Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Discovery Cohort
2.1.2. Replication Cohort
2.2. Clinical Parameters and Proteins
2.3. Two-Step Hyperinsulinemic Euglycemic Clamp
2.4. Adipose Tissue Analysis
2.5. Statistical Analysis and Machine Learning Models
3. Results
3.1. Baseline Characteristics
3.1.1. Discovery Cohort
3.1.2. Replication Cohort
3.2. Protein Biomarkers Related to Insulin Resistance in Treatment-Naïve Metabolic Syndrome Subjects
3.2.1. Discovery Cohort
3.2.2. Individual Proteins in the Discovery Cohort
3.3. Replication of Findings in Obese Men and Women
3.3.1. Replication Cohort
3.3.2. Individual Proteins in the Replication Cohort
3.4. Protein Biomarkers in Relation to Adipose Tissue
4. Discussion
Limitations
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, E.S.; Li, C.; Sattar, N. Metabolic syndrome and incident diabetes: Current state of the evidence. Diabetes Care 2008, 31, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.M.; Pennings, N. Insulin Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Neeland, I.J.; Ayers, C.R.; Rohatgi, A.K.; Turer, A.T.; Berry, J.D.; Das, S.R.; Vega, G.L.; Khera, A.; McGuire, D.K.; Grundy, S.M.; et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity 2013, 21, E439–E4347. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Kim, S.P.; Catalano, K.J.; Hsu, I.R.; Chiu, J.D.; Kabir, M.; Hucking, K.; Ader, M. Why visceral fat is bad: Mechanisms of the metabolic syndrome. Obesity 2006, 14 (Suppl. S1), 16S–19S. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B.; Larson, M.G.; Fox, C.S.; Keaney, J.F.; Vasan, R.S.J.; Benjamin, E.J. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: The Framingham Offspring Study. Diabetes Care 2007, 30, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef]
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H.; World Obesity Federation. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef]
- Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection; Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga-Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012, 143, 913–916.e7. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.B.; Li, Y.; Kumar, V.; Oosting, M.; Smeekens, S.; Jaeger, M.; ter Horst, R.; Schirmer, M.; Vlamakis, H.; et al. Understanding human immune function using the resources from the Human Functional Genomics Project. Nat. Med. 2016, 22, 831–833. [Google Scholar] [CrossRef]
- Galesloot, T.E.; Vermeulen, S.H.; Swinkels, D.W.; de Vegt, F.; Franke, B.; Heijer, M.D.; de Graaf, J.; Verbeek, A.L.; Kiemeney, L.A. Cohort Profile: The Nijmegen Biomedical Study (NBS). Int. J. Epidemiol. 2017, 46, 1099–1100j. [Google Scholar] [CrossRef] [PubMed]
- Hartstra, A.V.; de Groot, P.F.; Bastos, D.M.; Levin, E.; Serlie, M.J.; Soeters, M.R.; Pekmez, C.T.; Dragsted, L.O.; Ackermans, M.T.; Groen, A.K.; et al. Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance. Obes. Sci. Pract. 2020, 6, 340–349. [Google Scholar] [CrossRef]
- Ter Horst, R.; Munckhof, I.C.v.D.; Schraa, K.; Aguirre-Gamboa, R.; Jaeger, M.; Smeekens, S.P.; Brand, T.; Lemmers, H.; Dijkstra, H.; Galesloot, T.E.; et al. Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Ter Horst, K.W.; Gilijamse, P.W.; Koopman, K.E.; de Weijer, B.A.; Brands, M.; Kootte, R.S.; Romijn, J.A.; Ackermans, M.T.; Nieuwdorp, M.; Soeters, M.R.; et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int. J. Obes. 2015, 39, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Koopen, A.M.; de Clercq, N.C.; Warmbrunn, M.V.; Herrema, H.; Davids, M.; de Groot, P.F.; Kootte, R.S.; Bouter, K.E.; Nieuwdorp, M.; Groen, A.K.; et al. Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition. Nutrients 2020, 12, 2308. [Google Scholar] [CrossRef]
- Warmbrunn, M.V.; Koopen, A.M.; de Clercq, N.C.; de Groot, P.F.; Kootte, R.S.; Bouter, K.E.; Ter Horst, K.W.; Hartstra, A.V.; Serlie, M.J.; Ackermans, M.T.; et al. Metabolite Profile of Treatment-Naive Metabolic Syndrome Subjects in Relation to Cardiovascular Disease Risk. Metabolites 2021, 11, 236. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Finegood, D.T.; Bergman, R.N.; Vranic, M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes 1987, 36, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Steele, R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann. N. Y. Acad. Sci. 1959, 82, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Positano, V.; Gastaldelli, A.; Sironi, A.M.; Santarelli, M.F.; Lombardi, M.; Landini, L. An accurate and robust method for unsupervised assessment of abdominal fat by MRI. J. Magn. Reason. Imaging 2004, 20, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Brand, T.; Munckhof, I.C.L.v.D.; van der Graaf, M.; Schraa, K.; Dekker, H.M.; Joosten, L.A.B.; Netea, M.G.; Riksen, N.P.; de Graaf, J.; Rutten, J.H.W. Superficial vs Deep Subcutaneous Adipose Tissue: Sex-Specific Associations With Hepatic Steatosis and Metabolic Traits. J. Clin. Endocrinol. Metab. 2021, 106, e3881–e3889. [Google Scholar] [CrossRef] [PubMed]
- Vanhamme, L.; van den Boogaart, A.; Van Huffel, S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 1997, 129, 35–43. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, R.; Kanety, H.; Papa, M.Z.; Lunenfeld, B.; Karasik, A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 1993, 268, 26055–26058. [Google Scholar] [CrossRef] [PubMed]
- Uysal, K.T.; Wiesbrock, S.M.; Hotamisligil, G.S. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology 1998, 139, 4832–4838. [Google Scholar] [CrossRef]
- Ventre, J.; Doebber, T.; Wu, M.; MacNaul, K.; Stevens, K.; Pasparakis, M.; Kollias, G.; Moller, D.E. Targeted disruption of the tumor necrosis factor-alpha gene: Metabolic consequences in obese and nonobese mice. Diabetes 1997, 46, 1526–1531. [Google Scholar] [CrossRef]
- Plomgaard, P.; Bouzakri, K.; Krogh-Madsen, R.; Mittendorfer, B.; Zierath, J.R.; Pedersen, B.K. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005, 54, 2939–2945. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Lamiral, Z.; Xhaard, C.; Duarte, K.; Bresso, E.; Devignes, M.-D.; Le Floch, E.; Roulland, C.D.; Deleuze, J.-F.; Wagner, S.; et al. Circulating plasma proteins and new-onset diabetes in a population-based study: Proteomic and genomic insights from the STANISLAS cohort. Eur. J. Endocrinol. 2020, 183, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Toffoli, B.; Tisato, V.; Bossi, F.; Biffi, S.; Lorenzon, A.; Zauli, G.; Secchiero, P.; Fabris, B. TRAIL reduces impaired glucose tolerance and NAFLD in the high-fat diet fed mouse. Clin. Sci. 2018, 132, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Toffoli, B.; Tonon, F.; Tisato, V.; Zauli, G.; Secchiero, P.; Fabris, B.; Bernardi, S. TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. Cell Death Dis. 2021, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Cartland, S.P.; Harith, H.H.; Genner, S.W.; Dang, L.; Cogger, V.C.; Vellozzi, M.; Di Bartolo, B.A.; Thomas, S.R.; Adams, L.A.; Kavurma, M.M. Non-alcoholic fatty liver disease, vascular inflammation and insulin resistance are exacerbated by TRAIL deletion in mice. Sci. Rep. 2017, 7, 1898. [Google Scholar] [CrossRef]
- Bisgin, A.; Yalcin, A.D.; Gorczynski, R.M. Circulating soluble tumor necrosis factor related apoptosis inducing-ligand (TRAIL) is decreased in type-2 newly diagnosed, non-drug using diabetic patients. Diabetes Res. Clin. Pract. 2012, 96, e84–e86. [Google Scholar] [CrossRef]
- Arik, H.O.; Yalcin, A.D.; Gumuslu, S.; Genc, G.E.; Turan, A.; Sanlioglu, A.D. Association of circulating sTRAIL and high-sensitivity CRP with type 2 diabetic nephropathy and foot ulcers. Med. Sci. Monitor 2013, 19, 712–715. [Google Scholar]
- Xiang, G.; Zhang, J.; Ling, Y.; Zhao, L. Circulating level of TRAIL concentration is positively associated with endothelial function and increased by diabetic therapy in the newly diagnosed type 2 diabetic patients. Clin. Endocrinol. 2014, 80, 228–234. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Miles, J.M.; Jensen, M.D. Counterpoint: Visceral adiposity is not causally related to insulin resistance. Diabetes Care 2005, 28, 2326–2328. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, T.; Zhang, S.; Zhou, L. Associations of Different Adipose Tissue Depots with Insulin Resistance: A Systematic Review and Meta-analysis of Observational Studies. Sci. Rep. 2015, 5, 18495. [Google Scholar] [CrossRef]
- Yerramasu, A.; Dey, D.; Venuraju, S.; Anand, D.V.; Atwal, S.; Corder, R.; Berman, D.S.; Lahiri, A. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 2012, 220, 223–230. [Google Scholar] [CrossRef]
- Iacobellis, G.; Ribaudo, M.C.; Assael, F.; Vecci, E.; Tiberti, C.; Zappaterreno, A.; Di Mario, U.; Leonetti, F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: A new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 2003, 88, 5163–5168. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Saxton, S.N.; Clark, B.J.; Withers, S.B.; Eringa, E.C.; Heagerty, A.M. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol. Rev. 2019, 99, 1701–1763. [Google Scholar] [CrossRef]
- Warmbrunn, M.V.; Herrema, H.; Aron-Wisnewsky, J.; Soeters, M.R.; Van Raalte, D.H.; Nieuwdorp, M. Gut microbiota: A promising target against cardiometabolic diseases. Expert Rev. Endocrinol. Metab. 2020, 15, 13–27. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Engeli, S.; Schling, P.; Gorzelniak, K.; Boschmann, M.; Janke, J.; Ailhaud, G.; Teboul, M.; Massiéra, F.; Sharma, A.M. The adipose-tissue renin-angiotensin-aldosterone system: Role in the metabolic syndrome? Int. J. Biochem. Cell Biol. 2003, 35, 807–825. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Mori, J.; McLean, B.A.; Basu, R.; Das, S.K.; Ramprasath, T.; Parajuli, N.; Penninger, J.M.; Grant, M.B.; Lopaschuk, G.D.; et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016, 65, 85–95. [Google Scholar] [CrossRef]
- Miller, A.J.; Bingaman, S.S.; Mehay, D.; Medina, D.; Arnold, A.C. Angiotensin-(1–7) Improves Integrated Cardiometabolic Function in Aged Mice. Int. J. Mol. Sci. 2020, 21, 5131. [Google Scholar] [CrossRef]
- World Health Organization (WHO); International Diabetes Federation (IDF). Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Bucht Thorsen, S.; Ekman, D.; Lindstedt, P.; Stenvang, J.; Gullberg, M.; Fredriksson, S. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar]
Overall | Insulin Sensitive (Based on Rd) | Insulin-Resistant (Based on Rd) | p | Test | |
---|---|---|---|---|---|
n | 97 | 27 | 70 | ||
Age (years) | 55.97 (8.01) | 55.37 (7.06) | 56.20 (8.39) | 0.65 | |
BMI (kg/m2) | 33.42 [31.00, 35.70] | 33.00 [30.55, 34.27] | 33.89 [31.26, 36.00] | 0.17 | nonnorm |
Weight (kg) | 110.10 [100.00, 122.00] | 102.60 [97.30, 111.35] | 114.65 [104.20, 123.10] | 0.01 | nonnorm |
Fasting glucose (mmol/L) | 5.81 (0.65) | 5.68 (0.57) | 5.86 (0.68) | 0.23 | |
Insulin (pmol/L) | 108.00 [70.00, 138.00] | 69.00 [54.50, 93.00] | 119.00 [88.50, 143.25] | <0.001 | nonnorm |
HOMA-IR | 3.65 [2.49, 5.10] | 2.70 [1.94, 3.25] | 4.12 [3.12, 5.20] | <0.001 | nonnorm |
LDL (mmol/L) | 3.50 [2.84, 4.26] | 3.10 [2.61, 4.16] | 3.50 [2.90, 4.29] | 0.20 | nonnorm |
HDL (mmol/L) | 1.12 (0.26) | 1.19 (0.33) | 1.09 (0.22) | 0.09 | |
Triglycerides (mmol/L) | 1.44 [1.17, 1.80] | 1.40 [1.13, 1.80] | 1.48 [1.18, 1.80] | 0.53 | nonnorm |
Rd (μmol kg−1 min−1) | 31.10 [24.39, 39.33] | 49.50 [44.70, 55.48] | 27.35 [21.18, 32.77] | <0.001 | nonnorm |
Overall | IFG | Non-IFG | p | Test | |
---|---|---|---|---|---|
n | 282 | 119 | 163 | ||
Age (years) | 67.04 (5.34) | 67.32 (5.40) | 66.83 (5.30) | 0.45 | |
BMI (kg/m2) | 29.90 [28.30, 31.90] | 30.50 [28.65, 32.90] | 29.40 [28.00, 31.15] | <0.001 | nonnorm |
Weight (kg) | 88.80 [81.60, 97.80] | 90.60 [84.00, 98.95] | 86.70 [80.00, 96.75] | 0.02 | nonnorm |
Fasting glucose (mmol/L) | 5.72 (1.29) | 6.64 (1.53) | 5.05 (0.30) | <0.001 | |
Insulin (pmol/L) | 190 [127, 312] | 243 [173, 343] | 147 [108, 264] | <0.001 | nonnorm |
HOMA-IR | 8.21 [4.91, 13.85] | 11.69 [8.39, 17.92] | 5.68 [4.04, 10.42] | <0.001 | nonnorm |
Total cholesterol (mmol/L) | 6.30 [5.60, 6.93] | 6.26 [5.60, 6.99] | 6.30 [5.40, 6.90] | 0.68 | nonnorm |
LDL (mmol/L) | 4.13 [3.52, 4.71] | 4.12 [3.52, 4.70] | 4.14 [3.53, 4.73] | 1.00 | nonnorm |
HDL (mmol/L) | 1.29 [1.11, 1.49] | 1.21 [1.05, 1.43] | 1.35 [1.17, 1.52] | 0.001 | nonnorm |
Triglycerides (mmol/L) | 1.62 [1.26, 2.15] | 1.88 [1.41, 2.41] | 1.47 [1.20, 1.92] | <0.001 | nonnorm |
Sex = male (%) | 122 (43.3) | 52 (43.7) | 70 (42.9) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warmbrunn, M.V.; Bahrar, H.; de Clercq, N.C.; Koopen, A.M.; de Groot, P.F.; Rutten, J.; Joosten, L.A.B.; Kootte, R.S.; Bouter, K.E.C.; ter Horst, K.W.; et al. Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome. Nutrients 2024, 16, 1822. https://doi.org/10.3390/nu16121822
Warmbrunn MV, Bahrar H, de Clercq NC, Koopen AM, de Groot PF, Rutten J, Joosten LAB, Kootte RS, Bouter KEC, ter Horst KW, et al. Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome. Nutrients. 2024; 16(12):1822. https://doi.org/10.3390/nu16121822
Chicago/Turabian StyleWarmbrunn, Moritz V., Harsh Bahrar, Nicolien C. de Clercq, Annefleur M. Koopen, Pieter F. de Groot, Joost Rutten, Leo A. B. Joosten, Ruud S. Kootte, Kristien E. C. Bouter, Kasper W. ter Horst, and et al. 2024. "Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome" Nutrients 16, no. 12: 1822. https://doi.org/10.3390/nu16121822
APA StyleWarmbrunn, M. V., Bahrar, H., de Clercq, N. C., Koopen, A. M., de Groot, P. F., Rutten, J., Joosten, L. A. B., Kootte, R. S., Bouter, K. E. C., ter Horst, K. W., Hartstra, A. V., Serlie, M. J., Soeters, M. R., van Raalte, D. H., Davids, M., Levin, E., Herrema, H., Riksen, N. P., Netea, M. G., ... Nieuwdorp, M. (2024). Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome. Nutrients, 16(12), 1822. https://doi.org/10.3390/nu16121822