Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Ethics
2.3. Selection Criteria
2.4. Intervention
2.5. Parameters
2.6. Statistical Analysis
3. Results
3.1. Efficacy Parameters in Elderly Patients
3.1.1. Proteinuria
3.1.2. Estimated Glomerular Filtration Rate
3.2. Secondary Parameters in Elderly Patients
3.2.1. Blood Pressure
3.2.2. Vascular Events
3.3. Safety Parameters in Elderly Patients
3.4. Adherence to the Intervention
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, M.; Zhang, X.; Wang, H. The Prevalence of Diabetes, Prediabetes and Associated Risk Factors in Hangzhou, Zhejiang Province: A Community-Based Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2022, 15, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Dev, S.; Khalid, M.U.; Siddenthi, S.M.; Noman, M.; John, C.; Akubuiro, C.; Haider, A.; Rani, R.; Kashif, M.; et al. The Bidirectional Link Between Diabetes and Kidney Disease: Mechanisms and Management. Cureus 2023, 15, e45615. [Google Scholar] [CrossRef] [PubMed]
- Huijben, J.A.; Kramer, A.; Kerschbaum, J.; de Meester, J.; Collart, F.; Arévalo, O.L.R.; Helve, J.; Lassalle, M.; Palsson, R.; Dam, M.T.; et al. Increasing numbers and improved overall survival of patients on kidney replacement therapy over the last decade in Europe: An ERA Registry study. Nephrol. Dial. Transplant. 2022, 38, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.-H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Prim. 2015, 1, 15018. [Google Scholar] [CrossRef] [PubMed]
- Jitraknatee, J.; Ruengorn, C.; Nochaiwong, S. Prevalence and Risk Factors of Chronic Kidney Disease among Type 2 Diabetes Patients: A Cross-Sectional Study in Primary Care Practice. Sci. Rep. 2020, 10, 6205. [Google Scholar] [CrossRef] [PubMed]
- Fabre, L.; Rangel, É.B. Age-related markers and predictors of diabetic kidney disease progression in type 2 diabetes patients: A retrospective cohort study. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188241242947. [Google Scholar] [CrossRef] [PubMed]
- Claessen, H.; Narres, M.; Kvitkina, T.; Wilk, A.; Friedel, H.; Günster, C.; Hoffmann, F.; Koch, M.; Jandeleit-Dahm, K.; Icks, A. Renal Replacement Therapy in People With and Without Diabetes in Germany, 2010-2016: An Analysis of More Than 25 Million Inhabitants. Diabetes Care 2021, 44, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacol. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low–Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-G.; Jiang, Z.-S.; Gong, P.-Y.; Zhang, D.-M.; Zou, Z.-W.; Zhang, Q.; Ma, H.-M.; Guo, Z.-G.; Zhao, J.-Y.; Dong, J.-J.; et al. Efficacy of low-protein diet for diabetic nephropathy: A systematic review of randomized controlled trials. Lipids Health Dis. 2018, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, B.R.; Minutolo, R.; De Nicola, L.; Bellizzi, V.; Catapano, F.; Iodice, C.; Rubino, R.; Conte, G. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int. 2003, 64, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Lafage, M.H.; Combe, C.; Fournier, A.; Aparicio, M. Ketodiet, physiological calcium intake and native vitamin D improve renal osteodystrophy. Kidney Int. 1992, 42, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, G.; Cupisti, A.; Morelli, E.; Meola, M.; Cozza, V.; Barsotti, M.; Giovannetti, S. Secondary Hyperparathyroidism in Severe Chronic Renal Failure Is Corrected by Very-Low Dietary Phosphate Intake and Calcium Carbonate Supplementation. Nephron 1998, 79, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Mircescu, G.; Gârneaţă, L.; Stancu, S.H.; Căpuşă, C. Effects of a Supplemented Hypoproteic Diet in Chronic Kidney Disease. J. Ren. Nutr. 2007, 17, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, G. Dietary treatment of diabetic nephropathy with chronic renal failure. Nephrol. Dial. Transplant. 1998, 13, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Moneta, G.L. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. Yearb. Vasc. Surg. 2009, 2009, 5–6. [Google Scholar] [CrossRef]
- Caldiroli, L.; Vettoretti, S.; Armelloni, S.; Mattinzoli, D.; Ikehata, M.; Molinari, P.; Alfieri, C.; Messa, P.; Castellano, G. Possible Benefits of a Low Protein Diet in Older Patients With CKD at Risk of Malnutrition: A Pilot Randomized Controlled Trial. Front. Nutr. 2022, 8, 782499. [Google Scholar] [CrossRef] [PubMed]
- Halter, J.B.; Musi, N.; McFarland Horne, F.; Crandall, J.P.; Goldberg, A.; Harkless, L.; Hazzard, W.R.; Huang, E.S.; Kirkman, M.S.; Plutzky, J.; et al. Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions. Diabetes 2014, 63, 2578–2589. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sharma, G.S.; Kumbala, D.R. Acute kidney injury in diabetic patients: A narrative review. Medicine 2023, 102, e33888. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, T.; Araki, A.; Tamura, Y.; Tanaka, S.; Fujihara, K.; Horikawa, C.; Aida, R.; Kamada, C.; Yoshimura, Y.; Moriya, T.; et al. Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes. Nutrients 2020, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Mihalache, A.; Garneata, L.; Mocanu, C.A.; Simionescu, T.P.; Mircescu, G. Low-salt low-protein diet and blood pressure control in patients with advanced diabetic kidney disease and heavy proteinuria. Int. Urol. Nephrol. 2021, 53, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Mocanu, C.A.; Simionescu, T.P.; Mocanu, A.E.; Dragomir, D.R.; Mircescu, G. Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease. Nutrients 2024, 16, 1687. [Google Scholar] [CrossRef] [PubMed]
- Froissart, M.; Rossert, J.; Jacquot, C.; Paillard, M.; Houillier, P. Predictive Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault Equations for Estimating Renal Function. J. Am. Soc. Nephrol. 2005, 16, 763–773. [Google Scholar] [CrossRef]
- Fontes, D.; Generoso S de, V.; Toulson Davisson Correia, M.I. Subjective global assessment: A reliable nutritional assessment tool to predict outcomes in critically ill patients. Clin. Nutr. 2014, 33, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Drüeke, T.B.; Parfrey, P.S. Summary of the KDIGO guideline on anemia and comment: Reading between the (guide)line(s). Kidney Int. 2012, 82, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009, 76 (Suppl. 113), S1–S2. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redón, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef]
- Lipman, M.L.; Schiffrin, E.L. What is the ideal blood pressure goal for patients with diabetes mellitus and nephropathy? Curr. Cardiol. Rep. 2012, 14, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef]
- Rhee, C.M.; Ahmadi, S.F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials: Low-protein diet for uraemia. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Signoriello, S.; Minutolo, R.; Di Iorio, B.; Nazzaro, P.; Garofalo, C.; Calella, P.; Chiodini, P.; De Nicola, L. No additional benefit of prescribing a very low-protein diet in patients with advanced chronic kidney disease under regular nephrology care: A pragmatic, randomized, controlled trial. Am. J. Clin. Nutr. 2022, 115, 1404–1417. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Miller, S.L.; Miller, K.B. Optimal protein intake in the elderly. Clin. Nutr. 2008, 27, 675–684. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Giannese, D.; Avino, M.; Cupisti, A. Energy Requirement for Elderly CKD Patients. Nutrients 2021, 13, 3396. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Brunori, G.; Viola, B.F.; Parrinello, G.; De Biase, V.; Como, G.; Franco, V.; Garibotto, G.; Zubani, R.; Cancarini, G.C. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am. J. Kidney Dis. 2007, 49, 569–580. [Google Scholar] [CrossRef]
- Pereira, R.A.; Alvarenga, M.d.S.; de Andrade, L.S.; Teixeira, R.R.; Teixeira, P.C.; da Silva, W.R.; Cuppari, L. Effect of a Nutritional Behavioral Intervention on Intuitive Eating in Overweight Women With Chronic Kidney Disease. J. Ren. Nutr. 2023, 33, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Cederholm, T.; Avesani, C.M.; Bakker, S.J.; Bellizzi, V.; Cuerda, C.; Cupisti, A.; Sabatino, A.; Schneider, S.; Torreggiani, M.; et al. Nutritional status and the risk of malnutrition in older adults with chronic kidney disease—Implications for low protein intake and nutritional care: A critical review endorsed by ERN-ERA and ESPEN. Clin. Nutr. 2023, 42, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Rule, A.D. Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease. Nephron 2016, 134, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Di Iorio, B.R.; De Nicola, L.; Minutolo, R.; Zamboli, P.; Trucillo, P.; Catapano, F.; Cristofano, C.; Scalfi, L.; Conte, G.; et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007, 71, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Nojima, J.; Meguro, S.; Ohkawa, N.; Furukoshi, M.; Kawai, T.; Itoh, H. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc. Jpn. Acad. Ser. B 2017, 93, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, J.; Tsunoda, R.; Nagai, K.; Kai, H.; Saito, C.; Ito, Y.; Asahi, K.; Kondo, M.; Iseki, K.; Iseki, C.; et al. Comparison of annual eGFR decline among primary kidney diseases in patients with CKD G3b-5: Results from a REACH-J CKD cohort study. Clin. Exp. Nephrol. 2021, 25, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Diabetic Nephropathy: Scope of the Problem. In Diabetes and Kidney Disease; Lerma, E.V., Batuman, V., Eds.; Springer: New York, NY, USA, 2014; pp. 9–14. [Google Scholar] [CrossRef]
- Appleby, P.N.; Davey, G.K.; Key, T.J. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002, 5, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Windahl, K. Nutritional Status, Body Composition and Diet in Older Adults with Chronic Kidney Disease. Ph.D. Thesis, Karolinska Institutet, Stockholm, Sweden, 2022. [Google Scholar]
- Windahl, K.; Chesnaye, N.C.; Irving, G.F.; Stenvinkel, P.; Almquist, T.; Lidén, M.K.; Drechsler, C.; Szymczak, M.; Krajewska, M.; de Rooij, E.; et al. The safety of a low protein diet in older adults with advanced chronic kidney disease. Nephrol. Dial. Transplant. 2024, gfae077. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, Y.S.; Kim, Y.H.; Chung, W.; Park, S.K.; Choi, K.H.; Ahn, C.; Oh, K.-H. Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study. Nutrients 2019, 11, 121. [Google Scholar] [CrossRef] [PubMed]
Age (years) | 75 (71 to 80) |
Sex (male %) * | 64 |
Proteinuria (g/g creatinine) | 4.8 (4.6 to 5.2) |
eGFR (mL/min) | 11.7 (11.2 to 12.2) |
Slope of eGFR (mL/min per month) i | −0.49 (−0.59 to −0.39) |
Systolic blood pressure | 130 (110 to 150) |
Diastolic blood pressure | 70 (65 to 80) |
Mean arterial pressure (mmHg) | 93 (83 to 102) |
Pulse pressure (mmHg) | 70 (50 to 75) |
Vascular events (%) * | 0 |
Body mass index (kg/m2) | 27.1 (25.8 to 28.2) |
Subjective global assessment A (%) * | 100 |
Serum albumin (g/dL) | 3.9 (3.8 to 4.1) |
C-reactive protein (mg/L) | 13 (12 to 15) |
Glycated hemoglobin (%) * | 8.4 (8.0 to 8.7) |
Estimated protein intake (g/kg-day) | 0.90 (0.84 to 0.97) |
RAASi (%) * | 90 |
Furosemide (%) * | 51 |
Baseline | End of Study | |||||
---|---|---|---|---|---|---|
Non-Elderly Patients (n = 53) | Elderly Patients (n = 39) | p | Non-Elderly Patients (n = 53) | Elderly Patients (n = 39) | p | |
Demographic characteristics | ||||||
Age (years) | 57 (53 to 58) | 75 (72 to 80) | <0.0001 | |||
Sex (male, %) * | 68 | 64 | 0.70 | |||
Efficacy parameters | ||||||
Proteinuria (g/g creatinine) | 5.2 (5.0 to 5.3) | 5.1 (4.8 to 5.3) | 0.65 | 1.6 (1.3 to 1.8) | 1.5 (1.0 to 1.8) | 0.44 |
Slope of proteinuria (g/g per month) | −0.05 (−0.37 to 0.17) i | 0.00 (−0.40 to 0.17) i | 0.52 | −0.29 (−0.32 to −0.26) ii | −0.32 (−0.38 to −0.27) ii | 0.20 |
eGFR (mL/min) | 12.6 (11.6 to 13.6) | 12.6 (11.2 to 13.8) | 0.38 | 11.0 (10.4 to 12.0) | 10.7 (9.8 to 11.7) | 0.20 |
Slope of eGFR (mL/min per month) | 0.20 (0.14 to 0.49) i | 0.22 (0.16 to 0.41) i | 0.98 | −0.12 (−0.25 to −0.08) ii | −0.10 (−0.15 to −0.08) ii | 0.24 |
Secondary parameters | ||||||
S-BP (mmHg) | 135 (105 to 140) | 140 (120 to 160) | 0.10 | 110 (105 to 130) | 130 (115 to 145) | 0.11 |
D-BP (mmHg) | 85 (75 to 90) | 75 (65 to 80) | 0.008 | 65 (65 to 70) | 60 (60 to 65) | 0.04 |
MAP (mmHg) | 99 (90 to 109) | 99 (90 to 109) | 0.80 | 88 (85 to 91) | 86 (79 to 91) | 0.96 |
Vascular events (%) * | 0 | 0 | - | 22.6 | 15.4 | 0.39 |
Cardiovascular events (%)* | 0 | 0 | - | 13.2 | 2.6 | 0.07 |
Cerebrovascular events (%) * | 0 | 0 | - | 13.2 | 12.8 | 0.96 |
Safety parameters | ||||||
BMI (kg/m2) | 27.3 (25.9 to 29.0) | 27.1 (25.5 to 28.1) | 0.58 | 26.5 (25.1 to 27.1) | 25.7 (24.7 to 27.0) | 0.49 |
SGA (A, %) * | 100 | 100 | - | 100 | 100 | - |
Serum albumin (g/dL) | 4.0 (3.8 to 4.0) | 3.9 (3.9 to 4.0) | 0.71 | 4.1 (4.1 to 4.2) | 4.2 (4.0 to 4.3) | 0.14 |
CRP (mg/L) | 14 (12 to 14) | 14 (12 to 15) | 0.49 | 9 (8 to 10) | 8 (7 to 9) | 0.31 |
Glycated hemoglobin (%) * | 8.1 (8.0 to 8.4) | 8.1 (8.0 to 8.3) | 0.32 | 8.1 (7.8 to 8.4) | 8.1 (7.8 to 8.3) | 0.95 |
Estimated energy intake (kcal/kg-day) | 31.3 (30.2 to 32.6) | 31.2 (30.2 to 32.6) | 0.69 | 30.0 (28.5 to 31.8) | 31.3 (28.5 to 33.0) | 0.46 |
Adherence to diet | ||||||
Estimated protein intake (g/kg-day) | 0.68 (0.65 to 0.70) | 0.68 (0.65 to 0.69) | 0.71 | 0.64 (0.63 to 0.66) | 0.64 (0.63 to 0.67) | 0.91 |
Therapy | ||||||
RAASI (%) * | 100 | 100 | - | 79.2 | 69.2 | 0.27 |
Furosemide (%) * | 64.2 | 59 | 0.61 | 84.9 | 89.7 | 0.50 |
End of Study—Baseline Difference (Elderly Patients) | Sig. | End of Study—Baseline Difference (Non-Elderly Patients) | Sig. | Sig. Δ | |
---|---|---|---|---|---|
Efficacy parameters | |||||
Proteinuria (g/g creatinine) | −3.6 (−3.8 to −3.1) | <0.0001 | −3.4 (−3.8 to −3.2) | <0.0001 | 0.91 |
eGFR (mL/min) | −1.5 (−1.9 to −1.1) | <0.0001 | −1.5 (−1.9 to −1.1) | <0.0001 | 0.94 |
Secondary parameters | |||||
Systolic blood pressure (mmHg) | −10 (−40 to 8) | 0.10 | −10 (−25 to 10) | 0.26 | 0.66 |
Diastolic blood pressure (mmHg) | −10 (−15 to −5) | <0.0001 | −15 (−15 to −10) | <0.0001 | 0.17 |
Mean arterial pressure (mmHg) | −11 (−19 to −7) | <0.0001 | −11 (−24 to −6) | 0.002 | 0.83 |
Vascular events (%) * | 15.4 | 0.01 | 23 | 0.0005 | 0.39 |
Cardiovascular events (%) * | 2.6 | 0.32 | 13 | 0.008 | 0.07 |
Cerebrovascular events (%) * | 12.8 | 0.03 | 13 | 0.008 | 0.96 |
Safety parameters | |||||
Body mass index (kg/m2) | −1.0 (−1.9 to −0.6) | 0.0003 | −1.2 (−1.6 to −0.4) | <0.0001 | 0.96 |
Subjective global assessment A (%) | 0 | - | 0 | - | - |
Serum albumin (g/dL) | 0.22 (0.0 to 0.35) | 0.02 | 0.2 (0.1 to 0.4) | 0.002 | 0.66 |
C-reactive protein (mg/L) | −5 (−7 to −3) | <0.0001 | −4 (−6 to −3) | <0.0001 | 0.26 |
Glycated hemoglobin (%) | −0.03 (−0.6 to 0.2) | 0.87 | −0.3 (−0.9 to 0.2) | 0.09 | 0.21 |
Estimated energy intake (kcal/kg-day) | −0.3 (−2.7 to 2.7) | 1 | −0.3 (−3.0 to 0.8) | 1 | 0.61 |
Adherence to energy intake (%) * | 2 | 0.76 | 2 | 0.78 | 0.92 |
Adherence the diet | |||||
Estimated protein intake (g/kg-day) | −0.03 (−0.05 to 0.00) | 0.02 | −0.05 (−0.06 to 0.01) | 0.09 | 0.73 |
Adherence to protein restriction (%) * | 38.5 | 0.001 | 28.3 | 0.01 | 0.36 |
Therapy | |||||
RAASi (% patients) * | −31 | 0.0005 | −21 | 0.0009 | 0.27 |
Furosemide (% patients) * | 31 | 0.003 | 21 | 0.02 | 0.84 |
Proteinuria | eGFR | ||||||
---|---|---|---|---|---|---|---|
df | SS | F | p | SS | F | p | |
Elderly | 1 | 0.04 | 0.58 | 0.45 | 0.08 | 1.92 | <0.0001 |
Study moment | 1 | 6.51 | 106.57 | <0.0001 | 0.22 | 5.39 | 0.17 |
Elderly × Study moment | 1 | 0.0001 | 0.002 | 0.97 | 0.001 | 0.02 | 0.02 |
Model | 3 | 6.73 | 36.74 | <0.001 | 0.35 | 2.88 | 0.04 |
Error | 548 | 21.92 | 33.46 |
Elderly | B | SE | Beta | 95% CI | Sig. | |
---|---|---|---|---|---|---|
(Constant) | −1.81 | 0.83 | −3.46 | −0.16 | 0.03 | |
eGFR | 0.86 | 0.09 | 0.60 | 0.69 | 1.03 | <0.0001 |
Estimated protein intake | 0.75 | 0.20 | 0.23 | 0.35 | 1.14 | <0.0001 |
Glycated hemoglobin | 0.64 | 0.31 | 0.13 | 0.04 | 1.25 | 0.04 |
Body mass index | 0.54 | 0.45 | 0.07 | −0.35 | 1.44 | 0.23 |
Mean arterial blood pressure | 0.11 | 0.20 | 0.03 | −0.29 | 0.50 | 0.60 |
Model of linear regression; adjusted R2 = 0.48; p ≤ 0.0001 Selecting cases for Elderly | ||||||
Non-elderly | B | SE | Beta | 95% CI | Sig. | |
(Constant) | −2.86 | 0.67 | −4.17 | −1.55 | <0.0001 | |
eGFR | 0.71 | 0.07 | 0.56 | 0.57 | 0.84 | <0.0001 |
Estimated protein intake | 0.57 | 0.17 | 0.18 | 0.24 | 0.89 | 0.001 |
Body mass index | 1.28 | 0.38 | 0.18 | 0.54 | 2.02 | 0.001 |
Mean arterial blood pressure | 0.40 | 0.21 | 0.10 | −0.02 | 0.81 | 0.06 |
Glycated hemoglobin | 0.14 | 0.26 | 0.03 | −0.38 | 0.66 | 0.60 |
Model of linear regression; adjusted R2 = 0.49; p ≤ 0.0001 Selecting cases for Non-elderly |
Elderly | B | SE | Beta | 95% CI | Sig. | |
---|---|---|---|---|---|---|
(Constant) | 0.49 | 0.29 | −0.09 | 1.06 | 0.10 | |
Proteinuria | 0.47 | 0.05 | 0.67 | 0.38 | 0.56 | <0.0001 |
Estimated protein intake | −0.34 | 0.15 | −0.15 | −0.64 | −0.05 | 0.02 |
Mean arterial blood pressure | 0.11 | 0.15 | 0.05 | −0.18 | 0.41 | 0.45 |
Model of linear regression adjusted R2 = 0.41; p ≤ 0.0001; Selecting cases for Elderly | ||||||
Non-elderly | B | SE | Beta | 95% CI | Sig. | |
(Constant) | 0.27 | 0.35 | −0.41 | 0.95 | 0.44 | |
Proteinuria | 0.47 | 0.05 | 0.60 | 0.38 | 0.57 | <0.0001 |
Estimated protein intake | −0.22 | 0.14 | −0.09 | −0.49 | 0.06 | 0.12 |
Mean arterial blood pressure | 0.24 | 0.18 | 0.08 | −0.11 | 0.59 | 0.18 |
Model of linear regression adjusted R2 = 0.36; p = 0.000; Selecting cases for Non-elderly |
B ± S.E. | Exp(B) (95% CI) | Sig. | |
---|---|---|---|
eGFR | −5.28 ± 1.48 | 0.01 (0.00 to 0.09) | 0.00 |
Mean arterial pressure | 1.06 ± 0.51 | 2.88 (1.07 to 7.74) | 0.04 |
Body mass index | 0.33 ± 0.38 | 1.38 (0.66 to 2.90) | 0.39 |
Glycated hemoglobin | 0.67 ± 0.43 | 1.96 (0.85 to 4.51) | 0.11 |
Estimated protein intake | −0.27 ± 1.06 | 0.77 (0.10 to 5.96) | 0.80 |
Estimated energy intake | −0.54 ± 0.36 | 0.59 (0.29 to 1.18) | 0.13 |
Elderly * | 0.81 ± 0.65 | 2.24 (0.63 to 7.94) | 0.21 |
Constant | −9.35 ± 2.22 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garneata, L.; Mocanu, C.-A.; Mircescu, G. Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease. Nutrients 2024, 16, 2230. https://doi.org/10.3390/nu16142230
Garneata L, Mocanu C-A, Mircescu G. Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease. Nutrients. 2024; 16(14):2230. https://doi.org/10.3390/nu16142230
Chicago/Turabian StyleGarneata, Liliana, Carmen-Antonia Mocanu, and Gabriel Mircescu. 2024. "Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease" Nutrients 16, no. 14: 2230. https://doi.org/10.3390/nu16142230
APA StyleGarneata, L., Mocanu, C. -A., & Mircescu, G. (2024). Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease. Nutrients, 16(14), 2230. https://doi.org/10.3390/nu16142230