [Google Scholar] [CrossRef]
- Hadgkiss, E.J.; Jelinek, G.A.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. The Association of Diet with Quality of Life, Disability, and Relapse Rate in an International Sample of People with Multiple Sclerosis. Nutr. Neurosci. 2015, 18, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Bayat, P.; Farshchi, M.; Yousefian, M.; Mahmoudi, M.; Yazdian-Robati, R. Flavonoids, the Compounds with Anti-Inflammatory and Immunomodulatory Properties, as Promising Tools in Multiple Sclerosis (MS) Therapy: A Systematic Review of Preclinical Evidence. Int. Immunopharmacol. 2021, 95, 107562. [Google Scholar] [CrossRef] [PubMed]
- Rezaeizadeh, H.; Mohammadpour, Z.; Bitarafan, S.; Harirchian, M.H.; Ghadimi, M.; Homayon, I.A. Dietary Fish Intake and the Risk of Multiple Sclerosis: A Systematic Review and Meta-Analysis of Observational Studies. Nutr. Neurosci. 2022, 25, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Bäärnhielm, M.; Olsson, T.; Alfredsson, L. Fatty Fish Intake Is Associated with Decreased Occurrence of Multiple Sclerosis. Mult. Scler. 2014, 20, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Kockum, I.; Hillert, J.; Alfredsson, L. Low Fish Consumption Is Associated with a Small Increased Risk of MS. Neurol. (R) Neuroimmunol. Neuroinflamm. 2020, 7, e717. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L.; Simon, K.C. Vitamin D and Multiple Sclerosis. Lancet Neurol. 2010, 9, 599–612. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Frazier, A.L.; Giovannucci, E.; Spiegelman, D.; Ascherio, A. Dietary Intake of Vitamin D during Adolescence and Risk of Multiple Sclerosis. J. Neurol. 2011, 258, 479–485. [Google Scholar] [CrossRef]
- Banwell, B.; Bar-Or, A.; Cheung, R.; Kennedy, J.; Krupp, L.B.; Becker, D.J.; Dosch, H.M. Abnormal T-Cell Reactivities in Childhood Inflammatory Demyelinating Disease and Type 1 Diabetes. Ann. Neurol. 2008, 63, 98–111. [Google Scholar] [CrossRef]
- Sharifi, M.H.; Keshani, P.; Salehi, A.; Jaladat, A.M.; Mirzaei, Z.; Nikseresht, A. Association between Multiple Sclerosis and Dietary Patterns Based on the Traditional Concept of Food Nature: A Case-Control Study in Iran. BMC Neurol. 2021, 21, 453. [Google Scholar] [CrossRef]
- Katz Sand, I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef]
- Mazzucca, C.B.; Scotti, L.; Cappellano, G.; Barone-Adesi, F.; Chiocchetti, A. Nutrition and Rheumatoid Arthritis Onset: A Prospective Analysis Using the UK Biobank. Nutrients 2022, 14, 1554. [Google Scholar] [CrossRef] [PubMed]
- Nishanth, K.; Tariq, E.; Nzvere, F.P.; Miqdad, M.; Cancarevic, I. Role of Smoking in the Pathogenesis of Multiple Sclerosis: A Review Article. Cureus 2020, 12, e9564. [Google Scholar] [CrossRef] [PubMed]
- Manouchehrinia, A.; Huang, J.; Hillert, J.; Alfredsson, L.; Olsson, T.; Kockum, I.; Constantinescu, C.S. Smoking Attributable Risk in Multiple Sclerosis. Front. Immunol. 2022, 13, 845. [Google Scholar]
- Ascherio, A.; Munger, K.L. Environmental Risk Factors for Multiple Sclerosis. Part II: Noninfectious Factors. Ann. Neurol. 2007, 61, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Maghzi, A.H.; Etemadifar, M.; Heshmat-Ghahdarijani, K.; Moradi, V.; Nonahal, S.; Ghorbani, A.; Minagar, A. Cigarette Smoking and the Risk of Multiple Sclerosis: A Sibling Case-Control Study in Isfahan, Iran. Neuroepidemiology 2011, 37, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Wingerchuk, D.M. Smoking: Effects on Multiple Sclerosis Susceptibility and Disease Progression. Ther. Adv. Neurol. Disord. 2012, 5, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between Genetic, Lifestyle and Environmental Risk Factors for Multiple Sclerosis. Nat. Rev. Neurol. 2017, 13, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.A.; Barcellos, L.F. Obesity and Multiple Sclerosis Susceptibility: A Review. J. Neurol. Neuromed. 2016, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Wesnes, K.; Myhr, K.M.; Riise, T.; Cortese, M.; Pugliatti, M.; Boström, I.; Landtblom, A.M.; Wolfson, C.; Bjørnevik, K. Physical Activity Is Associated with a Decreased Multiple Sclerosis Risk: The EnvIMS Study. Mult. Scler. 2018, 24, 150–157. [Google Scholar] [CrossRef]
- Dorans, K.S.; Massa, J.; Chitnis, T.; Ascherio, A.; Munger, K.L. Physical Activity and the Incidence of Multiple Sclerosis. Neurology 2016, 87, 1770. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Yang, T.; Xiao, Y.; Jiang, Q.; Shang, H. Physical Activity and Risk of Multiple Sclerosis: A Mendelian Randomization Study. Front. Immunol. 2022, 13, 872126. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Zhao, Y.; Peng, Y.C.; Sherriff, J.L.; Lucas, R.M.; van der Mei, I.; Pereira, G.; Chapman, C.; Coulthard, A.; Dear, K.; et al. Higher Fish Consumption and Lower Risk of Central Nervous System Demyelination. Eur. J. Clin. Nutr. 2020, 74, 818–824. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Black, L.J.; Waubant, E.; Smith, J.B.; Wu, J.; Gonzales, E.G.; Shao, X.; Koebnick, C.; Lucas, R.M.; Xiang, A.; et al. Seafood, Fatty Acid Biosynthesis Genes, and Multiple Sclerosis Susceptibility. Mult. Scler. 2020, 26, 1476–1485. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Siegert, E.; Paul, F.; Rothe, M.; Weylandt, K.H. The Effect of Omega-3 Fatty Acids on Central Nervous System Remyelination in Fat-1 Mice. BMC Neurosci. 2017, 18, 19. [Google Scholar] [CrossRef]
- Agostoni, C. Role of Long-Chain Polyunsaturated Fatty Acids in the First Year of Life. J. Pediatr. Gastroenterol. Nutr. 2008, 47 (Suppl. S2), S41–S44. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.; Rafiee Zadeh, A.; Shoureshi, P.; Ghadimi, K.; Cheshmavar, M.; Sheikhinia, N.; Afzali, M. Review Article Alcohol and Multiple Sclerosis: An Immune System-Based Review. Int. J. Physiol. Pathophysiol. Pharmacol. 2020, 12, 58. [Google Scholar] [PubMed]
- Massa, J.; O’Reilly, E.J.; Munger, K.L.; Ascherio, A. Caffeine and Alcohol Intakes Have No Association with Risk of Multiple Sclerosis. Mult. Scler. 2013, 19, 53–58. [Google Scholar] [CrossRef]
- Hedström, A.K.; Hillert, J.; Olsson, T.; Alfredsson, L. Alcohol as a Modifiable Lifestyle Factor Affecting Multiple Sclerosis Risk. JAMA Neurol. 2014, 71, 300–305. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Ceriello, A.; Giugliano, D. Prevention and Control of Type 2 Diabetes by Mediterranean Diet: A Systematic Review. Diabetes Res. Clin. Pr. 2010, 89, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Gardener, H.; Caunca, M.R. Mediterranean Diet in Preventing Neurodegenerative Diseases. Curr. Nutr. Rep. 2018, 7, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today 2017, 52, 208. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean Diet and the Hallmarks of Ageing. Eur. J. Clin. Nutr. 2021, 75, 1176–1192. [Google Scholar] [CrossRef]
- Mazzucca, C.B.; Raineri, D.; Cappellano, G.; Chiocchetti, A. How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients 2021, 13, 3956. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Abbott, G.; Bowe, S.J.; Ward, J.; Milte, C.; Mcnaughton, S.A. Diet Quality Indices, Genetic Risk and Risk of Cardiovascular Disease and Mortality: A Longitudinal Analysis of 77 004 UK Biobank Participants. BMJ Open 2021, 11, e045362. [Google Scholar] [CrossRef]
- Jonas, B.A.; Greenberg, P.L. MDS Prognostic Scoring Systems—Past, Present, and Future. Best. Pr. Res. Clin. Haematol. 2015, 28, 3–13. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean Food Pattern Predicts the Prevalence of Hypertension, Hypercholesterolemia, Diabetes and Obesity, among Healthy Adults; the Accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Sedaghat, F.; Jessri, M.; Behrooz, M.; Mirghotbi, M.; Rashidkhani, B. Mediterranean Diet Adherence and Risk of Multiple Sclerosis: A Case-Control Study. Asia Pac. J. Clin. Nutr. 2016, 25, 377–384. [Google Scholar] [CrossRef]
- Alfredsson, L.; Olsson, T.; Hedström, A.K. Inverse Association between Mediterranean Diet and Risk of Multiple Sclerosis. Mult. Scler. 2023, 29, 1118–1125. [Google Scholar] [CrossRef]
Multiple Sclerosis (MS) | ||||
---|---|---|---|---|
Overall | No | Yes | ||
N = 499,563 | N = 499,085 | N = 478 | HR (95%CI) | |
N (%) | N (%) | N (%) | ||
Sex | ||||
Females | 271,445 (54.34) | 271,124 (54.32) | 321 (67.15) | 1 |
Males | 228,118 (45.66) | 227,961 (45.68) | 157 (32.85) | 0.593 (0.490–0.717) |
Age | ||||
≤50 | 131,231 (26.27) | 131,053 (26.26) | 178 (37.24) | 1 |
(50–60] | 176,141 (35.26) | 175,978 (35.26) | 163 (34.1) | 0.691 (0.559–0.854) |
>60 | 192,190 (28.47 | 192,053 (38.48) | 137 (28.66) | 0.549 (0.439–0.686) |
Missing | 1 | 1 | 0 | |
Area | ||||
England | 443,228 (88.72) | 442,792 (88.72) | 436 (91.21) | 1 |
Scotland | 35,636 (7.13) | 35,606 (7.13) | 30 (6.28) | 0.821 (0.567–1.189) |
Wales | 20,699 (4.14) | 20,687 (4.14) | 12 (2.51) | 0.573 (0.323–1.017) |
Townsend deprivation index | ||||
Q1 | 124,914 (25.04) | 124,794 (25.04) | 120 (25.1) | 0.950 (0.739–1.222) |
Q2 | 124,786 (25.01) | 124,661 (25.01) | 125 (26.15) | 0.996 (0.776–1.277) |
Q3 | 124,790 (25.01) | 124,680 (25.01) | 110 (23.01) | 0.882 (0.682–1.140) |
Q4 | 124,455 (24.94) | 124,332 (24.94) | 123 (25.73) | 1 |
Missing | 618 | 618 | 0 | |
Smoking | ||||
Current smokers | 52,656 (10.58) | 52,576 (10.58) | 80 (16.84) | 1.922 (1.471–2.511) |
Partial smokers | 244,700 (49.19) | 244,469 (49.19) | 231 (48.63) | 1.164 (0.953–1.422) |
Never smokers | 200,117 (40.23) | 199,953 (40.23) | 164 (34.53) | 1 |
Missing | 2090 | 2087 | 3 | |
BMI categories (kg/m2) | ||||
Normal (<25) | 164,235 (33.05) | 164,075 (33.05) | 160 (34.04) | 1 |
Overweight (25.0–29.9) | 211,185 (42.49) | 210,993 (42.49) | 192 (40.85) | 0.936 (0.759–1.154) |
Obese (≥30.0) | 121,564 (24.46) | 121,446 (24.46) | 118 (25.11) | 1.008 (0.795–1.279) |
Missing | 2579 | 2571 | 8 | |
Moderate/vigorous physical activity (days/week) | ||||
0 | 61,672 (12.63) | 61,576 (12.62) | 96 (20.87) | 1 |
1–3 | 181,318 (37.13) | 181,170 (37.14) | 148 (32.17) | 0.515 (0.398–0.666) |
4–6 | 153,205 (31.37) | 153,067 (31.38) | 138 (30.00) | 0.570 (0.439–0.739) |
7 | 92,123 (18.87) | 92,045 (18.87) | 78 (16.96) | 0.538 (0.399–0.725) |
Missing | 11,245 | 11,227 | 18 | |
Type II diabetes | ||||
No | 491,278 (98.34) | 490,807 (98.34) | 471 (98.54) | 1 |
Yes | 8285 (1.66) | 8278 (1.66) | 7 (1.46) | 0.922 (0.437–1.945) |
Hypertension | ||||
No | 368,342 (73.73) | 367,986 (73.73) | 356 (74.48) | 1 |
Yes | 131,221 (26.27) | 131,099 (26.27) | 122 (25.52) | 0.983 (0.800–1.207) |
Hypercholesterolemia | ||||
No | 474,798 (95.04) | 474,337 (95.04) | 461 (96.44) | 1 |
Yes | 24,765 (4.96) | 24,748 (4.96) | 17 (3.56) | 0.713 (0.440–1.157) |
Other autoimmune disease | ||||
No | 494,944 (99.07) | 494,475 (99.08) | 469 (98.12) | 1 |
Yes | 4619 (0.92) | 4610 (0.92) | 9 (1.88) | 2.052 (1.061–3.967) |
Consumption | |||||
---|---|---|---|---|---|
Cooked Vegetables (tbs/day) | ≤1 | 2 | ≥3 | Trend p-Value | |
N events/non events | 100/90,239 | 153/163,064 | 216/239,146 | ||
HR (95%CI) | 1 | 0.844 (0.656–1.086) | 0.816 (0.644–1.035) | ||
aHR (95%CI) | 1 | 0.922 (0.709–1.199) | 0.896 (0.697–1.151) | 0.4126 | |
Salad/vegetables (tbs/day) | ≤1 | 2 | 3 | ≥4 | |
N events/non events | 222/218,622 | 99/119,214 | 67/69,848 | 82/84,508 | |
HR (95%CI) | 1 | 0.816 (0.644–1.034) | 0.942 (0.717–1.238) | 0.954 (0.741–1.229) | |
aHR (95%CI) | 1 | 0.798 (0.624–1.02) | 0.909 (0.684–1.207) | 0.908 (0.697–1.183) | 0.4239 |
Fresh fruit (serving/day) | ≤1 | 2 | 3 | ≥4 | |
N events/non events | 162/176,419 | 136/140,184 | 84/99,644 | 94/80,527 | |
HR (95%CI) | 1 | 1.05 (0.836–1.319) | 0.91 (0.699–1.184) | 1.263 (0.98–1.628) | |
aHR (95%CI) | 1 | 1.098 (0.868–1.39) | 0.888 (0.672–1.173) | 1.271 (0.972–1.662) | 0.3000 |
Oily fish (times/week) | 0 | <1 | 1 | ≥2 | |
N events/non events | 76/54,519 | 176/164,067 | 153/187,604 | 70/89,747 | |
HR (95%CI) | 1 | 0.767 (0.586–1.004) | 0.584 (0.444–0.769) | 0.561 (0.406–0.777) | |
aHR (95%CI) | 1 | 0.812 (0.614–1.075) | 0.642 (0.480–0.859) | 0.666 (0.474–0.934) | 0.0035 |
Other fish (times/week) | <1 | 1 | ≥2 | ||
N events/non events | 164/167,463 | 226/247,211 | 83/81,624 | ||
HR (95%CI) | 1 | 0.934 (0.764–1.142) | 1.040 (0.799–1.355) | ||
aHR (95%CI) | 1 | 1.012 (0.822–1.246) | 1.081 (0.821–1.422) | 0.6178 | |
Processed meat (times/week) | 0 | <1 | 1 | ≥2 | |
N events/non events | 48/46,470 | 159/151,541 | 130/145,323 | 140/154,440 | |
HR (95%CI) | 1 | 1.014 (0.734–1.400) | 0.868 (0.624–1.209) | 0.886 (0.639–1.230) | |
aHR (95%CI) | 1 | 1.037 (0.741–1.451) | 1.001 (0.709–1.413) | 1.061 (0.749–1.503) | 0.7992 |
Chicken, turkey, or other poultry (times/week) | <1 | 1 | ≥2 | ||
N events/non events | 75/79,115 | 172/178,778 | 231/240,041 | ||
HR (95%CI) | 1 | 1.01 (0.770–1.325) | 1.005 (0.775–1.305) | ||
aHR (95%CI) | 1 | 1.091 (0.822–1.448) | 0.998 (0.759–1.312) | 0.7523 | |
Beef (times/week) | 0 | <1 | 1 | ≥2 | |
N events/non events | 59/55,240 | 218/226,008 | 141/157,969 | 56/57,477 | |
HR (95%CI) | 1 | 0.903 (0.677–1.204) | 0.836 (0.617–1.132) | 0.913 (0.633–1.315) | |
aHR (95%CI) | 1 | 1.038 (0.765–1.408) | 0.990 (0.716–1.369) | 1.095 (0.743–1.614) | 0.8508 |
Lamb/mutton (times/week) | 0 | <1 | ≥1 | ||
N events/non events | 86/88,140 | 275/280,367 | 112/127,027 | ||
HR (95%CI) | 1 | 1.006 (0.789–1.281) | 0.912 (0.689–1.208) | ||
aHR (95%CI) | 1 | 1.116 (0.865–1.439) | 1.130 (0.841–1.517) | 0.4425 | |
Pork (times/week) | 0 | <1 | ≥1 | ||
N events/non events | 89/85,953 | 261/281,408 | 124/128,364 | ||
HR (95%CI) | 1 | 0.895 (0.704–1.139) | 0.942 (0.717–1.236) | ||
aHR (95%CI) | 1 | 0.988 (0.767–1.271) | 1.079 (0.81–1.437) | 0.5560 | |
Cheese (times/week) | <1 | 1 | ≥2 | ||
N events/non events | 96/97,784 | 97/104,308 | 272/283,564 | ||
HR (95%CI) | 1 | 0.945 (0.713–1.253) | 0.974 (0.772–1.229) | ||
aHR (95%CI) | 1 | 1.004 (0.749–1.345) | 1.049 (0.821–1.339) | 0.6644 | |
Bread (slices/week) | ≤7 | 8–13 | ≥14 | ||
N events/non events | 182/157,754 | 177/196,101 | 107/135,406 | ||
HR (95%CI) | 1 | 0.785 (0.638–0.965) | 0.690 (0.543–0.876) | ||
aHR (95%CI) | 1 | 0.889 (0.717–1.101) | 0.831 (0.641–1.078) | 0.1456 | |
Breakfast cereals (bowls/week) | ≤3 | 4–6 | ≥7 | ||
N events/non events | 171/175,626 | 136/132,735 | 168/188,563 | ||
HR (95%CI) | 1 | 1.043 (0.833–1.307) | 0.911 (0.736–1.127) | ||
aHR (95%CI) | 1 | 1.059 (0.838–1.338) | 0.970 (0.774–1.214) | 0.7929 | |
Tea (cups/day) | 0 | ≤2 | 3–4 | ≥5 | |
N events/non events | 77/73,051 | 116/129,031 | 125/145,825 | 158/149,911 | |
HR (95%CI) | 1 | 0.849 (0.636–1.132) | 0.809 (0.609–1.075) | 0.999 (0.761–1.312) | |
aHR (95%CI) | 1 | 0.851 (0.631–1.148) | 0.889 (0.665–1.190) | 1.056 (0.798–1.397) | 0.3868 |
Alcohol consumption (drinks/time) | ≤3 times a month | 1–4 times week | Daily or almost daily | ||
N events/non events | 182/153,520 | 216/243,663 | 80/101,297 | ||
HR (95%CI) | 1 | 0.739 (0.607–0.900) | 0.665 (0.511–0.865) | ||
aHR (95%CI) | 1 | 0.799 (0.648–0.984) | 0.764 (0.578–1.010) | 0.9860 |
MDS | HR (95%CI) | aHR (95%CI) |
---|---|---|
Increase of 1 point | 0.970 (0.826–1.139) | 0.958 (0.811–1.133) |
MDS | ||
≤2 | 1 | 1 |
3 | 0.801 (0.410–1.566) | 0.824 (0.421–1.612) |
4 | 1.183 (0.634–2.205) | 1.236 (0.660–2.314) |
>4 | 0.921 (0.464–1.828) | 0.844 (0.405–1.756) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbero Mazzucca, C.; Scotti, L.; Comi, C.; Vecchio, D.; Chiocchetti, A.; Cappellano, G. The Role of Diet in Multiple Sclerosis Onset: A Prospective Study Using UK Biobank. Nutrients 2024, 16, 1746. https://doi.org/10.3390/nu16111746
Barbero Mazzucca C, Scotti L, Comi C, Vecchio D, Chiocchetti A, Cappellano G. The Role of Diet in Multiple Sclerosis Onset: A Prospective Study Using UK Biobank. Nutrients. 2024; 16(11):1746. https://doi.org/10.3390/nu16111746
Chicago/Turabian StyleBarbero Mazzucca, Camilla, Lorenza Scotti, Cristoforo Comi, Domizia Vecchio, Annalisa Chiocchetti, and Giuseppe Cappellano. 2024. "The Role of Diet in Multiple Sclerosis Onset: A Prospective Study Using UK Biobank" Nutrients 16, no. 11: 1746. https://doi.org/10.3390/nu16111746
APA StyleBarbero Mazzucca, C., Scotti, L., Comi, C., Vecchio, D., Chiocchetti, A., & Cappellano, G. (2024). The Role of Diet in Multiple Sclerosis Onset: A Prospective Study Using UK Biobank. Nutrients, 16(11), 1746. https://doi.org/10.3390/nu16111746