Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Primary Predictors and Outcomes
2.3. Covariates
2.4. Data Analysis and Statistical Methods
2.5. Ethical Considerations
3. Results
Baseline Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stamatelou, K.; Goldfarb, D.S. Epidemiology of Kidney Stones. Healthcare 2023, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Saigal, C.S.; Joyce, G.; Timilsina, A.R. Urologic Diseases in America P. Direct and indirect costs of nephrolithiasis in an employed population: Opportunity for disease management? Kidney Int. 2005, 68, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- Coe, F.L.; Worcester, E.M.; Evan, A.P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 2016, 12, 519–533. [Google Scholar] [CrossRef]
- Sakhaee, K.; Harvey, J.A.; Padalino, P.K.; Whitson, P.; Pak, C.Y. The potential role of salt abuse on the risk for kidney stone formation. J. Urol. 1993, 150 Pt 1, 310–312. [Google Scholar] [CrossRef]
- Taylor, E.N.; Curhan, G.C. Demographic, dietary, and urinary factors and 24-h urinary calcium excretion. Clin. J. Am. Soc. Nephrol. 2009, 4, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.D.; Kahn, A.J.; Reiner, A.P.; Tseng, T.Y.; Shikany, J.M.; Wallace, R.B.; Chi, T.; Wactawski-Wende, J.; Jackson, R.D.; O’Sullivan, M.J.; et al. Impact of nutritional factors on incident kidney stone formation: A report from the WHI OS. J. Urol. 2012, 187, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Knight, E.L.; Stampfer, M.J. Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch. Intern. Med. 2004, 164, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004, 15, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 1993, 328, 833–838. [Google Scholar] [CrossRef]
- Lemann, J., Jr.; Pleuss, J.A.; Gray, R.W.; Hoffmann, R.G. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected]. Kidney Int. 1991, 39, 973–983. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Spiegelman, D.; Stampfer, M.J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 1997, 126, 497–504. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Mandel, E.I.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones. Clin. J. Am. Soc. Nephrol. 2016, 11, 1834–1844. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. 2015–2020 Dietary Guidelines for Americans; US Department of Health and Human Services: Washington, DC, USA, 2015; p. 144.
- Weaver, C.M.; Stone, M.S.; Lobene, A.J.; Cladis, D.P.; Hodges, J.K. What Is the Evidence Base for a Potassium Requirement? Nutr. Today 2018, 53, 184–195. [Google Scholar] [CrossRef]
- Medicine, I.O. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef]
- Cogswell, M.E.; Loria, C.M.; Terry, A.L.; Zhao, L.; Wang, C.-Y.; Chen, T.-C.; Wright, J.D.; Pfeiffer, C.M.; Merritt, R.; Moy, C.S.; et al. Estimated 24-Hour Urinary Sodium and Potassium Excretion in US Adults. JAMA 2018, 319, 1209–1220. [Google Scholar] [CrossRef]
- Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ 1988, 297, 319–328. [Google Scholar] [CrossRef]
- Walser, M. Calcium clearance as a function of sodium clearance in the dog. Am. J. Physiol. 1961, 200, 1099–1104. [Google Scholar] [CrossRef]
- Muldowney, F.P.; Freaney, R.; Moloney, M.F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 1982, 22, 292–296. [Google Scholar] [CrossRef]
- Kleeman, C.R.; Bohannan, J.; Bernstein, D.; Ling, S.; Maxwell, M.H. Effect of Variations in Sodium Intake on Calcium Excretion in Normal Humans. Proc. Soc. Exp. Biol. Med. 1964, 115, 29–32. [Google Scholar] [CrossRef]
- Shortt, C.; Madden, A.; Flynn, A.; Morrissey, P.A. Influence of dietary sodium intake on urinary calcium excretion in selected Irish individuals. Eur. J. Clin. Nutr. 1988, 42, 595–603. [Google Scholar]
- Nordin, B.E.; Need, A.G.; Morris, H.A.; Horowitz, M. The nature and significance of the relationship between urinary sodium and urinary calcium in women. J. Nutr. 1993, 123, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Conlin, E.R., 3rd; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Eisner, B.H.; Eisenberg, M.L.; Stoller, M.L. Impact of urine sodium on urine risk factors for calcium oxalate nephrolithiasis. J. Urol. 2009, 182, 2330–2333. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-X.; Cuevas, C.A.; Su, X.-T.; Wu, P.; Gao, Z.-X.; Lin, D.-H.; McCormick, J.A.; Yang, C.-L.; Wang, W.-H.; Ellison, D.H. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018, 93, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Hernandez, R.E.; Portale, A.A.; Colman, J.; Tatsuno, J.; Morris, R.C., Jr. Dietary potassium influences kidney maintenance of serum phosphorus concentration. Kidney Int. 1990, 37, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Osorio, A.V.; Alon, U.S. The relationship between urinary calcium, sodium, and potassium excretion and the role of potassium in treating idiopathic hypercalciuria. Pediatrics 1997, 100, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Osis, G.; Webster, K.L.; Harris, A.N.; Lee, H.-W.; Chen, C.; Fang, L.; Romero, M.F.; Khattri, R.B.; Merritt, M.E.; Verlander, J.W.; et al. Regulation of renal NaDC1 expression and citrate excretion by NBCe1-A. Am. J. Physiol. Renal Physiol. 2019, 317, F489–F501. [Google Scholar] [CrossRef]
- Domrongkitchaiporn, S.; Stitchantrakul, W.; Kochakarn, W. Causes of hypocitraturia in recurrent calcium stone formers: Focusing on urinary potassium excretion. Am. J. Kidney Dis. 2006, 48, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, J.M.; Assimos, D.G. Hypocitraturia: Pathophysiology and medical management. Rev. Urol. 2009, 11, 134–144. [Google Scholar]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Stampfer, M.J. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 2001, 59, 2290–2298. [Google Scholar] [CrossRef]
- Stamler, J.; Rose, G.; Stamler, R.; Elliott, P.; Dyer, A.; Marmot, M. INTERSALT study findings. Public health and medical care implications. Hypertension 1989, 14, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: The Trials of Hypertension Prevention follow-up study. Arch. Intern. Med. 2009, 169, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Mattes, R.D.; Donnelly, D. Relative contributions of dietary sodium sources. J. Am. Coll. Nutr. 1991, 10, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.; et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
Stone Former | Non-Stone Former | p Value | ||
---|---|---|---|---|
Total number | 1895 | 17510 | ||
Age (years) | 54 (±0.4) | 47 (±0.3) | <0.001 | |
Sex (male %) | 985 (52) | 8230 (47) | 0.01 | |
Race (Non-Hispanic White %) | 1421 (75) | 11,382 (65) | <0.001 | |
BMI (mg/m2) | 30.9 (±0.2) | 29.2 (±0.1) | <0.001 | |
History of hypertension (%) | 910 (48) | 5603 (32) | <0.001 | |
History of diabetes (%) | 360 (19) | 1576 (9) | <0.001 | |
History of dyslipidemia (%) | 872 (46) | 5778 (33) | <0.001 | |
Cardiovascular disease (%) | 284 (15) | 1401 (8) | <0.001 | |
Thiazide use (%) | 208 (11) | 1226 (7) | <0.001 | |
Smoking (%) | Everyday/some day | 379 (20) | 3152 (18) | <0.001 |
Past smoker | 569 (30) | 4202 (24) | ||
Not at all | 948 (50) | 10,156 (58) | ||
Alcohol (%) | Heavy | 38 (2) | 1051 (6) | 0.001 |
Light | 360 (19) | 3852 (22) | ||
None | 1477 (78) | 12,607 (72) | ||
DSI | Mean (mg) | 3438 (±56) | 3532 (±17) | 0.1 |
<2300 mg/d (%) | 493 (26) | 4202 (24) | 0.2 | |
DPI | Mean (mg) | 2572 (±43) | 2665 (±17) | 0.03 |
≥3500 mg/d (%) | 360 (19) | 3677 (21) | 0.2 | |
DSI/DPI | 1.5 (±0.03) | 1.4 (±0.01) | 0.2 |
DSI (mg/Day) | p Value | |||||
---|---|---|---|---|---|---|
0–2226 | 2227–3149 | 3150–4321 | >4321 | |||
Age (years) | 50 (±0.4) | 49 (±0.4) | 47 (±0.4) | 43 (±0.4) | <0.0001 | |
Sex (male %) | 1538 (30) | 1999 (39) | 2566 (50) | 3634 (71) | <0.0001 | |
Race (Non-Hispanic White %) | 3230 (63) | 3434 (67) | 3438 (67) | 3327 (65) | 0.0003 | |
BMI (kg/m2) | 28.8 (±0.2) | 29.1 (±0.2) | 29.2 (±0.2) | 29.8 (±0.2) | <0.0001 | |
History of hypertension (%) | 1846 (36) | 1691 (33) | 1642 (32) | 1638 (32) | 0.0003 | |
History of diabetes (%) | 564 (11) | 564 (11) | 462 (9) | 461 (9) | 0.1 | |
History of dyslipidemia (%) | 1794 (35) | 1794 (35) | 1642 (32) | 1587 (31) | 0.01 | |
Cardiovascular disease (%) | 564 (11) | 513 (10) | 411 (8) | 307 (6) | <0.0001 | |
Thiazide use (%) | 410 (8) | 410 (8) | 359 (7) | 358 (7) | 0.3 | |
Smoking (%) | Active | 1025 (20) | 820 (16) | 872 (17) | 972 (19) | <0.0001 |
Past smoker | 1128 (22) | 1230 (24) | 1334 (26) | 1280 (25) | ||
Not at all | 2974 (58) | 3024 (59) | 2925 (57) | 2866 (56) | ||
Alcohol (%) | Heavy | 3999 (78) | 3844 (75) | 3695 (72) | 3634 (71) | <0.0001 |
Light | 974 (19) | 1128 (22) | 1180 (23) | 1126 (22) | ||
None | 154 (3) | 154 (3) | 257 (5) | 205 (4) |
DPI (mg/Day) | p Value | |||||
---|---|---|---|---|---|---|
0–1698 | 1699–2374 | 2375–3209 | >3209 | |||
Age (years) | 45 (±0.5) | 47 (±0.5) | 48 (±0.4) | 48 (±0.4) | 0.0003 | |
Sex (male %) | 1693 (33) | 2049 (40) | 2462 (48) | 3481 (68) | <0.0001 | |
Race (Non-Hispanic White %) | 3027 (59) | 3278 (64) | 3540 (69) | 3532 (69) | <0.0001 | |
BMI (kg/m2) | 29.8 (±0.2) | 29.2 (±0.2) | 29.3 (±0.2) | 28.7 (±0.2) | 0.0001 | |
History of hypertension (%) | 1744 (34) | 1741 (34) | 1693 (33) | 1638 (32) | 0.6 | |
History of diabetes (%) | 616 (12) | 512 (10) | 513 (10) | 461 (9) | 0.0006 | |
History of dyslipidemia (%) | 1539 (30) | 1741 (34) | 1744 (34) | 1792 (35) | 0.0002 | |
Cardiovascular disease (%) | 564 (11) | 461 (9) | 410 (8) | 410 (8) | 0.0002 | |
Thiazide use (%) | 359 (7) | 410 (8) | 410 (8) | 358 (7) | 0.4 | |
Smoking (%) | Active | 1180 (23) | 973 (19) | 821 (16) | 870 (17) | <0.0001 |
Past smoker | 975 (19) | 1127 (22) | 1334 (26) | 1485 (29) | ||
Not at all | 2975 (58) | 3022 (59) | 2975 (58) | 3020 (59) | ||
Alcohol (%) | Heavy | 4258 (83) | 3893 (76) | 3642 (71) | 3532 (69) | <0.0001 |
Light | 770 (15) | 1076 (21) | 1283 (25) | 1229 (24) | ||
None | 103 (2) | 154 (3) | 205 (4) | 870 (17) |
DSI/DPI | p Value | |||||
---|---|---|---|---|---|---|
<1.01 | 1.01–1.35 | 1.35–1.77 | >1.77 | |||
Age (years) | 52 (±0.4) | 49 (±0.4) | 46 (±0.4) | 41 (±0.4) | <0.0001 | |
Sex (male %) | 2181 (43) | 2477 (48) | 2553 (50) | 2686 (52) | <0.0001 | |
Race (Non-Hispanic White %) | 3500 (69) | 3457 (67) | 3369 (66) | 3100 (60) | <0.0001 | |
BMI (kg/m2) | 28.1 (±0.2) | 28.9 (±0.2) | 29.8 (±0.2) | 30.2 (±0.2) | <0.0001 | |
History of hypertension (%) | 1724 (34) | 1754 (34) | 1736 (34) | 1601 (31) | 0.05 | |
History of diabetes (%) | 507 (10) | 568 (11) | 511 (10) | 517 (10) | 0.6 | |
History of dyslipidemia (%) | 1877 (37) | 1858 (36) | 1685 (33) | 1395 (27) | <0.0001 | |
Cardiovascular disease (%) | 558 (11) | 464 (9) | 408 (8) | 362 (7) | 0.001 | |
Thiazide use (%) | 406 (8) | 413 (8) | 408 (8) | 362 (7) | 0.6 | |
Smoking (%) | Active | 862 (17) | 826 (16) | 919 (18) | 1137 (22) | <0.0001 |
Past smoker | 1319 (26) | 1393 (27) | 1225 (24) | 1033 (20) | ||
Not at all | 2891 (57) | 2941 (57) | 2961 (58) | 2996 (58) | ||
Alcohol (%) | Heavy | 3601 (71) | 3767 (73) | 3727 (73) | 4081 (79) | <0.0001 |
Light | 1217 (24) | 1135 (22) | 1123 (22) | 930 (18) | ||
None | 254 (5) | 258 (5) | 204 (4) | 207 (4) |
OR (95% CI) | p Value | ||
---|---|---|---|
DSI | |||
Continuous variable | 0.99 (0.99–1.00) | 0.2 | |
Categorial variable | Quartile 4 vs. 1 | 0.84 (0.68–1.04) | 0.1 |
Quartile 3 vs. 1 | 1.05 (0.85–1.30) | 0.6 | |
Quartile 2 vs. 1 | 0.95 (0.79–1.10) | 0.6 | |
≤2300 mg vs. >2300 mg | 1.10 (0.93–1.20) | 0.3 | |
DPI | |||
Continuous variable | 0.99 (0.99–0.99) | 0.02 | |
Categorial variable | Quartile 4 vs. 1 | 0.75 (0.60–0.94) | 0.01 |
Quartile 3 vs. 1 | 0.82 (0.67–1.01) | 0.06 | |
Quartile 2 vs. 1 | 0.82 (0.68–0.97) | 0.02 | |
>3500 mg vs. ≤3500 mg | 0.87 (0.72–1.04) | 0.1 | |
DSI/DPI | |||
Continuous variable | 1.10 (1.01–1.20) | 0.03 | |
Categorial variable | Quartile 4 vs. 1 | 1.30 (1.10–1.70) | 0.008 |
Quartile 3 vs. 1 | 1.20 (0.99–1.40) | 0.06 | |
Quartile 2 vs. 1 | 1.20 (0.91–1.50) | 0.2 | |
>0.6 vs. ≤0.6 | 1.20 (0.86–1.67) | 0.3 |
DSI | DPI | DSI/DPI | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | 1.02 (1.01–1.02) | <0.001 | 1.02 (1.01–1.02) | <0.001 | 1.02 (1.01–1.02) | <0.001 |
Sex (Male) | 1.20 (1.04–1.50) | 0.02 | 1.30 (1.10–1.50) | 0.005 | 1.2 (1.01–1.40) | 0.03 |
Race (White) | 2.30 (1.90–2.70) | <0.001 | 2.30 (2.00–2.70) | <0.001 | 2.3 (1.97–2.70) | <0.001 |
BMI (>30 kg/m2) | 1.70 (1.40–1.96) | <0.001 | 1.60 (1.40–1.90 | <0.001 | 1.6 (1.40–1.90) | <0.001 |
History of hypertension | 1.30 (1.04–1.50) | 0.02 | 1.20 (1.03–1.50) | 0.02 | 1.2 (1.03–1.50) | 0.02 |
History of diabetes | 1.50 (1.20–1.80) | <0.001 | 1.50 (1.20–1.80) | <0.001 | 1.5 (1.20–1.80) | <0.001 |
History of dyslipidemia | 1.20 (1.01–1.30 | 0.03 | 1.20 (1.01–1.30 | 0.03 | 1.2 (1.03–1.50) | 0.03 |
Cardiovascular disease | 1.20 (0.92–1.50) | 0.2 | 1.1 (0.91–1.50) | 0.3 | 1.2 (0.92–1.50) | 0.2 |
Thiazide use | 1.10 (0.86–1.30) | 0.6 | 1.1 (0.85–1.30) | 0.6 | 1.05 (0.85–1.30) | 0.6 |
Smoking (active) | 1.30 (1.10–1.50) | 0.01 | 1.3 (1.04–1.50) | 0.02 | 1.3 (1.10–1.50) | 0.01 |
Alcohol (heavy) | 0.49 (0.32–0.76) | 0.002 | 0.51 (0.33–0.78) | 0.002 | 0.5 (0.33–0.76) | 0.002 |
DSI | 0.99 (0.99–1.00) | 0.2 | N/A | N/A | N/A | N/A |
DPI | N/A | N/A | 0.99 (0.99–0.99) | 0.02 | N/A | N/A |
DSI/DPI | N/A | N/A | N/A | N/A | 1.1 (1.01–1.20) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Sammartino, C.; Chonchol, M. Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011–2018. Nutrients 2024, 16, 2198. https://doi.org/10.3390/nu16142198
Tang J, Sammartino C, Chonchol M. Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011–2018. Nutrients. 2024; 16(14):2198. https://doi.org/10.3390/nu16142198
Chicago/Turabian StyleTang, Jie, Cara Sammartino, and Michel Chonchol. 2024. "Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011–2018" Nutrients 16, no. 14: 2198. https://doi.org/10.3390/nu16142198
APA StyleTang, J., Sammartino, C., & Chonchol, M. (2024). Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011–2018. Nutrients, 16(14), 2198. https://doi.org/10.3390/nu16142198