Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Protocol and Population
2.2. Laboratory Methods
2.2.1. Blood Sample Collection
2.2.2. Turbidimetric Assay
2.2.3. Colorimetric Assay
2.2.4. Chemiluminescent Immunoassay
2.3. Anthropometric Measurements
2.4. Definitions, Classifications, and Formulas
2.5. Statistical Methods
3. Results
3.1. General Characteristics of the Cohort
3.2. Analysis of the Anthropometric Measurements, Blood Parameters, and Metabolic Indices
3.3. The Analysis of Correlations between MetS Components and Metabolic Indices
3.4. The Cut-Off Value of HOMA-IR INS, HOMA-BETA, and QUICKI That Defines MetS
3.5. The Analysis of Low-Grade Inflammatory Syndrome in the MetS Context
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT | Adipose tissue |
BMI | Body mass index |
CP | C-peptide |
CPI | C-peptide index |
CVD | Cardiovascular diseases |
DI | Disposition index |
HOMA-BETA | The homeostasis model assessment of β-cell function |
HOMA-IR | The homeostasis model assessment-estimated insulin resistance |
hsCRP | High-sensitivity C-reactive protein |
INS | Insulin |
WC | Waist circumference |
MetS | Metabolic syndrome |
T2DM | Type 2 diabetes mellitus |
QUICKI | The quantitative insulin sensitivity check index |
References
- Han, T.S.; Lean, M.E.J. Metabolic Syndrome. Medicine 2015, 43, 80–87. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. WHO Consultation Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The Metabolic Syndrome—A New Worldwide Definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J. Am. Med. Assoc. 2001, 285, 2486–2497. [CrossRef]
- World Health Organization—Obesity and Overweight. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 March 2024).
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic Distribution of Metabolic Syndrome and Its Components in the General Adult Population: A Meta-Analysis of Global Data from 28 Million Individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Noumegni, S.R.N.; Nansseu, J.R.; Ama, V.J.M.; Bigna, J.J.; Assah, F.K.; Guewo-Fokeng, M.; Leumi, S.; Katte, J.-C.; Dehayem, M.; Kengne, A.P.; et al. Insulin Resistance and Associated Factors among HIV-Infected Patients in Sub-Saharan Africa: A Cross Sectional Study from Cameroon. Lipids Health Dis. 2017, 16, 148. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.-G.; Qi, H.-Y.; Chen, X.-Y.; Huang, G. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2004, 29, 419–423. [Google Scholar]
- Matsuda, M. Measuring and Estimating Insulin Resistance in Clinical and Research Settings. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 79–86. [Google Scholar] [CrossRef]
- Iwata, M.; Maeda, S.; Kamura, Y.; Takano, A.; Kato, H.; Murakami, S.; Higuchi, K.; Takahashi, A.; Fujita, H.; Hara, K.; et al. Genetic Risk Score Constructed Using 14 Susceptibility Alleles for Type 2 Diabetes Is Associated with the Early Onset of Diabetes and May Predict the Future Requirement of Insulin Injections Among Japanese Individuals. Diabetes Care 2012, 35, 1763–1770. [Google Scholar] [CrossRef]
- Ohkura, T.; Shiochi, H.; Fujioka, Y.; Sumi, K.; Yamamoto, N.; Matsuzawa, K.; Izawa, S.; Kinoshita, H.; Ohkura, H.; Kato, M.; et al. 20/(Fasting C-Peptide × Fasting Plasma Glucose) Is a Simple and Effective Index of Insulin Resistance in Patients with Type 2 Diabetes Mellitus: A Preliminary Report. Cardiovasc. Diabetol. 2013, 12, 21. [Google Scholar] [CrossRef]
- Bacârea, A.; Tarcea, M.; Boţianu, P.V.H.; Ruţă, F.; Bacârea, V. Age Cut-off for Type 2 Diabetes Mellitus Screening amongst Young Adults from Mures District, Romania—A Pilot Study. Obes. Res. Clin. Pract. 2015, 9, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Kosovski, I.-B.; Ghiga, D.-V.; Tarcea, M.; Ciurea, C.N.; Savin, A.I.; Bacârea, A. The Association between Various Lifestyle Patterns and the Body Mass Index in Adolescents. Acta Medica Marisiensis 2019, 65, 111–115. [Google Scholar] [CrossRef]
- Bacârea, A.; Bacârea, V.C.; Cînpeanu, C.; Teodorescu, C.; Seni, A.G.; Guiné, R.P.F.; Tarcea, M. Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania. Foods 2021, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Hu, G. Prevalence of the Metabolic Syndrome and Its Relation to All-Cause and Cardiovascular Mortality in Nondiabetic European Men and Women. Arch. Intern. Med. 2004, 164, 1066. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Song, Z.; Zhao, C.; Jiang, Y. Association between Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Components of Metabolic Syndrome in Young Chinese Men. Iran J. Public Health 2011, 40, 1. [Google Scholar]
- Katalin, C. Surrogate Measures of Insulin Resistance in Middle-Aged Non-Diabetic Subjects. Acta Medica Marisiensis 2013, 59, 279–284. [Google Scholar] [CrossRef]
- Janczura, M.; Kotula-Horowitz, K.; Iwaniec, T.; Stanisz, A.; Dropinski, J.; Domagala, T. Association of Insulin Resistance, as Determined by Homeostasis Model Assessment (HOMA), with Metabolic Syndrome among Middle-Aged Subjects. Atherosclerosis 2016, 252, e135. [Google Scholar] [CrossRef]
- Aslan Çin, N.N.; Yardımcı, H.; Koç, N.; Uçaktürk, S.A.; Akçil Ok, M. Triglycerides/High-Density Lipoprotein Cholesterol Is a Predictor Similar to the Triglyceride–Glucose Index for the Diagnosis of Metabolic Syndrome Using International Diabetes Federation Criteria of Insulin Resistance in Obese Adolescents: A Cross-Sectional Study. J. Pediatr. Endocrinol. Metab. 2020, 33, 777–784. [Google Scholar] [CrossRef]
- González-González, J.G.; Violante-Cumpa, J.R.; Zambrano-Lucio, M.; Burciaga-Jimenez, E.; Castillo-Morales, P.L.; Garcia-Campa, M.; Solis, R.C.; González-Colmenero, A.D.; Rodríguez-Gutiérrez, R. HOMA-IR as a Predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-Analysis. High Blood Press Cardiovasc. Prev. 2022, 29, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Štěpánek, L.; Horáková, L.; Štěpánek, L.; Cibičková, Ľ.; Karásek, D.; Vaverková, H.; Nakládalová, M.; Juríčková, Ľ.; Kollárová, H. Associations between Homeostasis Model Assessment (HOMA) and Routinely Examined Parameters in Individuals with Metabolic Syndrome. Physiol. Res. 2019, 921–930. [Google Scholar] [CrossRef]
- Kakita, A.; Suzuki, A.; Nagata, M.; Itoh, M. Association of Insulin Resistance Indexes QUICKI and HOMA-IR with the Parameters of Metabolic Syndrome in Non-Diabetes Japanese Male Population. Anti-Aging Med. 2008, 5, 82–86. [Google Scholar] [CrossRef]
- Venugopal, S.K.; Mowery, M.L.; Jialal, I. Biochemistry, C Peptide. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526026/ (accessed on 5 March 2024).
- Tekoh, B.N.; Mbono-Samba, E.A.E.; Etoa-Etoga, M.C.; Eko, M.A.; Amazia, F.; Agoons, B.B.; Nansseu, J.R.; Bigna, J.J.; Ama-Moor, V.J. Correlation between Insulin-Based and C-Peptide Based Homeostatic Model Assessment of Insulin Resistance in Adults without Diabetes in a Sub-Saharan African Setting: A Cross-Sectional Study. BMC Res. Notes 2022, 15, 322. [Google Scholar] [CrossRef]
- Maddaloni, E.; Bolli, G.B.; Frier, B.M.; Little, R.R.; Leslie, R.D.; Pozzilli, P.; Buzzetti, R. C-peptide Determination in the Diagnosis of Type of Diabetes and Its Management: A Clinical Perspective. Diabetes Obes. Metab. 2022, 24, 1912–1926. [Google Scholar] [CrossRef]
- Khan, H.A.; Sobki, S.H.; Ekhzaimy, A.; Khan, I.; Almusawi, M.A. Biomarker Potential of C-Peptide for Screening of Insulin Resistance in Diabetic and Non-Diabetic Individuals. Saudi J. Biol. Sci. 2018, 25, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Ramirez, C.E.; Powers, A.C.; Yu, C.; Shibao, C.A.; Luther, J.M. Hyperglycemic Clamp-Derived Disposition Index Is Negatively Associated with Metabolic Syndrome Severity in Obese Subjects. Metabolism 2016, 65, 835–842. [Google Scholar] [CrossRef]
- Kosovski, I.B.; Bacârea, V.; Ghiga, D.; Ciurea, C.N.; Cucoranu, D.C.; Hutanu, A.; Bacârea, A. Exploring the Link between Inflammatory Biomarkers and Adipometrics in Healthy Young Adults Aged 20–35 Years. Nutrients 2024, 16, 257. [Google Scholar] [CrossRef]
- The IDF Consensus Worldwide Definition of the METABOLIC SYNDROME. International Diabetes Federation (IDF). 2023. Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 1 March 2024).
- Walther, G.; Obert, P.; Dutheil, F.; Chapier, R.; Lesourd, B.; Naughton, G.; Courteix, D.; Vinet, A. Metabolic Syndrome Individuals with and without Type 2 Diabetes Mellitus Present Generalized Vascular Dysfunction: Cross-Sectional Study. ATVB 2015, 35, 1022–1029. [Google Scholar] [CrossRef]
Criteria | MetS(+) (n = 30) | MetS(−) (n = 98) | p-Value | |
---|---|---|---|---|
Sex | Male—No (%) | 21.00 (70.00) | 39.00 (39.80) | 0.0060 ⸷ |
Female—No(%) | 9.00 (30.00) | 59.00 (60.20) | ||
Age (years)—mean ± SD (median) | 29.50 ± 4.13 (29.00) | 27.62 ± 4.37 (27.00) | 0.0369 * | |
Tabacco user | Yes—No (%) | 8.00 (26.67) | 23.00 (23.47) | 0.8082 ⸷ |
No—No (%) | 22.00 (73.33) | 75.00 (76.53) | ||
Alcohol | Yes—No (%) | 5.00 (16.67) | 26.00 (26.53) | 0.3356 † |
No—No (%) | 25.00 (83.33) | 72.00 (73.47) | ||
Overweight or obese in personal history | Yes—No (%) | 26.00 (86.67) | 49.00 (50.00) | 0.0003 † |
No—No (%) | 4.00 (13.33) | 49.00 (50.00) | ||
Years of being overweight/obese in personal history—mean ± SD (median) | 13.00 ± 9.20 (10.00) | 6.93 ± 5.91 (5.00) | 0.0034 * | |
Overweight or obese in family history | Yes—No (%) | 24.00 (80.00) | 60.00 (61.22) | 0.0785 † |
No—No (%) | 6.00 (20.00) | 38.00 (38.78) |
Criteria | MetS(+) (n = 30) Mean ± SD (Median) | MetS(−) (n = 98) Mean ± SD (Median) | p-Value |
---|---|---|---|
Anthropometric measurements | |||
Height (cm) | 176.60 ± 10.95 (177.50) | 171.20 ± 10.23 (171.00) | 0.0146 * |
Weight (kg) | 108.10 ± 24.81 (101.80) | 77.53 ± 19.57 (76.70) | <0.0001 ** |
Body mass index | 34.51 ± 6.53 (33.75) | 26.18 ± 4.84 (26.60) | <0.0001 ** |
Waist circumference (cm) | 108.50 ± 14.28 (106.00) | 86.06 ± 14.30 (86.50) | <0.0001 * |
Systolic blood pressure (mmHg) | 126.70 ± 8.10 (127.00) | 115.20 ± 9.93 (115.00) | <0.0001 ** |
Diastolic blood pressure (mmHg) | 82.47 ± 6.45 (81.00) | 76.45 ± 7.32 (76.50) | 0.0002 ** |
Blood parameters | |||
Glucose (mg/dL) | 90.55 ± 10.10 (89.83) | 89.25 ± 7.29 (90.38) | 0.4390 * |
Insulin (µIU/mL) | 16.41 ± 14.35 (12.20) | 7.49 ± 5.84 (5.97) | 0.0005 ** |
C-peptide (ng/mL) | 1.57 ± 1.91 (0.82) | 1.12 ± 1.05 (1.02) | 0.5836 ** |
HDL-cholesterol (mg/dL) | 38.44 ± 6.05 (38.16) | 52.46 ± 10.95 (51.95) | <0.0001 * |
Triglyceride (mg/dL) | 156.40 ± 62.69 (154.00) | 95.96 ± 30.96 (94.97) | <0.0001 * |
hsCRP (mg/L) | 3.19 ± 3.85 (1.96) | 1.51 ± 2.78 (0.79) | 0.0002 ** |
Metabolic indices | |||
HOMA-IR INS | 3.82 ± 3.61 (2.71) | 1.66 ± 1.33 (1.33) | 0.0008 ** |
HOMA-IR CP1 | 0.37 ± 0.48 (0.17) | 0.24 ± 0.23 (0.21) | 0.6552 ** |
HOMA-IR CP2 | 1.55 ± 0.07 (1.52) | 1.53 ± 0.03 (1.53) | 0.7071 ** |
HOMA-BETA | 217.70 ± 176.30 (197.70) | 110.40 ± 90.59 (79.34) | 0.0005 ** |
HOMA-BETA CP | 22.21 ± 28.11 (12.96) | 17.40 ± 19.75 (13.69) | 0.6813 ** |
QUICKI | 0.33 ± 0.05 (0.32) | 0.37 ± 0.04 (0.37) | 0.0005 * |
Disposition index | 75.30 ± 56.16 (60.79) | 71.47 ± 34.59 (59.22) | 0.6346 ** |
20/C-peptide*glucose | 0.79 ± 0.90 (0.28) | 0.78 ± 0.88 (0.23) | 0.7272 ** |
C-peptide index | 30.22 ± 34.42 (17.97) | 22.82 ± 21.32 (20.94) | 0.5931 ** |
HOMA-IR INS | HOMA-IR CP1 | HOMA-IR CP2 | HOMA-BETA | HOMA-BETA CP | ||||||
r CI (95%) | p-Value | r CI (95%) | p-Value | r CI (95%) | p-Value | r CI (95%) | p-Value | r CI (95%) | p-Value | |
BMI | ||||||||||
0.5136 0.3733 to 0.6310 | <0.0001 | 0.2361 0.0652 to 0.3935 | 0.0073 | 0.2428 0.0722 to 0.3995 | 0.0058 | 0.5090 0.3680 to 0.6272 | <0.0001 | 0.1737 0.0001 to 0.3371 | 0.0499 | |
Waist circumference (cm) | ||||||||||
Females | 0.3179 0.0859 to 0.5172 | 0.0082 | 0.0883 −0.1533 to 0.3201 | 0.4736 | 0.0975 −0.1443 to 0.3284 | 0.4287 | 0.2405 0.0020 to 0.4530 | 0.0482 | 0.0615 −0.1796 to 0.2957 | 0.6181 |
Males | 0.6529 0.4782 to 0.7779 | <0.0001 | 0.2499 −0.0043 to 0.4738 | 0.0541 | 0.2493 −0.0049 to 0.4734 | 0.0547 | 0.6982 0.5399 to 0.8087 | <0.0001 | 0.1362 −0.1221 to 0.3771 | 0.2996 |
Glucose (mg/dL) | ||||||||||
0.3676 0.2073 to 0.5087 | <0.0001 | 0.3129 0.1474 to 0.4614 | 0.0003 | 0.3099 0.1441 to 0.4588 | 0.0004 | −0.1384 −0.3047 to 0.0359 | 0.1191 | −0.2691 −0.4229 to −0.1002 | 0.0021 | |
HDL-cholesterol (mg/dL) | ||||||||||
Females | −0.1977 −0.4165 to 0.0428 | 0.1061 | −0.1380 −0.3645 to 0.1039 | 0.2617 | −0.1360 −0.3627 to 0.1059 | 0.2687 | −0.1516 −0.3765 to 0.0901 | 0.2172 | −0.0844 −0.3166 to 0.1572 | 0.4934 |
Males | −0.3684 −0.5691 to −0.1262 | 0.0038 | −0.1572 −0.3954 to 0.1008 | 0.2302 | −0.1564 −0.3947 to 0.1016 | 0.2327 | −0.4502 −0.6320 to −0.2216 | 0.0003 | −0.1735 −0.4094 to 0.0841 | 0.1849 |
Triglyceride (mg/dL) | ||||||||||
0.2609 0.0914 to 0.4157 | 0.0029 | 0.1058 −0.0690 to 0.2743 | 0.2345 | 0.1028 −0.0720 to 0.2715 | 0.2481 | 0.2537 0.0838 to 0.4093 | 0.0039 | 0.0876 −0.0873 to 0.2573 | 0.3255 | |
Blood pressure (mmHg) | ||||||||||
SBP | 0.1906 0.0175 to 0.3525 | 0.0312 | 0.0919 −0.0829 to 0.2614 | 0.3017 | 0.0934 −0.0814 to 0.2628 | 0.2940 | 0.2360 0.0651 to 0.3935 | 0.0073 | 0.1143 −0.0604 to 0.2823 | 0.1988 |
DBP | 0.0887 −0.0861 to 0.2584 | 0.3191 | −0.0057 −0.1792 to 0.1680 | 0.9485 | −0.0035 −0.1770 to 0.1701 | 0.9682 | 0.1676 −0.0061 to 0.3315 | 0.0586 | 0.1107 −0.0641 to 0.2789 | 0.2137 |
Disposition Index | QUICKI | 20/C-Peptide*Glucose | C-Peptide Index | |||||
---|---|---|---|---|---|---|---|---|
r CI (95%) | p-Value | r CI (95%) | p-Value | r CI (95%) | p-Value | r CI (95%) | p-Value | |
BMI | ||||||||
0.0131 −0.1608 to 0.1863 | 0.8829 | −0.4695 −0.5946 to −0.3222 | <0.0001 | −0.0999 −0.2689 to 0.0749 | 0.2616 | 0.2200 0.0482 to 0.3791 | 0.0126 | |
Waist circumference (cm) | ||||||||
Females | −0.0096 −0.2475 to 0.2294 | 0.9378 | −0.2761 −0.4828 to −0.0402 | 0.0227 | −0.0363 −0.2725 to 0.2039 | 0.7685 | 0.0716 −0.1697 to 0.3049 | 0.5615 |
Males | 0.0158 −0.2391 to 0.2687 | 0.9044 | −0.5877 −0.7324 to −0.3922 | <0.0001 | −0.0135 −0.2666 to 0.2413 | 0.9182 | 0.2072 −0.0494 to 0.4381 | 0.1122 |
Glucose (mg/dL) | ||||||||
−0.8432 −0.8870 to −0.7845 | <0.0001 | −0.3603 −0.5025 to −0.1992 | <0.0001 | −0.1502 −0.3155 to 0.0240 | 0.0906 | 0.0974 −0.0774 to 0.2665 | 0.2738 | |
HDL-cholesterol (mg/dL) | ||||||||
Females | 0.0439 −0.1966 to 0.2795 | 0.7217 | 0.2478 0.0099 to 0.4592 | 0.0416 | 0.1007 −0.1412 to 0.3312 | 0.4140 | −0.1319 0.3591 to 0.1100 | 0.2836 |
Males | 0.0452 −0.2959 to 0.2111 | 0.7312 | 0.3251 0.0775 to 0.5349 | 0.0113 | −0.0535 −0.3034 to 0.2032 | 0.6847 | −0.1715 −0.4077 to 0.0862 | 0.1901 |
Triglyceride (mg/dL) | ||||||||
−0.0506 −0.2223 to 0.1240 | 0.5700 | −0.3615 −0.5035 to −0.2005 | <0.0001 | −0.0684 −0.2392 to 0.1064 | 0.4428 | 0.1038 −0.0710 to 0.2725 | 0.2435 | |
Blood pressure (mmHg) | ||||||||
SBP | 0.1248 −0.0498 to 0.2921 | 0.1603 | −0.0953 −0.2645 to 0.0795 | 0.2843 | −0.0230 −0.1958 to 0.1511 | 0.7963 | 0.0918 −0.0830 to 0.2612 | 0.3027 |
DBP | 0.1868 0.0136 to 0.3490 | 0.0348 | −0.0529 −0.2245 to 0.1217 | 0.5526 | −0.0478 −0.2196 to 0.1268 | 0.5919 | 0.0272 −0.1470 to 0.1999 | 0.7602 |
Metabolic Index | Sex | Cut-Off Value | Sensitivity | Specificity | False Positive Rate (1—Specificity) |
---|---|---|---|---|---|
HOMA-IR INS | All | 1.165 | 73.3% | 43.9% | 56.1% |
1.835 | 70.0% | 67.3% | 32.7% | ||
1.855 | 70.0% | 68.4% | 31.6% | ||
Females | 0.725 | 77.8% | 32.2% | 67.8% | |
1.690 | 66.7% | 69.5% | 30.5% | ||
1.805 | 66.7% | 71.2% | 28.8% | ||
Males | 1.135 | 76.2% | 33.3% | 66.7% | |
2.065 | 71.4% | 69.2% | 30.8% | ||
2.115 | 71.4% | 71.8% | 28.2% | ||
HOMA-BETA | All | 72.380 | 80.0% | 46.9% | 53.1% |
82.250 | 76.7% | 54.1% | 45.9% | ||
85.150 | 73.3% | 54.1% | 45.9% | ||
Females | 49.240 | 77.8% | 30.5% | 69.5% | |
69.770 | 66.7% | 47.5% | 52.5% | ||
71.305 | 66.7% | 49.2% | 50.8% | ||
Males | 81.800 | 85.7% | 46.2% | 53.8% | |
100.525 | 81.0% | 56.4% | 43.6% | ||
106.370 | 81.0% | 59.0% | 41.0% | ||
QUICKI | All | 0.385 | 80.0% | 38.8% | 61.2% |
0.375 | 73.3% | 42.9% | 57.1% | ||
0.355 | 70.0% | 63.3% | 36.7% | ||
Females | 0.375 | 66.7% | 49.2% | 50.8% | |
0.365 | 66.7% | 57.6% | 42.4% | ||
0.355 | 66.7% | 67.8% | 32.2% | ||
Males | 0.385 | 85.7% | 30.8% | 69.2% | |
0.375 | 76.2% | 33.3% | 66.7% | ||
0.345 | 71.4% | 64.1% | 35.9% |
Index | Sex | r | CI (95%) | p-Value |
---|---|---|---|---|
HOMA-IR INS | All | 0.1889 | 0.0158 to 0.3509 | 0.0328 |
Females | 0.0123 | −0.2268 to 0.2501 | 0.9204 | |
Males | 0.4405 | 0.2100 to 0.6246 | 0.0004 | |
HOMA-IR CP1 | All | 0.2142 | 0.0422 to 0.3739 | 0.0152 |
Females | 0.2240 | −0.0153 to 0.4390 | 0.0664 | |
Males | 0.3101 | 0.0609 to 0.5229 | 0.0159 | |
HOMA-IR CP2 | All | 0.2219 | 0.0502 to 0.3808 | 0.0118 |
Females | 0.2479 | 0.0100 to 0.4593 | 0.0415 | |
Males | 0.3045 | 0.0547 to 0.5184 | 0.0180 | |
HOMA-BETA | All | 0.1808 | 0.0074 to 0.3436 | 0.0411 |
Females | −0.0229 | −0.2600 to 0.2167 | 0.8525 | |
Males | 0.5018 | 0.2840 to 0.6704 | <0.0001 | |
HOMA-BETA CP | All | 0.2102 | 0.0380 to 0.3703 | 0.0172 |
Females | 0.1219 | −0.1201 to 0.3502 | 0.3220 | |
Males | 0.3982 | 0.1604 to 0.5923 | 0.0016 | |
Disposition index | All | 0.0679 | −0.1068 to 0.2387 | 0.4457 |
Females | −0.0401 | −0.2760 to 0.2002 | 0.7450 | |
Males | 0.2486 | −0.0057 to 0.4728 | 0.0554 | |
QUICKI | All | −0.1189 | −0.2865 to 0.0558 | 0.1814 |
Females | −0.0200 | −0.2573 to 0.2195 | 0.8709 | |
Males | −0.3297 | −0.5386 to −0.0826 | 0.0101 | |
20/C-peptide*glucose | All | −0.1735 | −0.3370 to 0.0000 | 0.0501 |
Females | −0.1892 | −0.4092 to 0.0516 | 0.1223 | |
Males | −0.1616 | −0.3992 to 0.0963 | 0.2174 | |
C-peptide index | All | 0.2293 | 0.0579 to 0.3874 | 0.0092 |
Females | 0.2190 | −0.0205 to 0.4348 | 0.0728 | |
Males | 0.3291 | 0.0819 to 0.5381 | 0.0102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosovski, I.B.; Ghiga, D.; Ciurea, C.N.; Cucoranu, D.C.; Demian, L.; Gliga, F.I.; Bacârea, A. Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults. Nutrients 2024, 16, 2135. https://doi.org/10.3390/nu16132135
Kosovski IB, Ghiga D, Ciurea CN, Cucoranu DC, Demian L, Gliga FI, Bacârea A. Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults. Nutrients. 2024; 16(13):2135. https://doi.org/10.3390/nu16132135
Chicago/Turabian StyleKosovski, Irina Bianca, Dana Ghiga, Cristina Nicoleta Ciurea, Dragos Constantin Cucoranu, Liliana Demian, Florina Ioana Gliga, and Anca Bacârea. 2024. "Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults" Nutrients 16, no. 13: 2135. https://doi.org/10.3390/nu16132135
APA StyleKosovski, I. B., Ghiga, D., Ciurea, C. N., Cucoranu, D. C., Demian, L., Gliga, F. I., & Bacârea, A. (2024). Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults. Nutrients, 16(13), 2135. https://doi.org/10.3390/nu16132135