Combined Exercise and Diet Induce Airway Hyperreactivity While Reducing Liver Steatosis in Mice with Diet-Induced Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
2.3. Lung Function Assessment
2.4. Blood Sampling
2.5. Broncho-Alveolar Lavage (BAL)
2.6. Single Cell Suspension
2.7. Surfactant Protein D Analysis
2.8. DNA Methylation Assay
2.9. Cytokine Analysis
2.10. Liver Histological Evaluation
2.11. Lung Histological Evaluation
2.12. Tight Junction mRNA Expression by qPCR
2.13. Data Analysis
3. Results
3.1. Body Weight Evolution
3.2. Lung Function
3.2.1. Baseline Lung Function
3.2.2. Airway Hyperreactivity
3.2.3. Lung Inflammatory Response
3.2.4. Airway Permeability and Integrity
3.2.5. Metabolic Response and Global DNA Methylation
3.2.6. Histology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Animals
- 2.
- Dendritic cell subpopulations
Appendix B
Marker | Detection Limit (pg/mL) | Measured In |
---|---|---|
IFN-γ | 0.206 | BAL supernatant |
IL-13 | 6.26 | BAL supernatant |
IL-17A | 0.0785 | BAL supernatant |
IL4 | 0.289 | BAL supernatant |
IL-5 | 0.225 | BAL supernatant |
IL-6 | 3.53 | BAL supernatant |
IL-33 | 0.184 | BAL supernatant |
IL-17F | 32.6 | BAL supernatant |
KC | 0.152 | BAL supernatant |
TNF-α | 0.280 | BAL supernatant |
IL-1β | 0.494 | Plasma |
IL-6 | 11.8 | Plasma |
IL-17A | 0.634 | Plasma |
IL-17F | 1.17 | Plasma |
TNF-α | 1.28 | Plasma |
Ghrelin | 23.9 | Plasma |
Glucagon | 0.120 | Plasma |
Insulin | 14.9 | Plasma |
Leptin | 28.0 | Plasma |
PYY | 4.42 | Plasma |
Exercise Effect | Diet Effect | Combined Effect | |
---|---|---|---|
Lung function | |||
Inspiratory capacity | ↑ | - | - |
Tissue elasticity | - | - | ↓ |
Airway hyperreactivity | - | - | ↑ |
Small airway resistance | - | ↓ | - |
Airway inflammatory response | |||
BAL neutrophils | - | - | ↑ |
Inflammatory cytokines | - | - | ↑ |
Airway permeability and integrity | |||
Tight junction expression | - | - | - |
SpD ratio | - | - | - |
Metabolic response | |||
Leptin | - | ↓ | ↓ |
PYY | ↓ | ↓ | ↓ |
Liver function | |||
Micro-vesicular steatosis | ↓ | ↓ | ↓ |
Macro-vesicular steatosis | ↓ | ↓ | ↓ |
References
- Rocha-Rodrigues, S.; Rodríguez, A. Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life Sci. 2016, 165, 100–108. [Google Scholar] [CrossRef]
- Akinbami, L.J.; Fryar, C.D. Current Asthma Prevalence by Weight Status Among Adults: United States, 2001–2014. NCHS Data Brief 2016, 239, 1–8. [Google Scholar]
- Flaherman, V.; Rutherford, G.W. A meta-analysis of the effect of high weight on asthma. Arch. Dis. Child. 2006, 91, 334–339. [Google Scholar] [CrossRef]
- Gold, D.R.; Damokosh, A.I. Body-mass index as a predictor of incident asthma in a prospective cohort of children. Pediatr. Pulmonol. 2003, 36, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Marko, M.; Pawliczak, R. Obesity and asthma: Risk, control and treatment. Postep. Dermatol. Alergol. 2018, 35, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Junior, J.C.J.; MacKenzie, B.A. Aerobic exercise inhibits obesity-induced respiratory phenotype. Cytokine 2018, 104, 46–52. [Google Scholar] [CrossRef] [PubMed]
- DeJesus, R.S.; Croghan, I.T. Incidence of Obesity at 1 and 3 Years Among Community Dwelling Adults: A Population-Based Study. J. Prim. Care Community Health 2022, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation on Obesity; World Health Organization. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Fock, K.M.; Khoo, J. Diet and exercise in management of obesity and overweight. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. 4), 59–63. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, J.K. A mouse model of diet-induced obesity and insulin resistance. Methods Mol. Biol. 2012, 821, 421–433. [Google Scholar] [CrossRef]
- Were, A.; Kahraman, A. Obesity affects the liver—The link between adipocytes and hepatocytes. Digestion 2011, 83, 124–133. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.Y. Resistance Exercise Regulates Hepatic Lipolytic Factors as Effective as Aerobic Exercise in Obese Mice. Int. J. Environ. Res. Public Health 2020, 17, 8307. [Google Scholar] [CrossRef]
- Peters, U.; Dixon, A.E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef]
- Taylor, B.; Mannino, D. Body mass index and asthma severity in the National Asthma Survey. Thorax 2008, 63, 14–20. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, W. Impaired lung function is associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in middle-aged and elderly Chinese. BMC Endocr. Disord. 2017, 17, 18. [Google Scholar] [CrossRef]
- Dixon, A.E.; Shade, D.M. Effect of obesity on clinical presentation and response to treatment in asthma. J. Asthma 2006, 43, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Brannan, J.D.; Lougheed, M.D. Airway hyperresponsiveness in asthma: Mechanisms, clinical significance, and treatment. Front. Physiol. 2012, 3, 460. [Google Scholar] [CrossRef]
- Jung, S.H.; Kwon, J.M. Effects of diet-induced mild obesity on airway hyperreactivity and lung inflammation in mice. Yonsei Med. J. 2013, 54, 1430–1437. [Google Scholar] [CrossRef]
- Fricke, K.; Vieira, M. High fat diet induces airway hyperresponsiveness in mice. Sci. Rep. 2018, 8, 6404. [Google Scholar] [CrossRef]
- Kim, J.Y.; Sohn, J.H. Obesity increases airway hyperresponsiveness via the TNF-α pathway and treating obesity induces recovery. PLoS ONE 2015, 10, e0116540. [Google Scholar] [CrossRef]
- Decaesteker, T.; Vanhoffelen, E. Differential effects of intense exercise and pollution on the airways in a murine model. Part. Fibre Toxicol. 2021, 18, 12. [Google Scholar] [CrossRef]
- Devos, F.C.; Maaske, A. Forced expiration measurements in mouse models of obstructive and restrictive lung diseases. Respir. Res. 2017, 18, 123. [Google Scholar] [CrossRef]
- Gie, A.G.; Regin, Y. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L949–L956. [Google Scholar] [CrossRef]
- Tandra, S.; Yeh, M.M. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J. Hepatol. 2011, 55, 654–659. [Google Scholar] [CrossRef]
- Botello-Manilla, A.E.; López-Sánchez, G.N. Hepatic steatosis and respiratory diseases: A new panorama. Ann. Hepatol. 2021, 24, 100320. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.C.; Koceja, D.M. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 941–947. [Google Scholar] [CrossRef]
- Franz, M.J.; VanWormer, J.J. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Vangoitsenhoven, R.; van der Ende, M. At similar weight loss, dietary composition determines the degree of glycemic improvement in diet-induced obese C57BL/6 mice. PLoS ONE 2018, 13, e0200779. [Google Scholar] [CrossRef]
- Ito, M.; Suzuki, J. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol. Res. 2007, 37, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Asgharpour, A.; Cazanave, S.C. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 2016, 65, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Muench, G.A. Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 891–920. [Google Scholar] [CrossRef] [PubMed]
- Della Vedova, M.C.; Muñoz, M.D. A Mouse Model of Diet-Induced Obesity Resembling Most Features of Human Metabolic Syndrome. Nutr. Metab. Insights 2016, 9, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Marijsse, G.S.; Seys, S.F. Obese individuals with asthma preferentially have a high IL-5/IL-17A/IL-25 sputum inflammatory pattern. Am. J. Respir. Crit. Care Med. 2014, 189, 1284–1285. [Google Scholar] [CrossRef] [PubMed]
- Tzanavari, T.; Giannogonas, P. TNF-alpha and obesity. Curr. Dir. Autoimmun. 2010, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Brightling, C. TNF-alpha in asthma. Curr. Opin. Pharmacol. 2007, 7, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Kakino, S.; Ohki, T. Pivotal Role of TNF-α in the Development and Progression of Nonalcoholic Fatty Liver Disease in a Murine Model. Horm. Metab. Res. 2018, 50, 80–87. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y. IL-33 treatment attenuated diet-induced hepatic steatosis but aggravated hepatic fibrosis. Oncotarget 2016, 7, 33649–33661. [Google Scholar] [CrossRef]
- Freitas, P.D.; Ferreira, P.G. The Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2017, 195, 32–42. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.D.; O’Byrne, P.M. Surfactant Protein-D and Asthma. Chest 2016, 149, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Prokopchuk, O.; Liu, Y. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc. Immunol. Rev. 2007, 13, 67–75. [Google Scholar] [PubMed]
- Morianos, I.; Semitekolou, M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int. J. Mol. Sci. 2020, 21, 7930. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Johnson, B.D. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med. 2022, 20, 429. [Google Scholar] [CrossRef]
- Pandey, V.; Yadav, V. β-Endorphin (an endogenous opioid) inhibits inflammation, oxidative stress and apoptosis via Nrf-2 in asthmatic murine model. Sci. Rep. 2023, 13, 12414. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.H.; Jamurtas, A.Z. Beta-endorphin response to exercise. An update. Sports Med. 1997, 24, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Scavo, D.; Barletta, C. Effects of caloric restriction and exercise on B-endorphin, ACTH and cortisol circulating levels in obesity. Physiol. Behav. 1988, 42, 65–68. [Google Scholar] [CrossRef]
- Harrison, S.A.; Day, C.P. Benefits of lifestyle modification in NAFLD. Gut 2007, 56, 1760–1769. [Google Scholar] [CrossRef]
- Warden, C.H.; Fisler, J.S. Comparisons of diets used in animal models of high-fat feeding. Cell Metab. 2008, 7, 277. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Suhett, C.P.; Scott, J.M. Control diet in a high-fat diet study in mice: Regular chow and purified low-fat diet have similar effects on phenotypic, metabolic, and behavioral outcomes. Nutr. Neurosci. 2019, 22, 19–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marain, N.F.; Jonckheere, A.-C.; Dilissen, E.; Cremer, J.; Roskams, T.; Colemont, M.; Bullens, D.M.; Dupont, L.J.; Vanoirbeek, J.A. Combined Exercise and Diet Induce Airway Hyperreactivity While Reducing Liver Steatosis in Mice with Diet-Induced Obesity. Nutrients 2024, 16, 2129. https://doi.org/10.3390/nu16132129
Marain NF, Jonckheere A-C, Dilissen E, Cremer J, Roskams T, Colemont M, Bullens DM, Dupont LJ, Vanoirbeek JA. Combined Exercise and Diet Induce Airway Hyperreactivity While Reducing Liver Steatosis in Mice with Diet-Induced Obesity. Nutrients. 2024; 16(13):2129. https://doi.org/10.3390/nu16132129
Chicago/Turabian StyleMarain, Nora F., Anne-Charlotte Jonckheere, Ellen Dilissen, Jonathan Cremer, Tania Roskams, Marieke Colemont, Dominique M. Bullens, Lieven J. Dupont, and Jeroen A. Vanoirbeek. 2024. "Combined Exercise and Diet Induce Airway Hyperreactivity While Reducing Liver Steatosis in Mice with Diet-Induced Obesity" Nutrients 16, no. 13: 2129. https://doi.org/10.3390/nu16132129
APA StyleMarain, N. F., Jonckheere, A. -C., Dilissen, E., Cremer, J., Roskams, T., Colemont, M., Bullens, D. M., Dupont, L. J., & Vanoirbeek, J. A. (2024). Combined Exercise and Diet Induce Airway Hyperreactivity While Reducing Liver Steatosis in Mice with Diet-Induced Obesity. Nutrients, 16(13), 2129. https://doi.org/10.3390/nu16132129