Association between Uric Acid Levels and the Consumption of Sugar-Sweetened Carbonated Beverages in the Korean Population: The 2016 Korea National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of SSB Consumption and Definition of High Uric Acid Level
2.3. Measurement of Covariates
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Comparison of General Characteristics According to Elevated Uric Acid Levels (Top Quartile: Men, ≥6.7 mg/dL; Women ≥ 4.8 mg/dL)
3.3. Association between SSB Consumption and Elevated Uric Acid Levels
3.4. Association between SSB Consumption Frequency and Elevated Uric Acid Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, H.; Lee, H.J.; Choue, R.; Wang, Y. Trends in Fast-Food and Sugar-Sweetened Beverage Consumption and Their Association with Social Environmental Status in South Korea. J. Acad. Nutr. Diet. 2018, 118, 1228–1236.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jeong, H.; Kim, N.H.; Kang, Y.; Hwang, K.; Lee, H.; Hong, J.H.; Oh, K.S. Association between Beverage Intake and Obesity in Children: The Korea National Health and Nutrition Examination Survey (KNHANES) 2013–2015. Nutr. Res. Pract. 2018, 12, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Mount, D.B.; Reginato, A.M. Pathogenesis of Gout. Ann. Intern. Med. 2005, 143, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Cabău, G.; Crișan, T.O.; Klück, V.; Popp, R.A.; Joosten, L.A.B. Urate-Induced Immune Programming: Consequences for Gouty Arthritis and Hyperuricemia. Immunol. Rev. 2020, 294, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Joosten, L.A.B.; Crişan, T.O.; Bjornstad, P.; Johnson, R.J. Asymptomatic Hyperuricaemia: A Silent Activator of the Innate Immune System. Nat. Rev. Rheumatol. 2020, 16, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Puig, J.G.; Martínez, M.A.; Mora, M.; Fraile, J.M.; Montoya, F.; Torres, R.J. Serum Urate, Metabolic Syndrome, and Cardiovascular Risk Factors. A Population-Based Study. Nucleosides Nucleotides Nucleic Acids 2008, 27, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Park, K.Y.; Son, S.; Huh, Y.; Nam, G.E. Associations between Obesity Parameters and Hyperuricemia by Sex, Age, and Diabetes Mellitus: A Nationwide Study in Korea. Obes. Res. Clin. Pract. 2023, 17, 405–410. [Google Scholar] [CrossRef]
- Johnson, R.J.; Perez-Pozo, S.E.; Sautin, Y.Y.; Manitius, J.; Sanchez-Lozada, L.G.; Feig, D.I.; Shafiu, M.; Segal, M.; Glassock, R.J.; Shimada, M.; et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocr. Rev. 2009, 30, 96–116. [Google Scholar] [CrossRef]
- Choi, J.W.J.; Ford, E.S.; Gao, X.; Choi, H.K. Sugar-Sweetened Soft Drinks, Diet Soft Drinks, and Serum Uric Acid Level: The Third National Health and Nutrition Examination Survey. Arthritis Care Res. 2008, 59, 109–116. [Google Scholar] [CrossRef]
- Gao, X.; Qi, L.; Qiao, N.; Choi, H.K.; Curhan, G.; Tucker, K.L.; Ascherio, A. Intake of Added Sugar and Sugar-Sweetened Drink and Serum Uric Acid Concentration in US Men and Women. Hypertension 2007, 50, 306–312. [Google Scholar] [CrossRef]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C. Yuan Sugar-Sweetened Beverages, Serum Uric Acid, and Blood Pressure in Adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Chang, H.Y.; Wu, H.C.; Stanaway, F.F.; Pan, W.H. High Sugar-Sweetened Beverage Intake Frequency Is Associated with Smoking, Irregular Meal Intake and Higher Serum Uric Acid in Taiwanese Adolescents. J. Nutr. Sci. 2020, 9, e7. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Pan, W.H.; Yeh, W.T.; Tsai, K.S. Hyperuricemia and Gout in Taiwan: Results from the Nutritional and Health Survey in Taiwan (1993-96). J. Rheumatol. 2001, 28, 1640–1646. [Google Scholar]
- Meneses-León, J.; León-Maldonado, L.; Macías, N.; Torres-Ibarra, L.; Hernández-López, R.; Rivera-Paredez, B.; Flores, M.; Flores, Y.N.; Barrientos-Gutiérrez, T.; Quezada-Sánchez, A.D.; et al. Sugar-Sweetened Beverage Consumption and Risk of Hyperuricemia: A Longitudinal Analysis of the Health Workers Cohort Study Participants in Mexico. Am. J. Clin. Nutr. 2020, 112, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Curhan, G. Soft Drinks, Fructose Consumption, and the Risk of Gout in Men: Prospective Cohort Study. BMJ 2008, 336, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Willett, W.; Curhan, G. Fructose-Rich Beverages and Risk of Gout in Women. JAMA 2010, 304, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimpour-koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of Sugar-Sweetened Beverages and Serum Uric Acid Concentrations: A Systematic Review and Meta-Analysis. J. Human. Nutr. Diet. 2021, 34, 305–313. [Google Scholar] [CrossRef]
- Bae, J.; Chun, B.Y.; Park, P.S.; Choi, B.Y.; Kim, M.K.; Shin, M.H.; Lee, Y.H.; Shin, D.H.; Kim, S.K. Higher Consumption of Sugar-Sweetened Soft Drinks Increases the Risk of Hyperuricemia in Korean Population: The Korean Multi-Rural Communities Cohort Study. Semin. Arthritis Rheum. 2014, 43, 654–661. [Google Scholar] [CrossRef]
- Fox, I.H.; Kelley, W.N. Studies on the Mechanism of Fructose-Induced Hyperuricemia in Man. Metabolism 1972, 21, 713–721. [Google Scholar] [CrossRef]
- Gibson, T.; Rodgers, A.V.; Simmonds, H.A.; Court-Brown, F.; Todd, E.; Meilton, V. A Controlled Study of Diet in Patients with Gout. Ann. Rheum. Dis. 1983, 42, 123–127. [Google Scholar] [CrossRef]
- Puig, J.G.; Fox, I.H. Ethanol-Induced Activation of Adenine Nucleotide Turnover. Evidence for a Role of Acetate. J. Clin. Investig. 1984, 74, 936–941. [Google Scholar] [CrossRef]
- Fox, I.H.; Palella, T.D.; Kelley, W.N. Hyperuricemia: A Marker for Cell Energy Crisis. N. Engl. J. Med. 1987, 317, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; House, M.E.; Gamble, G.D.; Horne, A.; Pool, B.; Purvis, L.; Stewart, A.; Merriman, M.; Cadzow, M.; Phipps-Green, A.; et al. Population-Specific Influence of SLC2A9 Genotype on the Acute Hyperuricaemic Response to a Fructose Load. Ann. Rheum. Dis. 2013, 72, 1868–1873. [Google Scholar] [CrossRef]
- Blakely, S.R.; Hallfrisch, J.; Reiser, S.; Prather, E.S. Long-Term Effects of Moderate Fructose Feeding on Glucose Tolerance Parameters in Rats. J. Nutr. 1981, 111, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.W.; Storlien, L.H.; Jenkins, A.B.; Khouri, S.; Kraegen, E.W. Fructose-Induced in Vivo Insulin Resistance and Elevated Plasma Triglyceride Levels in Rats. Am. J. Clin. Nutr. 1989, 49, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, A.; Snaith, M.L.; Scott, J.T. Effect of Oestrogen Therapy on Plasma and Urinary Levels of Uric Acid. Br. Med. J. 1973, 1, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Winkler, C.A.; Lee, S.J.; Chang, Y.; Ryu, S. The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. J. Clin. Med. 2019, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Chuang, S.Y.; Chen, H.J.; Wen-Ting, Y.E.H.; Wen-Harn, P.A.N. Serum Uric Acid Level as an Independent Risk Factor for All-Cause, Cardiovascular, and Ischemic Stroke Mortality: A Chinese Cohort Study. Arthritis Care Res. 2009, 61, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Bantle, J.P.; Raatz, S.K.; Thomas, W.; Georgopoulos, A. Effects of Dietary Fructose on Plasma Lipids in Healthy Subjects. Am. J. Clin. Nutr. 2000, 72, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, I. Influence of Fructose and Glucose on Serum Lipid Levels in Men and Pre- and Postmenopausal Women. Am. J. Clin. Nutr. 1966, 18, 369–372. [Google Scholar] [CrossRef]
- Vasudevan, H.; Xiang, H.; McNeill, J.H. Differential Regulation of Insulin Resistance and Hypertension by Sex Hormones in Fructose-Fed Male Rats. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1335–H1342. [Google Scholar] [CrossRef]
- Galipeau, D.; Verma, S.; Mcneill, J.H.; Mc-, J.H.; Mcneill, J.H. Female Rats Are Protected against Fructose-Induced Changes in Metabolism and Blood Pressure. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, 2478–2484. [Google Scholar] [CrossRef] [PubMed]
- Sumino, H.; Ichikawa, S.; Kanda, T.; Nakamura, T.; Sakamaki, T. Reduction of Serum Uric Acid by Hormone Replacement Therapy in Postmenopausal Women with Hyperuricaemia. Lancet 1999, 354, 650. [Google Scholar] [CrossRef] [PubMed]
- Elisabeth, A.E.; Choi, H.K. Menopause, Postmenopausal Hormone Use and Serum Uric Acid Levels in US Women—The Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 2008, 10, R116–R117. [Google Scholar] [CrossRef]
- Pizzichini, M.; Leoncini, R.; Vannoni, D.; Marinello, E.; Pagani, R. The Influence of Testosterone on Purine Nucleotide Metabolism in Rat Liver. Life Sci. 1995, 57, 2127–2135. [Google Scholar] [CrossRef]
- Vizzotto, L.; Vartemati, M.; Marinello, E.; Leoncini, R.; Pagani, R.; Pizzichini, M. Effect of Testosterone on Purine Metabolism and Morphometric Parameters in the Rat Liver. Mol. Cell Endocrinol. 1996, 119, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, S.A.; Ha, J.; Lim, K. Sugar-Sweetened Beverage Consumption in Relation to Obesity and Metabolic Syndrome among Korean Adults: A Cross-Sectional Study from the 2012–2016 Korean National Health and Nutrition Examination Survey (KNHANES). Nutrients 2018, 10, 1467. [Google Scholar] [CrossRef]
- Chiang, K.M.; Tsay, Y.C.; Ng, T.C.V.; Yang, H.C.; Huang, Y.T.; Chen, C.H.; Pan, W.H. Is Hyperuricemia, an Early-Onset Metabolic Disorder, Causally Associated with Cardiovascular Disease Events in Han Chinese? J. Clin. Med. 2019, 8, 1202. [Google Scholar] [CrossRef]
Characteristics | Men (n = 1066) | Women (n = 1815) | p-Value (1) |
---|---|---|---|
Age (years) | 40.6 ± 0.5 | 41.5 ± 0.4 | 0.095 |
BMI (kg/m2) | 24.6 ± 0.1 | 23.1 ± 0.1 | <0.001 |
Waist circumference (cm) | 85.8 ± 0.3 | 77.7 ± 0.3 | <0.001 |
SBP (mmHg) | 118.9 ± 0.5 | 112.2 ± 0.4 | <0.001 |
DBP (mmHg) | 79.6 ± 0.3 | 73.8 ± 0.3 | <0.001 |
Triglyceride (mg/dL) | 168.6 ± 5.4 | 111.6 ± 2.5 | <0.001 |
HDL cholesterol (mg/dL) | 47.8 ± 0.4 | 56.2 ± 0.4 | <0.001 |
Fasting serum glucose (mg/dL) | 99.8 ± 0.9 | 95.7 ± 0.7 | <0.001 |
Uric acid (mg/dL) | 5.9 ± 0.0 | 4.3 ± 0.0 | <0.001 |
Education | <0.001 | ||
≤Elementary school | 67 (4.8) | 176 (8.5) | |
Middle school | 73 (5.0) | 144 (7.6) | |
High school | 382 (38.4) | 680 (39.8) | |
≥College | 543 (51.8) | 814 (44.2) | |
Marital status | <0.001 | ||
Married | 785 (65.7) | 1492 (76.4) | |
Not married | 281 (34.3) | 323 (23.6) | |
Personal income | 0.047 | ||
Lowest | 272 (27.3) | 425 (23.1) | |
Lower middle | 245 (22.4) | 465 (25.7) | |
Upper middle | 275 (24.8) | 461 (26.2) | |
Highest | 273 (25.5) | 463 (25.1) | |
Alcohol consumption | <0.001 | ||
Non-drinker | 35 (2.9) | 161 (7.7) | |
< 1 month | 333 (32.1) | 965 (52.3) | |
2–4 month | 321 (31.6) | 436 (26.1) | |
2≥ a week | 377 (33.4) | 249 (13.9) | |
Smoking status | <0.001 | ||
Never smoker | 274 (27.7) | 97 (6.4) | |
Past smoker | 375 (33.1) | 108 (6.5) | |
Current smoker | 416 (39.2) | 1606 (87.1) | |
Aerobic physical activity | 0.003 | ||
Yes | 541 (54.4) | 829 (47.6) | |
No | 523 (45.6) | 984 (52.4) | |
Dietary intake | |||
Daily energy intake (kcal/day) | 2279.2 ± 25.4 | 1751.1 ± 18.7 | <0.001 |
Daily protein intake (g/day) | 74.9 ± 1.1 | 60.7 ± 0.8 | <0.001 |
Daily saturated fat intake (g/day) | 14.6 ± 0.3 | 11.3 ± 0.2 | <0.001 |
Daily carbohydrate intake (g/day) | 337.1 ± 3.6 | 275.2 ± 2.8 | <0.001 |
Characteristics | Males (n = 1066) | Females (n = 1815) | ||||
---|---|---|---|---|---|---|
No Hyperuricemia (n = 787) | Hyperuricemia (n = 279) | p-Value | No Hyperuricemia (n = 1293) | Hyperuricemia (n = 522) | p-Value | |
Age (years) | 41.6 ± 0.6 | 37.9 ± 0.8 | 0.317 | 41.6 ± 0.4 | 41.1 ± 0.8 | 0.974 |
BMI (kg/m2) | 24.2 ± 0.1 | 25.7 ± 0.3 | 0.382 | 22.6 ± 0.1 | 24.2 ± 0.2 | 0.618 |
Waist circumference (cm) | 84.9 ± 0.4 | 88.5 ± 0.7 | 0.522 | 76.5 ± 0.4 | 80.4 ± 0.6 | 0.513 |
SBP (mmHg) | 118.2 ± 0.5 | 120.9 ± 0.9 | 0.645 | 111.1 ± 0.4 | 114.8 ± 0.8 | 0.030 |
DBP (mmHg) | 78.9 ± 0.4 | 81.8 ± 0.7 | 0.922 | 72.7 ± 0.3 | 76.4 ± 0.5 | <0.001 |
Triglyceride (mg/dL) | 157.5 ± 5.9 | 199.5 ± 11.5 | 0.768 | 103.4 ± 2.6 | 131.0 ± 5.9 | 0.543 |
HDL cholesterol (mg/dL) | 48.7 ± 0.5 | 45.5 ± 0.8 | 0.945 | 56.8 ± 0.5 | 54.7 ± 0.7 | 0.202 |
Fasting serum glucose (mg/dL) | 100.6 ± 1.0 | 97.4 ± 1.1 | 0.022 | 95.4 ± 0.9 | 96.3 ± 0.8 | 0.289 |
Uric acid (mg/dL) | 5.3 ± 0.0 | 7.4 ± 0.0 | <0.001 | 3.8 ± 0.0 | 5.4 ± 0.0 | <0.001 |
Education | 0.076 | 0.199 | ||||
≤Elementary school | 60 (5.9) | 7 (2.0) | 126 (8.6) | 50 (8.0) | ||
Middle school | 53 (4.8) | 20 (5.3) | 110 (8.4) | 34 (5.5) | ||
High school | 281 (38.1) | 101 (39.5) | 486 (40.2) | 194 (38.9) | ||
≥College | 392 (51.2) | 151 (53.2) | 570 (42.8) | 244 (47.5) | ||
Marital status | 0.008 | 0.068 | ||||
Married | 596 (68.4) | 189 (58.3) | 1083 (78.0) | 409 (72.5) | ||
Not married | 191 (31.6) | 90 (41.7) | 210 (22.0) | 113 (27.5) | ||
Personal income | 0.202 | 0.028 | ||||
Lowest | 198 (27.5) | 74 (26.6) | 291 (21.5) | 134 (26.9) | ||
Lower middle | 187 (23.2) | 58 (20.0) | 340 (27.6) | 125 (21.1) | ||
Upper middle | 210 (25.6) | 65 (22.8) | 341 (26.5) | 120 (25.4) | ||
Highest | 191 (23.7) | 82 (30.6) | 320 (24.4) | 143 (26.6) | ||
Alcohol consumption | 0.231 | 0.022 | ||||
Non-drinker | 31 (3.6) | 4 (1.0) | 118 (8.1) | 43 (6.8) | ||
≤1 month | 250 (32.0) | 83 (32.2) | 709 (54.3) | 256 (47.5) | ||
2–4 month | 239 (1.9) | 82 (31.6) | 299 (24.8) | 137 (28.9) | ||
2≥ a week | 267 (32.8) | 110 (35.2) | 165 (12.7) | 84 (16.8) | ||
Smoking status | 0.913 | 0.013 | ||||
Never smoker | 210 (27.9) | 64 (27.0) | 1172 (89.2) | 434 (82.0) | ||
Past smoker | 281 (33.3) | 94 (32.6) | 62 (5.3) | 46 (9.4) | ||
Current smoker | 295 (38.8) | 121 (40.4) | 57 (5.5) | 40 (8.6) | ||
Aerobic physical activity | 0.660 | 0.019 | ||||
Yes | 392 (54.0) | 149 (55.6) | 575 (45.4) | 254 (52.9) | ||
No | 393 (46.0) | 130 (44.4) | 716 (54.6) | 268 (47.1) | ||
Dietary intake | ||||||
Daily energy intake (kcal/day) | 2262.7 ± 31.0 | 2325.1 ± 53.1 | 0.165 | 1737.2 ± 22.3 | 1784.4 ± 35.5 | 0.238 |
Daily protein intake (g/day) | 74.5 ± 1.4 | 75.9 ± 2.3 | 0.727 | 60.1 ± 1.0 | 62.2 ± 1.4 | 0.065 |
Daily saturated fat intake (g/day) | 14.5 ± 1.4 | 15.0 ± 0.5 | 0.228 | 11.2 ± 0.3 | 11.7 ± 0.3 | 0.095 |
Daily carbohydrate intake (g/day) | 336.3 ± 4.1 | 339.4 ± 6.9 | 0.553 | 275.6 ± 3.2 | 274.2 ± 5.6 | 0.565 |
Almost Never (Reference) | <1 Cup (<200 mL) OR (95% CI) | 1–3 Cups (200–600 mL) OR (95% CI) | ≥3 Cups (≥600 mL) OR (95% CI) | p-Value | |
---|---|---|---|---|---|
Males (n = 1066) | |||||
Model 1 | 1.000 | 1.191 (0.814–1.745) | 1.504 (0.986–2.294) | 2.013 (1.332–3.042) | 0.008 |
Model 2 | 1.000 | 1.046 (0.692–1.583) | 1.323 (0.850–2.060) | 1.626 (1.013–2.612) | 0.001 |
Model 3 | 1.000 | 1.065 (0.708–1.601) | 1.403 (0.890–2.211) | 1.921 (1.159–3.184) | 0.001 |
Females (n = 1815) | |||||
Model 1 | 1.000 | 1.110 (0.827–1.491) | 1.092 (0.791–1.507) | 1.427 (0.852–2.389) | 0.566 |
Model 2 | 1.000 | 1.088 (0.768–1.542) | 1.177 (0.800–1.731) | 1.403 (0.736–2.675) | 0.186 |
Model 3 | 1.000 | 1.094 (0.776–1.542) | 1.146 (0.787–1.668) | 1.414 (0.759–2.635) | 0.219 |
Almost Never (Reference) | ≤1/a Week OR (95% CI) | ≥2/a Week OR (95% CI) | p-Value | |
---|---|---|---|---|
Males (n = 1066) | ||||
Model 1 | 1 | 1.342 (0.964–1.868) | 1.742 (1.199–2.532) | 0.015 |
Model 2 | 1 | 1.176 (0.830–1.667) | 1.374 (0.913–2.068) | 0.001 |
Model 3 | 1 | 1.194 (0.846–1.687) | 1.551 (1.014–2.372) | 0.001 |
Females (n = 1815) | ||||
Model 1 | 1 | 1.077 (0.833–1.392) | 1.345 (0.943–1.921) | 0.263 |
Model 2 | 1 | 1.089 (0.795–1.493) | 1.350 (0.865–2.107) | 0.182 |
Model 3 | 1 | 1.086 (0.797–1.479) | 1.344 (0.876–2.061) | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.M.; Lee, S.Y.; Park, E.J.; Lee, Y.I.; Choi, J.I.; Lee, S.R.; Kwon, R.J.; Son, S.M.; Lee, J.G.; Yi, Y.H.; et al. Association between Uric Acid Levels and the Consumption of Sugar-Sweetened Carbonated Beverages in the Korean Population: The 2016 Korea National Health and Nutrition Examination Survey. Nutrients 2024, 16, 2167. https://doi.org/10.3390/nu16132167
Lee SM, Lee SY, Park EJ, Lee YI, Choi JI, Lee SR, Kwon RJ, Son SM, Lee JG, Yi YH, et al. Association between Uric Acid Levels and the Consumption of Sugar-Sweetened Carbonated Beverages in the Korean Population: The 2016 Korea National Health and Nutrition Examination Survey. Nutrients. 2024; 16(13):2167. https://doi.org/10.3390/nu16132167
Chicago/Turabian StyleLee, Su Min, Sang Yeoup Lee, Eun Ju Park, Young In Lee, Jung In Choi, Sae Rom Lee, Ryuk Jun Kwon, Soo Min Son, Jeong Gyu Lee, Yu Hyeon Yi, and et al. 2024. "Association between Uric Acid Levels and the Consumption of Sugar-Sweetened Carbonated Beverages in the Korean Population: The 2016 Korea National Health and Nutrition Examination Survey" Nutrients 16, no. 13: 2167. https://doi.org/10.3390/nu16132167
APA StyleLee, S. M., Lee, S. Y., Park, E. J., Lee, Y. I., Choi, J. I., Lee, S. R., Kwon, R. J., Son, S. M., Lee, J. G., Yi, Y. H., Tak, Y. J., Lee, S. H., Kim, G. L., Ra, Y. J., & Cho, Y. H. (2024). Association between Uric Acid Levels and the Consumption of Sugar-Sweetened Carbonated Beverages in the Korean Population: The 2016 Korea National Health and Nutrition Examination Survey. Nutrients, 16(13), 2167. https://doi.org/10.3390/nu16132167