Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome
Abstract
:1. Introduction
2. Pulse Proteins and Their Hydrolysates for Improving MetS
2.1. Anti-Hypertension
2.1.1. In Vitro Studies
2.1.2. In Vivo Studies
2.2. Anti-Hyperglycemia
2.2.1. In Vitro Studies
2.2.2. In Vivo Studies
2.3. Anti-Dyslipidemia
2.3.1. In Vitro Studies
2.3.2. In Vivo Studies
2.4. Anti-Obesity
2.4.1. In Vitro Studies
2.4.2. In Vivo Studies
3. Regulation of the Gut Microbiome by Pulse Proteins and Their Hydrolysates
4. Clinical Studies of Pulse Proteins and Their Hydrolysates on MetS
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Alshammary, A.F.; Alharbi, K.K.; Alshehri, N.J.; Vennu, V.; Ali Khan, I. Metabolic Syndrome and Coronary Artery Disease Risk: A Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 1773. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Nevels, T.L.; Wirth, M.D.; Ginsberg, J.P.; McLain, A.C.; Burch, J.B. The Role of Sleep and Heart Rate Variability in Metabolic Syndrome: Evidence from the Midlife in the United States Study. Sleep 2023, 46, zsad013. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-X.; Deng, X.-R.; Zhang, C.-H.; Yuan, H.-J. Gut Microbiota and Metabolic Syndrome. Chin. Med. J. 2020, 133, 808–816. [Google Scholar] [CrossRef]
- Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S. Microbial Dysbiosis-Induced Obesity: Role of Gut Microbiota in Homoeostasis of Energy Metabolism. Br. J. Nutr. 2020, 123, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Croci, S.; D’Apolito, L.I.; Gasperi, V.; Catani, M.V.; Savini, I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021, 13, 1389. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wang, X.; Zhang, X. Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat Metabolic Disorders to Maintain Health. Nutrients 2023, 15, 1539. [Google Scholar] [CrossRef] [PubMed]
- Abachi, S.; Pilon, G.; Marette, A.; Bazinet, L.; Beaulieu, L. Beneficial Effects of Fish and Fish Peptides on Main Metabolic Syndrome Associated Risk Factors: Diabetes, Obesity and Lipemia. Crit. Rev. Food Sci. Nutr. 2023, 63, 7896–7944. [Google Scholar] [CrossRef] [PubMed]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef]
- Tong, L.-T.; Xiao, T.; Wang, L.; Lu, C.; Liu, L.; Zhou, X.; Wang, A.; Qin, W.; Wang, F. Plant Protein Reduces Serum Cholesterol Levels in Hypercholesterolemia Hamsters by Modulating the Compositions of Gut Microbiota and Metabolites. iScience 2021, 24, 103435. [Google Scholar] [CrossRef]
- Feng, Q.; Niu, Z.; Zhang, S.; Wang, L.; Qun, S.; Yan, Z.; Hou, D.; Zhou, S. Mung Bean Protein as an Emerging Source of Plant Protein: A Review on Production Methods, Functional Properties, Modifications and Its Potential Applications. J. Sci. Food Agric. 2024, 104, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.; Barreira, J.C.; Oliveira, M.B.P. Pulses and Food Security: Dietary Protein, Digestibility, Bioactive and Functional Properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Singh, N. Pulses: An Overview. J. Food Sci. Technol. 2017, 54, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Feng, Q.; Tang, J.; Shen, Q.; Zhou, S. An Update on Nutritional Profile, Phytochemical Compounds, Health Benefits, and Potential Applications in the Food Industry of Pulses Seed Coats: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1960–1982. [Google Scholar] [CrossRef] [PubMed]
- Śmiglak-Krajewska, M.; Wojciechowska-Solis, J. Consumption Preferences of Pulses in the Diet of Polish People: Motives and Barriers to Replace Animal Protein with Vegetable Protein. Nutrients 2021, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Feng, Q.; Niu, Z.; Wang, L.; Yan, Z.; Zhou, S. Promising Mung Bean Proteins and Peptides: A Comprehensive Review of Preparation Technologies, Biological Activities, and Their Potential Applications. Food Biosci. 2023, 55, 102972. [Google Scholar] [CrossRef]
- Thondre, P.S.; Achebe, I.; Sampson, A.; Maher, T.; Guérin-Deremaux, L.; Lefranc-Millot, C.; Ahlström, E.; Lightowler, H. Co-Ingestion of NUTRALYS® Pea Protein and a High-Carbohydrate Beverage Influences the Glycaemic, Insulinaemic, Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) Responses: Preliminary Results of a Randomised Controlled Trial. Eur. J. Nutr. 2021, 60, 3085–3093. [Google Scholar] [PubMed]
- Adam, C.L.; Gratz, S.W.; Peinado, D.I.; Thomson, L.M.; Garden, K.E.; Williams, P.A.; Richardson, A.J.; Ross, A.W. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats. PLoS ONE 2016, 11, e0155871. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hou, T.; Guo, D.; He, H. Evaluation of Hypolipidemic Peptide (Val-Phe-Val-Arg-Asn) Virtual Screened from Chickpea Peptides by Pharmacophore Model in High-Fat Diet-Induced Obese Rat. J. Funct. Foods 2019, 54, 136–145. [Google Scholar] [CrossRef]
- Li, L.; Tian, Y.; Zhang, S.; Feng, Y.; Wang, H.; Cheng, X.; Ma, Y.; Zhang, R.; Wang, C. Regulatory Effect of Mung Bean Peptide on Prediabetic Mice Induced by High-Fat Diet. Front. Nutr. 2022, 9, 913016. [Google Scholar] [CrossRef]
- Chin, Y.Y.; Chew, L.Y.; Toh, G.T.; Salampessy, J.; Azlan, A.; Ismail, A. Nutritional Composition and Angiotensin Converting Enzyme Inhibitory Activity of Blue Lupin (Lupinus angustifolius). Food Biosci. 2019, 31, 100401. [Google Scholar] [CrossRef]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-Chemical Properties, Antioxidant Activities and Angiotensin-I Converting Enzyme Inhibitory of Protein Hydrolysates from Mung Bean (Vigna radiate). Food Chem. 2019, 270, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Fadimu, G.J.; Gill, H.; Farahnaky, A.; Truong, T. Improving the Enzymolysis Efficiency of Lupin Protein by Ultrasound Pretreatment: Effect on Antihypertensive, Antidiabetic and Antioxidant Activities of the Hydrolysates. Food Chem. 2022, 383, 132457. [Google Scholar] [CrossRef] [PubMed]
- Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of Antihypertensive Peptides from Mung Bean Protein Hydrolysate and Their Effects in Spontaneously Hypertensive Rats. J. Funct. Foods 2020, 64, 103635. [Google Scholar] [CrossRef]
- Muawanah, A.; Chalid, S.Y.; Hatiningsih, F.; Nurbayti, S.; Zunaedi, Z.Z. Angiotensin Converting Enzyme (ACE) Inhibitory Activity and Extract Protein Profiles of Mung Beans (Vigna radiata L.) Tempeh Which Fermented by Rhizopus Sp. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 995, p. 012048. [Google Scholar]
- Liao, W.; Fan, H.; Liu, P.; Wu, J. Identification of Angiotensin Converting Enzyme 2 (ACE2) up-Regulating Peptides from Pea Protein Hydrolysate. J. Funct. Foods 2019, 60, 103395. [Google Scholar] [CrossRef]
- Bollati, C.; Xu, R.; Boschin, G.; Bartolomei, M.; Rivardo, F.; Li, J.; Arnoldi, A.; Lammi, C. Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients 2022, 14, 2379. [Google Scholar] [CrossRef] [PubMed]
- Ratnayani, K.; Suter, I.K.; Antara, N.S.; Putra, I.N.K. Effect of in Vitro Gastrointestinal Digestion on the Angiotensin Converting Enzyme (ACE) Inhibitory Activity of Pigeon Pea Protein Isolate. Int. Food Res. J. 2019, 26, 1397–1404. [Google Scholar]
- Putra, I.D.; Marsono, Y.; Indrati, R. Effect of Simulated Gastrointestinal Digestion of Bioactive Peptide from Pigeon Pea (Cajanus cajan) Tempe on Angiotensin-I Converting Enzyme Inhibitory Activity. Nutr. Food Sci. 2020, 51, 244–254. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Thermoase-hydrolysed Pigeon Pea Protein and Its Membrane Fractions Possess In Vitro Bioactive Properties (Antioxidative, Antihypertensive, and Antidiabetic). J. Food Biochem. 2021, 45, e13429. [Google Scholar] [CrossRef]
- Gupta, N.; Bhagyawant, S.S. Enzymatic Treatment Improves ACE-I Inhibiton and Antiproliferative Potential of Chickpea. Vegetos 2019, 32, 363–369. [Google Scholar] [CrossRef]
- Muñoz, E.B.; Luna-Vital, D.A.; Fornasini, M.; Baldeón, M.E.; de Mejia, E.G. Gamma-Conglutin Peptides from Andean Lupin Legume (Lupinus mutabilis Sweet) Enhanced Glucose Uptake and Reduced Gluconeogenesis In Vitro. J. Funct. Foods 2018, 45, 339–347. [Google Scholar] [CrossRef]
- Tapadia, M.; Johnson, S.; Utikar, R.; Newsholme, P.; Carlessi, R. Antidiabetic Effects and Mechanisms of Action of γ-Conglutin from Lupin Seeds. J. Funct. Foods 2021, 87, 104786. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Farahnaky, A.; Gill, H.; Olalere, O.A.; Gan, C.-Y.; Truong, T. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods 2022, 11, 3375. [Google Scholar] [CrossRef] [PubMed]
- Awosika, T.O.; Aluko, R.E. Inhibition of the in Vitro Activities of α-amylase, α-glucosidase and Pancreatic Lipase by Yellow Field Pea (Pisum sativum L.) Protein Hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 2021–2034. [Google Scholar] [CrossRef]
- Liao, W.; Cao, X.; Xia, H.; Wang, S.; Sun, G. Pea Protein-Derived Peptides Inhibit Hepatic Glucose Production via the Gluconeogenic Signaling in the AML-12 Cells. Int. J. Environ. Res. Public Health 2022, 19, 10254. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Unravelling the α-Glucosidase Inhibitory Properties of Chickpea Protein by Enzymatic Hydrolysis and in Silico Analysis. Food Biosci. 2021, 44, 101328. [Google Scholar] [CrossRef]
- Ma, X.; Fan, X.; Wang, D.; Li, X.; Wang, X.; Yang, J.; Qiu, C.; Liu, X.; Pang, G.; Abra, R. Study on Preparation of Chickpea Peptide and Its Effect on Blood Glucose. Front. Nutr. 2022, 9, 988628. [Google Scholar] [CrossRef] [PubMed]
- Olusegun, A.O.; Emmanuel, E.O. Alpha-Amylase–Inhibitory Properties and in Vitro Antioxidant Potentials of Cowpea Seed Protein Hydrolysates. Am. Assoc. Sci. Technol. 2019, 6, 1–12. [Google Scholar]
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Aiello, G. YDFYPSSTKDQQS (P3), a Peptide from Lupin Protein, Absorbed by Caco-2 Cells, Modulates Cholesterol Metabolism in HepG2 Cells via SREBP-1 Activation. J. Food Biochem. 2018, 42, e12524. [Google Scholar] [CrossRef]
- Grazioso, G.; Bollati, C.; Sgrignani, J.; Arnoldi, A.; Lammi, C. First Food-Derived Peptide Inhibitor of the Protein–Protein Interaction between Gain-of-Function PCSK9D374Y and the Low-Density Lipoprotein Receptor. J. Agric. Food Chem. 2018, 66, 10552–10557. [Google Scholar] [CrossRef]
- Lammi, C.; Sgrignani, J.; Roda, G.; Arnoldi, A.; Grazioso, G. Inhibition of PCSK9D374Y/LDLR Protein-Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Med. Chem. Lett. 2018, 10, 425–430. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Lecca, D.; Abbracchio, M.P.; Arnoldi, A. Lupin Peptide T9 (GQEQSHQDEGVIVR) Modulates the Mutant PCSK9D374Y Pathway: In Vitro Characterization of Its Dual Hypocholesterolemic Behavior. Nutrients 2019, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Fassi, E.M.; Li, J.; Bartolomei, M.; Benigno, G.; Roda, G.; Arnoldi, A.; Grazioso, G. Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics 2022, 14, 665. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, J.; Liu, L.; Awais, M.; Xiao, T.; Wang, L.; Zhou, X.; Tong, L.-T.; Zhou, S. Effect of Thermosonication Pre-Treatment on Mung Bean (Vigna radiata) and White Kidney Bean (Phaseolus vulgaris) Proteins: Enzymatic Hydrolysis, Cholesterol Lowering Activity and Structural Characterization. Ultrason. Sonochem. 2020, 66, 105121. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Tiku, P.K. A Cholesterol Homeostasis by Bioactive Peptide Fraction from Pigeon Pea By-Product: An in-Vitro Study. Int. J. Pept. Res. Ther. 2021, 27, 977–985. [Google Scholar] [CrossRef]
- e Silva, M.B.d.C.; da Cruz Souza, C.A.; Philadelpho, B.O.; da Cunha, M.M.N.; Batista, F.P.R.; da Silva, J.R.; Druzian, J.I.; Castilho, M.S.; Cilli, E.M.; Ferreira, E.S. In Vitro and in Silico Studies of 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase Inhibitory Activity of the Cowpea Gln-Asp-Phe Peptide. Food Chem. 2018, 259, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Philadelpho, B.; Santos, J.; Souza, V.; Souza, C.; Santiago, V.; Silva, J.; Souza, C.; Azeredo, F.; Castilho, M. IAF, QGF, and QDF Peptides Exhibit Cholesterol-Lowering Activity through a Statin-like HMG-CoA Reductase Regulation Mechanism: In Silico and in Vitro Approach. Int. J. Mol. Sci. 2021, 22, 11067. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, J.; Awais, M.; Liu, L.; Khan, M.I.; Tong, L.-T.; Ma, Y.; Wang, L.; Zhou, X.; Zhou, S. Effect of Thermal Processing on Cholesterol Synthesis, Solubilisation into Micelles and Antioxidant Activities Using Peptides of Vigna angularis and Vicia faba. LWT 2020, 129, 109504. [Google Scholar] [CrossRef]
- Ruiz, R.; Olías, R.; Clemente, A.; Rubio, L.A. A Pea (Pisum sativum L.) Seed Vicilins Hydrolysate Exhibits PPARγ Ligand Activity and Modulates Adipocyte Differentiation in a 3T3-L1 Cell Culture Model. Foods 2020, 9, 793. [Google Scholar] [CrossRef]
- Liu, N.; Song, Z.; Jin, W.; Yang, Y.; Sun, S.; Zhang, Y.; Zhang, S.; Liu, S.; Ren, F.; Wang, P. Pea Albumin Extracted from Pea (Pisum sativum L.) Seed Protects Mice from High Fat Diet-Induced Obesity by Modulating Lipid Metabolism and Gut Microbiota. J. Funct. Foods 2022, 97, 105234. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Antioxidant Properties, ACE/Renin Inhibitory Activities of Pigeon Pea Hydrolysates and Effects on Systolic Blood Pressure of Spontaneously Hypertensive Rats. Food Sci. Nutr. 2018, 6, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Ontiveros, J.; Reyes-Moreno, C.; Ramírez-Torres, G.I.; Figueroa-Salcido, O.G.; Arámburo-Gálvez, J.G.; Montoya-Rodríguez, A.; Ontiveros, N.; Cuevas-Rodríguez, E.O. Extrusion Improves the Antihypertensive Potential of a Kabuli Chickpea (Cicer arietinum L.) Protein Hydrolysate. Foods 2022, 11, 2562. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Ávila, P.L.; Guzmán, T.J.; Domínguez-Rosales, J.A.; García-López, P.M.; Cervantes-Garduño, A.B.; Wink, M.; Gurrola-Díaz, C.M. Combined Gamma Conglutin and Lupanine Treatment Exhibits In Vivo an Enhanced Antidiabetic Effect by Modulating the Liver Gene Expression Profile. Pharmaceuticals 2023, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Soto-Luna, I.C.; García-López, P.M.; Vargas-Guerrero, B.; Guzmán, T.J.; Domínguez-Rosales, J.A.; Gurrola-Díaz, C.M. Lupin Protein Isolate Improves Insulin Sensitivity and Steatohepatitis in Vivo and Modulates the Expression of the Fasn, Gys2, and Gsk3b Genes. Food Sci. Nutr. 2021, 9, 2549–2560. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, R.; Fang, L.; Qin, X.; Cai, M.; Gu, R.; Lu, J.; Wang, Y. Hypoglycemic Effects and Biochemical Mechanisms of Pea Oligopeptide on High-fat Diet and Streptozotocin-induced Diabetic Mice. J. Food Biochem. 2019, 43, e13055. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qian, Y.; Zhao, L.; Chen, G. Antidiabetic Activities of Glycoprotein from Pea (Pisum sativum L.) in STZ-Induced Diabetic Mice. Food Funct. 2021, 12, 5087–5095. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Cruz-Chamorro, I.; Álvarez-Ríos, A.I.; Álvarez-Sánchez, N.; Rodríguez-Ortiz, B.; Álvarez-López, A.I.; Fernández-Pachón, M.-S.; Pedroche, J.; Millán, F.; Millan-Linares, M. del C. Bioactive Peptides from Lupin (Lupinus angustifolius) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE–/– Mice. J. Agric. Food Chem. 2022, 70, 8243–8253. [Google Scholar] [CrossRef] [PubMed]
- Santos-Sánchez, G.; Cruz-Chamorro, I.; Bollati, C.; Bartolomei, M.; Pedroche, J.; Millán, F.; del Carmen Millán-Linares, M.; Capriotti, A.L.; Cerrato, A.; Laganà, A. A Lupinus Angustifolius Protein Hydrolysate Exerts Hypocholesterolemic Effects in Western Diet-Fed ApoE−/− Mice through the Modulation of LDLR and PCSK9 Pathways. Food Funct. 2022, 13, 4158–4170. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, E.; Pavoni, L.; Perinelli, D.R.; Tiboni, M.; Casettari, L.; Cespi, M.; El-khouly, A.; Soliman, M.E.; Bonacucina, G. Hyperlipidemia Control Using the Innovative Association of Lupin Proteins and Chitosan and α-Cyclodextrin Dietary Fibers: Food Supplement Formulation, Molecular Docking Study, and in Vivo Evaluation. Eur. Food Res. Technol. 2022, 248, 2977–2993. [Google Scholar] [CrossRef]
- Kumar, V.; Muthu Kumar, S.P.; Tiku, P.K. Hypocholesterolemic Effect of Potent Peptide and Bioactive Fraction from Pigeon Pea By-Products in Wistar Rats. Int. J. Pept. Res. Ther. 2021, 27, 2403–2415. [Google Scholar] [CrossRef]
- Xue, Z.; Hou, X.; Yu, W.; Wen, H.; Zhang, Q.; Li, D.; Kou, X. Lipid Metabolism Potential and Mechanism of CPe-III from Chickpea (Cicer arietinum L.). Food Res. Int. 2018, 104, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Alashi, A.M.; Wu, H.; Aluko, R.E. Indigestible Cowpea Proteins Reduced Plasma Cholesterol after Long-Term Oral Administration to Sprague-Dawley Rats. Food Prod. Process. Nutr. 2021, 3, 16. [Google Scholar] [CrossRef]
- Hidayat, M.; Prahastuti, S.; Arina, W.; Febriansyah, R.; Somya, S.S.; Aurelia, A.; Soemardji, A.A.; Suliska, N.; Garmana, A.N.; Hasan, K. Effect of Green Peas Protein Hydrolysate on Antihyperlipidemia and Antinephrotoxicity of Gentamicin-Induced Wistar Rats. Acta Medica Iran. 2019, 57, 690–697. [Google Scholar] [CrossRef]
- Martínez, R.; Kapravelou, G.; Donaire, A.; Lopez-Chaves, C.; Arrebola, F.; Galisteo, M.; Cantarero, S.; Aranda, P.; Porres, J.M.; López-Jurado, M. Effects of a Combined Intervention with a Lentil Protein Hydrolysate and a Mixed Training Protocol on the Lipid Metabolism and Hepatic Markers of NAFLD in Zucker Rats. Food Funct. 2018, 9, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, A.; Li, X.; Miyamoto, J.; Igarashi, M.; Watanabe, H.; Sutou, A.; Watanabe, K.; Motoyama, T.; Tachibana, N.; Kohno, M. Dietary Mung Bean Protein Reduces High-Fat Diet-Induced Weight Gain by Modulating Host Bile Acid Metabolism in a Gut Microbiota-Dependent Manner. Biochem. Biophys. Res. Commun. 2018, 501, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Radlowski, C.; de Mejia, E.G. Chickpea Protein Hydrolysate Ameliorates the Impact of Feeding a High-Fat-Diet-Induced Obesity in Mice by Modulating Inflammation. Curr. Dev. Nutr. 2022, 6, 328. [Google Scholar] [CrossRef]
- Rideout, T.C.; Andreani, G.A.; Pembroke, J.; Choudhary, D.; Browne, R.W.; Mahmood, S.; Patel, M.S. Maternal Pea Protein Intake Provides Sex-Specific Protection against Dyslipidemia in Offspring from Obese Pregnancies. Nutrients 2023, 15, 867. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X. Study on Hypertension and Risk of Hypertension and Cardiovascular Disease. J. Clin. Nurs. Res. 2022, 6, 79–83. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Shi, F.; Zhou, L.; Huang, J. Identification of Novel Renin Inhibitory Peptides from Tartary Buckwheat Albumin Hydrolysates by Molecular Docking. Process Biochem. 2024, 138, 120–129. [Google Scholar] [CrossRef]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Van Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef]
- Manoharan, S. Is It Still Relevant to Discover New ACE Inhibitors from Natural Products? YES, but Only with Comprehensive Approaches to Address the Patients’ Real Problems: Chronic Dry Cough and Angioedema. Molecules 2023, 28, 4532. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-Aminobutyric Acid (GABA): A Comprehensive Review of Dietary Sources, Enrichment Technologies, Processing Effects, Health Benefits, and Its Applications. Crit. Rev. Food Sci. Nutr. 2023, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Razavi, S.H. Pulses’ Germination and Fermentation: Two Bioprocessing against Hypertension by Releasing ACE Inhibitory Peptides. Crit. Rev. Food Sci. Nutr. 2021, 61, 2876–2893. [Google Scholar] [CrossRef] [PubMed]
- Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Malomo, S.A.; Aluko, R.E.; Amonsou, E.O. Inhibitory Properties of Bambara Groundnut Protein Hydrolysate and Peptide Fractions against Angiotensin-converting Enzymes, Renin and Free Radicals. J. Sci. Food Agric. 2017, 97, 2834–2841. [Google Scholar] [CrossRef] [PubMed]
- Lecumberri, E.; Nattero-Chávez, L.; Quiñones Silva, J.; Alonso Díaz, S.; Fernández-Durán, E.; Dorado Avendaño, B.; Escobar-Morreale, H.F.; Luque-Ramírez, M. Impact of Excluding Hyperglycemia from International Diabetes Federation Metabolic Syndrome Diagnostic Criteria on Prevalence of the Syndrome and Its Association with Microvascular Complications, in Adult Patients with Type 1 Diabetes. Endocrine 2022, 76, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, J.; Malalgoda, M.; Storsley, J.; Malunga, L.; Netticadan, T.; Thandapilly, S.J. Health Benefits of Cereal Grain-and Pulse-Derived Proteins. Molecules 2022, 27, 3746. [Google Scholar] [CrossRef] [PubMed]
- Berberich, A.J.; Hegele, R.A. A Modern Approach to Dyslipidemia. Endocr. Rev. 2022, 43, 611–653. [Google Scholar] [CrossRef] [PubMed]
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between Hyperlipidemia, Cardiovascular Disease and Stroke: A Systematic Review. Curr. Cardiol. Rev. 2021, 17, 52–66. [Google Scholar]
- Peña-Jorquera, H.; Cid-Jofré, V.; Landaeta-Díaz, L.; Petermann-Rocha, F.; Martorell, M.; Zbinden-Foncea, H.; Ferrari, G.; Jorquera-Aguilera, C.; Cristi-Montero, C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome—A Comprehensive Review. Nutrients 2023, 15, 3244. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Calabresi, L.; Arnoldi, A. Lupin Protein Exerts Cholesterol-Lowering Effects Targeting PCSK9: From Clinical Evidences to Elucidation of the in Vitro Molecular Mechanism Using HepG2 Cells. J. Funct. Foods 2016, 23, 230–240. [Google Scholar] [CrossRef]
- Ferri, N. Proprotein Convertase Subtilisin/Kexin Type 9: From the Discovery to the Development of New Therapies for Cardiovascular Diseases. Scientifica 2012, 2012, 927352. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Naser, A.-A.; Hashem, H.A.; Farag, R.S. A Review on Healthier Dietary Fats for Lower Calories in Take and Body Weight Control. Asian J. Appl. Chem. Res. 2021, 8, 20–29. [Google Scholar]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between Drugs and the Gut Microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ji, W.; Dong, L.; Nan, X.; Wang, M.; Sun, W.; Wang, S.; Zhou, Q. Regulatory Effects of Pea Oligopeptides on ACE Activity and Intestinal Flora in Diet-Induced Hypertensive Rats. Food Sci. 2021, 42, 143–150. [Google Scholar]
- Schutkowski, A.; König, B.; Kluge, H.; Hirche, F.; Henze, A.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C.; Gabel, A.; Große, I. Metabolic Footprint and Intestinal Microbial Changes in Response to Dietary Proteins in a Pig Model. J. Nutr. Biochem. 2019, 67, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-S.; Teng, C.-Y.; Hsieh, K.-F.; Chiou, Y.-S.; Wu, J.-C.; Lu, T.-J.; Pan, M.-H. Adzuki Bean Water Extract Attenuates Obesity by Modulating M2/M1 Macrophage Polarization and Gut Microbiota Composition. Mol. Nutr. Food Res. 2019, 63, 1900626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Fu, Y.; Zhang, F.; Wang, C.; Yang, X.; Bai, S.; Xue, Y.; Shen, Q. Heat-treated Adzuki Bean Protein Hydrolysates Reduce Obesity in Mice Fed a High-fat Diet via Remodeling Gut Microbiota and Improving Metabolic Function. Mol. Nutr. Food Res. 2022, 66, 2100907. [Google Scholar] [CrossRef] [PubMed]
- Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of Glucose and Lipid Metabolism via Mung Bean Protein Consumption: Clinical Trials of GLUCODIATM Isolated Mung Bean Protein in the USA and Canada. J. Nutr. Sci. 2018, 7, e2. [Google Scholar] [CrossRef]
- Bel Lassen, P.; Belda, E.; Prifti, E.; Dao, M.C.; Specque, F.; Henegar, C.; Rinaldi, L.; Wang, X.; Kennedy, S.P.; Zucker, J.-D. Protein Supplementation during an Energy-Restricted Diet Induces Visceral Fat Loss and Gut Microbiota Amino Acid Metabolism Activation: A Randomized Trial. Sci. Rep. 2021, 11, 15620. [Google Scholar] [CrossRef]
- Gamis, M.C.; Uy, L.Y.; Laurena, A.; Hurtada, W.; Torio, M.A. Protein Engineering of Mung Bean (Vigna radiata (L.) Wilczek) 8Sα Globulin with Lactostatin. Appl. Sci. 2020, 10, 8787. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Torio, M.A.O.; Lacsamana, M.S.; Diaz, M.G.Q.; Angelia, M.R.N.; Sucgang, A.T.; Uy, L.Y.C. Introduction of the Hypocholesterolemic Peptide, LPYPR, to the Major Storage Protein of Mung Bean [Vigna radiata (L.) Wilczek] through Site-Directed Mutagenesis. Int. Food Res. J. 2021, 28, 527–537. [Google Scholar] [CrossRef]
Health Benefits | Sources of Pulse Proteins | Protease/Processing Methods | Products/Peptides Sequence | Testing Methods | Key Findings | References |
---|---|---|---|---|---|---|
Anti-hypertension | Lupin | Alcalase and flavourzyme | Protein hydrolysates | ACE inhibition | IC50: 3.140–3.317 mg/mL | [21] |
Alcalase and flavourzyme | Protein hydrolysates | ACE inhibition | IC50: 0.10–0.21 mg/mL | [22] | ||
Mung bean | Alcalase, neutrase, papain and protamex | Protein hydrolysates | ACE inhibition | IC50: 4.66–10.27 μg/mL | [23] | |
Bromelain | Protein hydrolysates, LPRL, YADLVE, LRLESF, HLNVVHEN and PGSGCAGTDL | ACE and renin inhibition | IC50: 0.004–0.95 mg/mL (ACE); 0.95–1.29 mg/mL (Renin). | [24] | ||
Rhizopus sp. fermentation | Protein extract | ACE inhibition | Inhibition activity: 68.85–75.00%. | [25] | ||
Pea | Thermoase and pepsin | AKSLSDRFSY, LSDRFS, SDRFSY | Regulation of ACE2 expression in vascular smooth muscle cells | Upregulation of ACE2 expression activity. | [26] | |
Commercial pea protein hydrolysates | Commercial pea protein hydrolysates with major peptides identified | ACE inhibition | IC50: 0.43–0.61 mg/mL | [27] | ||
Pigeon pea | Pepsin, trypsin and chymotrypsin | Protein hydrolysates (MW< 3 kDa) | ACE inhibition | IC50: 11.76 μg/mL | [28] | |
Pepsin and pancreatin | Pigeon pea peptides | ACE inhibition | Inhibition activity: 53.04% (hydrolysed boiled pigeon pea); 71.53% (hydrolysed pigeon pea tempe) | [29] | ||
Thermoase | Protein hydrolysates | Inhibition of ACE and renin | Inhibition activity: 55.2–78.6% (ACE); 18.6–27.0% (Renin). | [30] | ||
Chickpea | Alcalase | Chickpea protein concentrate hydrolysates | ACE inhibition | IC50: 22.43–47.48 mg/mL | [31] | |
Anti-hyperglycemia | Lupin | Pepsin and pancreatin | γ-conglutin peptides | DPP-IV inhibition; Caco-2 cells, HepG2 cells and 3T3-L1 cells | Inhibition activity: 100%; Improving insulin receptor sensitivity and inhibiting hepatic gluconeogenesis. | [32] |
Pepsin and pancreatin | γ-conglutin peptides | Inhibition of DPP-IV and α-glucosidase, pancreatic β-cells, myoblasts and primary human skeletal muscle myotubes (HSMM) | DPP-IV inhibition activity but not α-glucosidase inhibition activity; No insulinotropic action in pancreatic β-cells. Possessing strong insulin-mimetic actions. | [33] | ||
Alcalase and flavourzyme | Protein hydrolysates | Inhibition of α-amylase and α-glucosidase | IC50: 1.416–3.153 mg/mL (α-amylase); 1.65–2.08 mg/mL (α-glucosidase). | [21] | ||
Alcalase and flavourzyme | Protein hydrolysates, SPRRF, FE, RR, RPR, PPGIP and LRP | Inhibition of α-amylase and α-glucosidase | IC50:1.66–4.87 mg/mL (α-amylase); 1.65–4.51 mg/mL (α-glucosidase). | [34] | ||
Pea | Alcalase, pepsin, trypsin and chymotrypsin | Protein-derived peptides | Inhibition of α-amylase and α-glucosidase | Inhibition activity: 31.00% (α-amylase); 53.35% (α-glucosidase). | [35] | |
Commercial pea protein hydrolysates | Commercial pea protein hydrolysates with major peptides identified | DPP-IV inhibition | IC50: 1.00–1.33 mg/mL | [27] | ||
— | Protein-derived peptides | AML-12 Cells | Inhibiting glucagon-stimulated hepatic glucose production; Regulating both gluconeogenic and insulin signaling pathways; Inhibiting HGP dependent on the gluconeogenic signaling but not the insulin signaling. | [36] | ||
Pigeon pea | Thermoase | Protein hydrolysates | Inhibition of α-amylase and α-glucosidase | Inhibition activity: 10.0–27.1% (α-amylase); 20.0–40% (α-glucosidase). | [30] | |
Chickpea | Subtilisin and trypsin | Protein hydrolysates | α-glucosidase inhibition | IC50: 0.52 mg/mL | [37] | |
The enzyme–bacteria synergy method | Protein hydrolysates | α-glucosidase inhibition | Inhibition activity: 32.5–58.22% | [38] | ||
Cowpea | Pepsin and trypsin | Protein hydrolysates | α-amylase inhibition | IC50: 0.127–0.223 mg/mL | [39] | |
Anti-dyslipidemia | Lupin | Pepsin | YDFYPSSTKDQQS | HMG-CoAR Inhibition, HepG2 cells | Inhibition activity: 11.7–87.4%; Activating SREBP-1. | [40] |
Peptide Synthesis | GQEQSHQDEGVIVR | PCSK9−LDLR binding assay, HepG2 cells | Impairing the protein-protein interaction between PCSK9D374Y and LDLR. | [41] | ||
Peptide Synthesis | LILPHKSDAD | PCSK9−LDLR binding assay, HepG2 cells | Ameliorating the HepG2 ability to uptake LDL; Increasing the LDLR protein level on the cell surface. | [42] | ||
Trypsin | GQEQSHQDEGVIVR | HMG-CoAR inhibition, HepG2 cells, Caco-2 cells | IC50: 99.5 μM; Cholesterol reduction by regulation of PCSK9D374Y or LDL-R pathways. | [43] | ||
Peptide Synthesis | LYLPKHSDRD | PCSK9-LDLR binding assay, HepG2 cells | IC50: 88.9 μM (HMG-CoAR); 0.7 μM (PCSK9). | [44] | ||
Mung bean | Thermosonication pre-treatment, pepsin and pancreatin | Protein hydrolysates | Inhibition of cholesterol micellar solubility and HMG-CoAR | Thermosonication pre-treatment can improve the inhibition of cholesterol micellar solubility. | [45] | |
Pigeon pea | Pepsin and pancreatin | Protein peptides | Inhibition of cholesterol micellar solubility and HMG-CoAR | Inhibition activity: 41–77% (cholesterol micellar solubility); 11–36% (HMG-CoAR). | [46] | |
Chickpea | Alcalase | VFVRN | Inhibition of cholesterol micellar solubility and HMG-CoAR; HepG2 cells | Inhibition activity: 30.24–66.67% (cholesterol micellar solubility); 22.90–64.30% (HMG-CoAR); Decreasing the expressions of SREBP-1c, SREBP-2 and LXR α. | [19] | |
Cowpea | Pepsin and pancreatin | Protein hydrolysates (<3 kDa), QDF | HMG-CoAR inhibition | Inhibition activity: 85.8–95.0% | [47] | |
Pepsin and pancreatin | IAF, QGF, QDF | HMG-CoAR inhibition | Inhibition activity: 69–78% | [48] | ||
Faba bean | Thermal processing, pepsin and pancreatin | Protein hydrolysates | Inhibition of cholesterol micellar solubility and HMG-CoAR | Thermal processing can improve the inhibition of cholesterol micellar solubility. | [49] | |
Anti-obesity | Pea | Pepsin and a pancreatin-bile salts mixture | Vicilin hydrolysates | 3T3-L1 cells | Modulating the mRNA expression levels of markers of differentiation and glucose uptake and metabolism in 3T3-L1 adipocytes; Up-regulating the expression levels of PPARγ and exhibiting PPARγ ligand activity. | [50] |
Isolated from pea seeds | Albumin | 3T3-L1 cells | Inhibition of lipid accumulation in 3T3-L1 cells. | [51] |
Health Benefits | Sources of Pulse Proteins | Samples/Peptides Sequence | Experiment Models | Doses and Duration | Key Findings | References |
---|---|---|---|---|---|---|
Anti- hypertension | Mung bean | LPRL, YADLVE, LRLESF, LRLESF, LRLESF | Male SHRs | 20 mg/kg BW for one oral administration | ↓ SBP: 36 mmHg (positive control 15 mmHg), 27 mmHg after 24 h | [24] |
Pigeon pea | Protein hydrolysates | Male SHRs | 100 mg/kg BW for one oral administration | ↓ SBP: 34.6 mmHg after 6 h, 32.12 mmHg after 24 h | [52] | |
Chickpea | Protein hydrolysates | Male SHRs | 1.2 g/kg BW for one oral administration | ↓ SBP: 29.9~61.9 mmHg after 3~5 h | [53] | |
Anti- hyperglycemia | Lupin | Lupanine | T2D was induced in a rat blood glucose model | 28 mg/kg BW γ-conglutin + 20 mg/kg BW lupanine for 7 days | ↓ Glu: Cγ+ Lupanine was similar to the Metformin + Glibenclamide ↓ BW | [54] |
Protein isolate | HFD-induced insulin resistance rats | 2 g/kg BW for 3 weeks | ↓ Glu: 33% (pre- vs. post-treatment) ↓ AUC | [55] | ||
Mung bean | Peptides | HFD-induced prediabetes C57BL/6 mice | 245 mg/kg for 5 weeks | ↓ Glu: (positive control) ↓ INS | [20] | |
Pea | Oligopeptide | STZ-induced diabetic mice | 3200 mg/kg BW for 4 weeks | ↓ INS: 65.07% ↑ OGTT ↓ INS | [56] | |
Glycoprotein | STZ-induced diabetic mice | 400 mg/kg for 6 weeks | ↓ Glu: 6 mmol/L (positive control: 1 mmol/L) ↑ Gene: the expression of insulin receptor substrates IRS-1 and IRS-2 | [57] | ||
Anti- dyslipidemia | Lupin | Protein hydrolysates | Western diet-fed ApoE−/− mice | 100 mg/kg for 12 weeks | ↓ TC, LDL-C, TG ↓ mRNA: expression of CXCL1, P-selectin, CD-36, iNOS | [58] |
Protein hydrolysates | Western diet-fed ApoE−/− mice | 100 mg/kg for 12 weeks | ↓ Protein levels: HMG-CoAR 92.0 ± 2.6% vs. positive control ↓ SREBP2 | [59] | ||
Protein | Acute hyperlipidemia was induced by injection in male albino rats | A binary mixture of α-CD and LPs at the ratio 1:1 (400 mg/kg and 800 mg/kg) for 3 days | ↓ TC, TG, LDL-C | [60] | ||
Pigeon pea | Protein hydrolysates | HFD-induced rats | 300 µM/kg for 2 weeks | ↓ TG, TC, LDLR | [61] | |
Chickpea | RQSHFANAQP | HFD-induced hyperlipidemic mice | 40 mg/kg/day for 4 weeks | ↓ TG, TC | [62] | |
Peptides | HFD-induced obese rats | 200 mg/kg BW for 6 weeks | ↓ TC, TG, LDL-C | [19] | ||
Cowpea | Protein isolate | HFD-induced Sprague–Dawley rats | 5% (w/w) cowpea protein isolate for 6 weeks | ↓ TC | [63] | |
Pea | Protein hydrolysates | GM-induced Wistar rats | 200 mg/kg/day for 28 days | ↓ TC, TG | [64] | |
Lentil | Protein hydrolysates | Male obese (fa/fa) (O) and lean heterozygous (fa/+) (L) Zucker rats | 1 g/kg BW for 8 weeks | ↓ Glu, LDL, TC, TG | [65] | |
Anti- obesity | Mung bean | Protein | HFD-induced male C57BL/6 mice | Specific mung bean protein isolate-containing diets (25%) for 4 weeks | ↓ BW, TG ↓ cytoplasmic vacuolation | [66] |
Chickpea | Protein hydrolysates | Metabolic dysfunction C57BL/6J mice | 800 mg /kg BW for 16 weeks | ↓ BW ↑ Gene: Acsl4, Adipor2 | [67] | |
Pea | Albumin | HFD-induced male C57BL/6 mice | 1.50 g/kg BW for 8 weeks | ↓ BW, TG, adipocyte hypertrophy, percentage of fat mass ↓ Protein abundance: FASN, C/EBPα pIRS1(Ser302) and p-IRS1(Ser302) | [51] | |
Protein | High-caloric diet-induced obese Sprague–Dawley rats | Specific diet supplemented with the pea protein isolate (25%) for 4 weeks | ↓ TC, LDL, TG | [68] |
Health Benefits | Sources of Pulse Proteins | Samples | Experiment Models | Doses and Duration | Key Findings | References |
---|---|---|---|---|---|---|
Anti-hypertension | Pea | Oligopeptide | Diet-induced hypertension rats | 50 mg/mL each for 3 weeks | ↓: F/B ratio ↑: Lactobacillaceae | [86] |
Anti-hyperglycemia | Mung bean | Peptides | HFD-induced male C57BL/6 mice | 245 mg/kg BW for 5 weeks | ↓: Firmicutes and Bacteroidetes. | [20] |
Anti-dyslipidemia | Lupin | Protein | Female crossbred pigs ((German Landrace × Large White) × Pietrain) | 130–150 g/kg diet for 4 weeks | ↑: Bacteroidetes and Firmicutes phyla. | [87] |
Anti-obesity | Mung bean | Protein | HFD-induced male C57BL/6 mice | Specific mung bean protein isolate-containing diets (25%) for 4 weeks | ↑: Bacteroidetes ↓: Firmicutes | [66] |
Pea | Albumin | HFD-induced male C57BL/6 mice | 1.50 g/kg BW for 8 weeks | ↓: F/B ratio ↑: Akkermansia and Parabacteroides. | [51] | |
Protein | HFD-induced hamsters | HFD + pea protein at 20 g/100 g diet for 30 days | ↑: Muribaculaceae and Ruminococcaceae. ↓: Erysipelotrichaceae and Eubacteriaceae. | [68] | ||
Adzuki bean | Protein hydrolysates | HFD-induced male C57BL/6 mice | 100 mg/kg BW for 12 weeks | ↑: Lactobacillus and SCFA-producing bacteria. ↓: Clostridium_sensu_stricto_1, Romboutsia, Blautia, Mucispirillum, Bilophila and Peptococcus. | [88] | |
Protein hydrolysates | HFD-induced male C57BL/6 mice | 6% heat-treated adzuki bean protein hydrolysates for 12 weeks | ↑: Lactobacillaceae, Eisenbergiella, Alistipes, Parabacteroides, Tannerellaceae, Eubacterium_nodatum_group, Acetatifactor, Rikenellaceae and Odoribacter. ↓: Clostridium_sensu_stricto_1, Romboutsia, Blautia, Mucispirillum, Bilophila and Peptococcus. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.; Fan, L.; Wu, J.; Yang, J.; Hou, D.; Yao, Y.; Zhou, S. Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients 2024, 16, 1845. https://doi.org/10.3390/nu16121845
Hong L, Fan L, Wu J, Yang J, Hou D, Yao Y, Zhou S. Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients. 2024; 16(12):1845. https://doi.org/10.3390/nu16121845
Chicago/Turabian StyleHong, Lingyu, Linlin Fan, Junchao Wu, Jiaqi Yang, Dianzhi Hou, Yang Yao, and Sumei Zhou. 2024. "Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome" Nutrients 16, no. 12: 1845. https://doi.org/10.3390/nu16121845
APA StyleHong, L., Fan, L., Wu, J., Yang, J., Hou, D., Yao, Y., & Zhou, S. (2024). Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients, 16(12), 1845. https://doi.org/10.3390/nu16121845