Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Fasting Program
2.3. Ketonemia and Ketonuria
2.4. Clinical Data
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, H.; de Toledo, F.W.; Resch, K.L. Fasting followed by vegetarian diet in patients with rheumatoid arthritis: A systematic review. Scand. J. Rheumatol. 2001, 30, 1–10. [Google Scholar] [PubMed]
- de Toledo, F.W.; Grundler, F.; Sirtori, C.R.; Ruscica, M. Unravelling the health effects of fasting: A long road from obesity treatment to healthy life span increase and improved cognition. Ann. Med. 2020, 52, 147–161. [Google Scholar] [CrossRef] [PubMed]
- de Toledo, F.W.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 2019, 14, e0209353. [Google Scholar] [CrossRef] [PubMed]
- Furmli, S.; Elmasry, R.; Ramos, M.; Fung, J. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen-Kragh, J.; Borchgrevink, C.; Laerum, E.; Haugen, M.; Eek, M.; Førre, O.; Mowinkel, P.; Hovi, K. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet 1991, 338, 899–902. [Google Scholar] [CrossRef]
- Grundler, F.; Mesnage, R.; Goutzourelas, N.; Tekos, F.; Makri, S.; Brack, M.; Kouretas, D.; de Toledo, F.W. Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem. Toxicol. 2020, 145, 111701. [Google Scholar] [CrossRef]
- Ducarmon, Q.R.; Grundler, F.; Le Maho, Y.; de Toledo, F.W.; Zeller, G.; Habold, C.; Mesnage, R. Remodelling of the intestinal ecosystem during caloric restriction and fasting. Trends Microbiol. 2023, 31, 832–844. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Adams, G.B.; Perin, L.; Wei, M.; Zhou, X.; Lam, B.S.; Da Sacco, S.; Mirisola, M.; Quinn, D.I.; Dorff, T.B.; et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014, 14, 810–823. [Google Scholar] [CrossRef]
- Williams, P.A.; Naughton, K.E.; Simon, L.A.; Soto, G.E.; Parham, L.R.; Ma, X.; Danan, C.H.; Hu, W.; Friedman, E.S.; McMillan, E.A.; et al. Intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. Am. J. Physiol. Liver Physiol. 2023, 324, G354–G368. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.; Leech, A. Functional Biochemistry in Health and Disease; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, J.; Li, Z.; Zhang, Y.; Zhang, X.; Zhang, S.; Liu, Z.; Yuan, H.; Pang, X.; Liu, Y.; Tao, W.; et al. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci. 2022, 12, 94. [Google Scholar] [CrossRef]
- De Cabo, R.; Mattson, M.P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, P.; Xiao, W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021, 13, 3420. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.-H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.-D.; et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef] [PubMed]
- Gormsen, L.C.; Svart, M.; Thomsen, H.H.; Søndergaard, E.; Vendelbo, M.H.; Christensen, N.; Tolbod, L.P.; Harms, H.J.; Nielsen, R.; Wiggers, H.; et al. Ketone Body Infusion With 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study. J. Am. Hear. Assoc. 2017, 6, e005066. [Google Scholar] [CrossRef] [PubMed]
- Marosi, K.; Kim, S.W.; Moehl, K.; Scheibye-Knudsen, M.; Cheng, A.; Cutler, R.; Camandola, S.; Mattson, M.P. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J. Neurochem. 2016, 139, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, P.M.; Deng, L.; Hooiveld, G.J.; Hangelbroek, R.W.; Zeigerer, A.; Kersten, S. RNA sequencing reveals niche gene expression effects of beta-hydroxybutyrate in primary myotubes. Life Sci. Alliance 2021, 4, e202101037. [Google Scholar] [CrossRef]
- Dhatariya, K.K.; Glaser, N.S.; Codner, E.; Umpierrez, G.E. Diabetic ketoacidosis. Nat. Rev. Dis. Primers 2020, 6, 40. [Google Scholar] [CrossRef]
- Puttanna, A.; Padinjakara, R. Diabetic ketoacidosis in type 2 diabetes mellitus. Pr. Diabetes 2014, 31, 155–158. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Starvation Ketosis and the Kidney. Am. J. Nephrol. 2021, 52, 467–478. [Google Scholar] [CrossRef]
- Balasse, E.; Neef, M. Inhibition of ketogenesis by ketone bodies in fasting humans. Metabolism 1975, 24, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef] [PubMed]
- Thaele-Franz, M.-A.; Steckhan, N.; Michalsen, A.; Stange, R. Ketosis in patients undergoing medically supervised therapeutic fasting—Results from an observational trial. Eur. J. Clin. Nutr. 2020, 74 (Suppl. S1), 43–47. [Google Scholar] [CrossRef] [PubMed]
- Grundler, F.; Viallon, M.; Mesnage, R.; Ruscica, M.; von Schacky, C.; Madeo, F.; Hofer, S.J.; Mitchell, S.J.; Croisille, P.; de Toledo, F.W. Long-term fasting: Multi-system adaptations in humans (GENESIS) study–A single-arm interventional trial. Front. Nutr. 2022, 9, 951000. [Google Scholar] [CrossRef] [PubMed]
- de Toledo, F.W.; Buchinger, A.; Burggrabe, H.; Hölz, G.; Kuhn, C.; Lischka, E.; Lischka, N.; Lützner, H.; May, W.; Ritzmann-Widderich, M.; et al. Fasting Therapy–an Expert Panel Update of the 2002 Consensus Guidelines. Complement. Med. Res. 2013, 20, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Comstock, J.P.; Garber, A.J. Ketonuria, 3rd ed.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Chertack, M.M.; Sherrick, J.C. Evaluation of a Nitroprusside Dip Test for Ketone Bodies. J. Am. Med. Assoc. 1958, 167, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 Well-Being Index: A systematic review of the literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Sapir, D.; Owen, O. Renal conservation of ketone bodies during starvation. Metabolism 1975, 24, 23–33. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Deru, L.S.; Bikman, B.T.; Davidson, L.E.; Tucker, L.A.; Fellingham, G.; Bartholomew, C.L.; Yuan, H.L.; Bailey, B.W. The Effects of Exercise on beta-Hydroxybutyrate Concentrations over a 36-h Fast: A Randomized Crossover Study. Med. Sci. Sports Exerc. 2021, 53, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Cyranka, M.; Clarke, K.; de Wet, H. A Ketone Ester Drink Lowers Human Ghrelin and Appetite. Obesity 2017, 26, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Jeitler, M.; Lauche, R.; Hohmann, C.; Choi, K.-E.; Schneider, N.; Steckhan, N.; Rathjens, F.; Anheyer, D.; Paul, A.; von Scheidt, C.; et al. A Randomized Controlled Trial of Fasting and Lifestyle Modification in Patients with Metabolic Syndrome: Effects on Patient-Reported Outcomes. Nutrients 2022, 14, 3559. [Google Scholar] [CrossRef] [PubMed]
- Cramer, H.; Lauche, R.; Moebus, S.; Michalsen, A.; Langhorst, J.; Dobos, G.; Paul, A. Predictors of Health Behavior Change After an Integrative Medicine Inpatient Program. Int. J. Behav. Med. 2014, 21, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Fery, F.; Balasse, E.O. Ketone body production and disposal in diabetic ketosis. A comparison with fasting ketosis. Diabetes 1985, 34, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Vining, E.P.G.; Freeman, J.M.; Ballaban-Gil, K.; Camfield, C.S.; Camfield, P.R.; Holmes, G.L.; Shinnar, S.; Shuman, R.; Trevathan, E.; Wheless, J.W. A Multicenter Study of the Efficacy of the Ketogenic Diet. Arch. Neurol. 1998, 55, 1433–1437. [Google Scholar] [CrossRef] [PubMed]
- Finucane, F.M.; Rafey, M.F.; Leahy, M.; O’Shea, P.; O’Brien, T.; O’Donnell, M. Weight loss is proportional to increases in fasting serum beta-hydroxybutyrate concentrations in adults with severe obesity undergoing a meal replacement programme. Hum. Nutr. Metab. 2023, 32, 200192. [Google Scholar] [CrossRef]
- Sapir, D.G.; Owen, O.E.; Cheng, J.T.; Ginsberg, R.; Boden, G.; Walker, W.G. The effect of carbohydrates on ammonium and ketoacid excretion during starvation. J. Clin. Investig. 1972, 51, 2093–2102. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H.; et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Goldfinger, S.; Klinenberg, J.R.; Seegmiller, J.E.; Miller, J.; Bradley, K. Renal Retention of Uric Acid Induced by Infusion of Beta-Hydroxybutyrate and Acetoacetate. N. Engl. J. Med. 1965, 272, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [PubMed]
- Veskoukis, A.S.; Nikolaidis, M.G.; Kyparos, A.; Kokkinos, D.; Nepka, C.; Barbanis, S.; Kouretas, D. Effects of xanthine oxidase inhibition on oxidative stress and swimming performance in rats. Appl. Physiol. Nutr. Metab. 2008, 33, 1140–1154. [Google Scholar] [CrossRef] [PubMed]
- Joo, N.-S.; Lee, D.-J.; Kim, K.-M.; Kim, B.-T.; Kim, C.-W.; Kim, K.-N.; Kim, S.-M. Ketonuria after Fasting may be Related to the Metabolic Superiority. J. Korean Med. Sci. 2010, 25, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
Intensity | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
negative | 62% | 24% | 10% | 5% | 4% | 4% | 3% | 3% | 4% | 5% |
traces | 26% | 30% | 21% | 15% | 12% | 10% | 11% | 11% | 9% | 11% |
small | 6% | 22% | 25% | 23% | 20% | 19% | 18% | 17% | 19% | 18% |
moderate | 4% | 16% | 26% | 29% | 32% | 30% | 27% | 30% | 28% | 29% |
large | 1% | 8% | 17% | 27% | 32% | 37% | 40% | 38% | 39% | 37% |
Intensity | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 |
negative | 5% | 5% | 4% | 2% | 3% | 5% | 2% | 4% | 2% | 0% |
traces | 11% | 13% | 10% | 13% | 14% | 11% | 15% | 11% | 13% | 8% |
small | 17% | 14% | 18% | 20% | 18% | 22% | 17% | 26% | 25% | 28% |
moderate | 24% | 30% | 28% | 30% | 28% | 28% | 26% | 28% | 27% | 28% |
large | 42% | 38% | 40% | 35% | 36% | 34% | 40% | 32% | 33% | 36% |
Amount | Fat (g) | Protein (G) | Carbo-Hydrate (G) | Fibres (g) | Calories (kcal) | |
---|---|---|---|---|---|---|
juice | 250 mL | 0.1 | 0.8 | 32.5 | 0.3 | 133.5 |
broth | 250 mL | 0.1 | 1.0 | 7.8 | 1.0 | 36 |
honey | 20 g | - | - | 16.2 | - | 64.8 |
total | 0.1 | 1.8 | 56.5 | 1.3 | 234.4 |
Parameter | Low Ketonuria | High Ketonuria | p-Value |
---|---|---|---|
waist circumference decrease (cm) | −4.98 ± 0.19 | −5.76 ± 0.20 | 5.6 × 10−3 |
weight decrease (kg) | −3.77 ± 0.06 | −4.44 ± 0.07 | 2.6 × 10−12 |
systolic blood pressure decrease (mmHg) | −8.09 ± 0.658 | −6.43 ± 0.711 | 9.3 × 10−2 |
diastolic blood pressure decrease (mmHg) | −4.26 ± 0.41 | −3.68 ± 0.44 | 3.4 × 10−1 |
HDL decrease (mmol/L) | −0.235 ± 0.01 | −0.203 ± 0.01 | 5.9 × 10−2 |
LDL decrease (mmol/L) | −0.289 ± 0.033 | −0.363 ± 0.035 | 1.3 × 10−1 |
triglyceride decrease (mmol/L) | −0.437 ± 0.03 | −0.391 ± 0.03 | 3.4 × 10−1 |
total cholesterol decrease (mmol/L) | −0.631 ± 0.03 | −0.663 ± 0.03 | 5.0 × 10−1 |
uric acid increase (μmol/L) | +100 ± 4.52 | +200 ± 4.88 | 1.1 × 10−44 |
urea decrease (mmol/L) | −1.74 ± 0.05 | −1.29 ± 0.06 | 1.6 × 10−8 |
glucose decrease (mmol/L) | −0.539 ± 0.06 | −0.970 ±0.06 | 1.1 × 10−6 |
hba1c (mmol/mol) | −0.112 ± 0.01 | −0.160 ± 0.01 | 1.7 × 10−3 |
well-being index (WHO-5) increase | +17.8 ± 0.979 | +20.3 ± 1.024 | 7.7 × 10−2 |
emotional well-being increase | +1.60 ± 0.09 | +1.77 ± 0.10 | 1.9 × 10−1 |
physical well-being increase | +1.80 ± 0.10 | +2.02 ± 0.10 | 1.2 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grundler, F.; Mesnage, R.; Ruppert, P.M.M.; Kouretas, D.; Wilhelmi de Toledo, F. Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety. Nutrients 2024, 16, 1849. https://doi.org/10.3390/nu16121849
Grundler F, Mesnage R, Ruppert PMM, Kouretas D, Wilhelmi de Toledo F. Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety. Nutrients. 2024; 16(12):1849. https://doi.org/10.3390/nu16121849
Chicago/Turabian StyleGrundler, Franziska, Robin Mesnage, Philip M. M. Ruppert, Demetrios Kouretas, and Françoise Wilhelmi de Toledo. 2024. "Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety" Nutrients 16, no. 12: 1849. https://doi.org/10.3390/nu16121849
APA StyleGrundler, F., Mesnage, R., Ruppert, P. M. M., Kouretas, D., & Wilhelmi de Toledo, F. (2024). Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety. Nutrients, 16(12), 1849. https://doi.org/10.3390/nu16121849