Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and HI Injury Model
2.2. MSC Culture
2.3. Treatment: Nutritional Lysoveta Supplementation and/or MSC Administration
2.4. Immunohistochemistry
2.5. Behavioral Testing
2.5.1. Open Field Task
2.5.2. Spatial Memory
2.5.3. Cylinder Rearing Task
2.6. SH-SY5Y Culture
2.6.1. Oxygen Glucose Deprivation Model
2.6.2. Reactive Oxygen Species (ROS) Model: H2O2
2.6.3. DNA Damage Model: Etoposide
2.6.4. Methylthiazolyldiphenyl-Tetrazolium Bromide (MTT) Assay
2.7. Statistical Analysis
3. Results
3.1. Oral Lysoveta Supplementation Reduces HI Brain Injury without Affecting Body Weight
3.1.1. Lysoveta Supplementation Does Not Affect Body Weight of HI-Injured Animals
3.1.2. Lysoveta Supplementation Reduces Gray and White Matter Loss in HI-Injured Animals
3.2. Oral Lysoveta Supplementation Does Not Improve Functional Outcomes after HI Injury
3.2.1. Lysoveta Supplementation Does Not Reduce Anxiety-Like Behavior after HI Injury
3.2.2. Lysoveta Supplementation Does Not Ameliorate Spatial Memory Impairment after HI Injury
3.2.3. Lysoveta Supplementation Does Not Reduce Sensorimotor Impairment after HI Injury
3.3. Lysoveta Supplementation Protects Neurons against Oxygen Glucose Deprivation by Reducing Injury from Oxidative Stress
3.4. The Combination of Oral Lysoveta Supplementation and Intranasal MSC Therapy Does Not Improve Gray or White Matter Loss Compared to MSC Therapy Alone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of Neonatal Encephalopathy and Hypoxic-Ischaemic Encephalopathy. Early Hum. Dev. 2010, 86, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Greco, P.; Nencini, G.; Piva, I.; Scioscia, M.; Volta, C.A.; Spadaro, S.; Neri, M.; Bonaccorsi, G.; Greco, F.; Cocco, I.; et al. Pathophysiology of Hypoxic–Ischemic Encephalopathy: A Review of the Past and a View on the Future. Acta Neurol. Belg. 2020, 120, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Kariholu, U.; Montaldo, P.; Markati, T.; Lally, P.; Pryce, R.; Teiserskas, J.; Liow, N.; Oliveira, V.; Soe, A.; Shankaran, S.; et al. Therapeutic Hypothermia for Mild Neonatal Encephalopathy: A Systematic Review and Meta-Analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, F225–F228. [Google Scholar] [CrossRef] [PubMed]
- Tagin, M.A.; Woolcott, C.G.; Vincer, M.J.; Whyte, R.K.; Stinson, D.A. Hypothermia for Neonatal Hypoxic Ischemic Encephalopathy: An Updated Systematic Review and Meta-Analysis. Arch. Pediatr. Adolesc. Med. 2012, 166, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Keunen, K.; Van Elburg, R.M.; Van Bel, F.; Benders, M.J.N.L. Impact of Nutrition on Brain Development and Its Neuroprotective Implications Following Preterm Birth. Pediatr. Res. 2015, 77, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Ghazale, H.; Ramadan, N.; Mantash, S.; Zibara, K.; El-Sitt, S.; Darwish, H.; Chamaa, F.; Boustany, R.M.; Mondello, S.; Abou-Kheir, W.; et al. Docosahexaenoic Acid (DHA) Enhances the Therapeutic Potential of Neonatal Neural Stem Cell Transplantation Post—Traumatic Brain Injury. Behav. Brain Res. 2018, 340, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Martinat, M.; Rossitto, M.; Di Miceli, M.; Layé, S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021, 13, 1185. [Google Scholar] [CrossRef] [PubMed]
- Sambra, V.; Echeverria, F.; Valenzuela, A.; Chouinard-Watkins, R.; Valenzuela, R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021, 13, 986. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Huang, B.X.; Spector, A.A. Molecular and Signaling Mechanisms for Docosahexaenoic Acid-Derived Neurodevelopment and Neuroprotection. Int. J. Mol. Sci. 2022, 23, 4635. [Google Scholar] [CrossRef]
- Klievik, B.J.; Tyrrell, A.D.; Chen, C.T.; Bazinet, R.P. Measuring Brain Docosahexaenoic Acid Turnover as a Marker of Metabolic Consumption. Pharmacol. Ther. 2023, 248, 108437. [Google Scholar] [CrossRef]
- Lapillonne, A.; Groh-Wargo, S.; Lozano Gonzalez, C.H.; Uauy, R. Lipid Needs of Preterm Infants: Updated Recommendations. J. Pediatr. 2013, 162, S37–S47. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.P.; Wong, B.H.; Chin, C.F.; Galam, D.L.A.; Foo, J.C.; Wong, L.C.; Ghosh, S.; Wenk, M.R.; Cazenave-Gassiot, A.; Silver, D.L. The Lysolipid Transporter Mfsd2a Regulates Lipogenesis in the Developing Brain. PLoS Biol. 2018, 16, e2006443. [Google Scholar] [CrossRef] [PubMed]
- Sugasini, D.; Thomas, R.; Yalagala, P.C.R.; Tai, L.M.; Subbaiah, P.V. Dietary Docosahexaenoic Acid (DHA) as Lysophosphatidylcholine, but Not as Free Acid, Enriches Brain DHA and Improves Memory in Adult Mice. Sci. Rep. 2017, 7, 11263. [Google Scholar] [CrossRef] [PubMed]
- Sugasini, D.; Yalagala, P.C.R.; Goggin, A.; Tai, L.M.; Subbaiah, P.V. Enrichment of Brain Docosahexaenoic Acid (DHA) Is Highly Dependent upon the Molecular Carrier of Dietary DHA: Lysophosphatidylcholine Is More Efficient than Either Phosphatidylcholine or Triacylglycerol. J. Nutr. Biochem. 2019, 74, 108231. [Google Scholar] [CrossRef]
- Yalagala, P.C.R.; Sugasini, D.; Dasarathi, S.; Pahan, K.; Subbaiah, P.V. Dietary Lysophosphatidylcholine-EPA Enriches Both EPA and DHA in the Brain: Potential Treatment for Depression. J. Lipid Res. 2019, 60, 566–578. [Google Scholar] [CrossRef]
- Brandt, M.J.V.; Nijboer, C.H.; Nessel, I.; Mutshiya, T.R.; Michael-titus, A.T.; Counotte, D.S.; Schipper, L.; van der Aa, N.E.; Benders, M.J.N.L.; de Theije, C.G.M. Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-dependent Manner in a Mouse Model of Perinatal Hypoxic-ischemic Brain Injury. Nutrients 2022, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, H.; Okumura, A.; Kitamura, Y.; Shoji, H.; Shimizu, T. Effect of Hypoxic-Ischemic Insults on the Composition of Fatty Acids in the Brain of Neonatal Rats. Ann. Nutr. Metab. 2013, 62, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Manual Kollareth, D.J.; Zirpoli, H.; Ten, V.S.; Deckelbaum, R.J. Acute Injection of Omega-3 Triglyceride Emulsion Provides Very Similar Protection as Hypothermia in a Neonatal Mouse Model of Hypoxic-Ischemic Brain Injury. Front. Neurol. 2021, 11, 618419. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.R.; Mozurkewich, E.; Liu, Y.Q.; Barks, J. Docosahexaenoic Acid Pretreatment Confers Neuroprotection in a Rat Model of Perinatal Cerebral Hypoxia-Ischemia. Am. J. Obs. Obstet. Gynecol. 2009, 200, 305.e1–305.e6. [Google Scholar] [CrossRef]
- Arteaga, O.; Revuelta, M.; Urigüen, L.; Martínez-Millán, L.; Hilario, E.; Álvarez, A. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia–Ischemia in Rats. Mol. Neurobiol. 2017, 54, 7137–7155. [Google Scholar] [CrossRef]
- Williams, J.J.; Mayurasakorn, K.; Vannucci, S.J.; Mastropietro, C.; Bazan, N.G.; Ten, V.S.; Deckelbaum, R.J. N-3 Fatty Acid Rich Triglyceride Emulsions Are Neuroprotective after Cerebral Hypoxic-Ischemic Injury in Neonatal Mice. PLoS ONE 2013, 8, e56233. [Google Scholar] [CrossRef]
- Solberg, R.; Longini, M.; Proietti, F.; Perrone, S.; Felici, C.; Porta, A.; Saugstad, O.D.; Buonocore, G. DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets. Neonatology 2017, 112, 1–8. [Google Scholar] [CrossRef]
- Mayurasakorn, K.; Niatsetskaya, Z.V.; Sosunov, S.A.; Williams, J.J.; Zirpoli, H.; Vlasakov, I.; Deckelbaum, R.J.; Ten, V.S. DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice. PLoS ONE 2016, 11, e0160870. [Google Scholar] [CrossRef]
- Donega, V.; Nijboer, C.H.; Braccioli, L.; Slaper-Cortenbach, I.; Kavelaars, A.; Van Bel, F.; Heijnen, C.J. Intranasal Administration of Human MSC for Ischemic Brain Injury in the Mouse: In Vitro and in Vivo Neuroregenerative Functions. PLoS ONE 2014, 9, e112339. [Google Scholar] [CrossRef]
- Donega, V.; Nijboer, C.H.; van Velthoven, C.T.J.; Youssef, S.A.; de Bruin, A.; van Bel, F.; Kavelaars, A.; Heijnen, C.J. Assessment of Long-Term Safety and Efficacy of Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Injury in the Mouse. Pediatr. Res. 2015, 78, 520–526. [Google Scholar] [CrossRef]
- Donega, V.; Nijboer, C.H.; van Tilborg, G.; Dijkhuizen, R.M.; Kavelaars, A.; Heijnen, C.J. Intranasally Administered Mesenchymal Stem Cells Promote a Regenerative Niche for Repair of Neonatal Ischemic Brain Injury. Exp. Neurol. 2014, 261, 53–64. [Google Scholar] [CrossRef]
- Baak, L.M.; Wagenaar, N.; Van Der Aa, N.E.; Groenendaal, F.; Dudink, J.; Tataranno, M.L.; Mahamuud, U. Feasibility and Safety of Intranasally Administered Mesenchymal Stromal Cells after Perinatal Arterial Ischaemic Stroke in the Netherlands (PASSIoN): A First-in-Human, Open-Label Intervention Study. Lancet Neurol. 2022, 21, 528–536. [Google Scholar] [CrossRef]
- Salem, H.K.; Thiemermann, C. Mesenchymal Stromal Cells: Current Understanding and Clinical Status. Stem Cells 2010, 28, 585–596. [Google Scholar] [CrossRef]
- Vannucci, R.C.; Vannucci, S.J. Perinatal Hypoxic-Ischemic Brain Damage: Evolution of an Animal Model. Dev. Neurosci. 2005, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Herz, J.; Köster, C.; Reinboth, B.S.; Dzietko, M.; Hansen, W.; Sabir, H.; van Velthoven, C.; Bendix, I.; Felderhoff-Müser, U. Interaction between Hypothermia and Delayed Mesenchymal Stem Cell Therapy in Neonatal Hypoxic-Ischemic Brain Injury. Brain Behav. Immun. 2018, 70, 118–130. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.A.; Djuliannisaa, Z.; Petraki, M.; Paton, M.C.B.; Penny, T.R.; Sutherland, A.E.; Castillo-Melendez, M.; Novak, I.; Jenkin, G.; Fahey, M.C.; et al. Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic–Ischemic Brain Injury. Int. J. Mol. Sci. 2019, 20, 2449. [Google Scholar] [CrossRef]
- van Velthoven, C.T.J.; Kavelaars, A.; van Bel, F.; Heijnen, C.J. Mesenchymal Stem Cell Treatment after Neonatal Hypoxic-Ischemic Brain Injury Improves Behavioral Outcome and Induces Neuronal and Oligodendrocyte Regeneration. Brain Behav. Immun. 2010, 24, 387–393. [Google Scholar] [CrossRef]
- Serrenho, I.; Rosado, M.; Dinis, A.; Cardoso, C.M.; Grãos, M.; Manadas, B.; Baltazar, G. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int. J. Mol. Sci. 2021, 22, 3142. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, N.; Köster, C.; Mouloud, Y.; Börger, V.; Felderhoff-Müser, U.; Bendix, I.; Giebel, B.; Herz, J. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Reduce Neuroinflammation, Promote Neural Cell Proliferation and Improve Oligodendrocyte Maturation in Neonatal Hypoxic-Ischemic Brain Injury. Front. Cell. Neurosci. 2020, 14, 601176. [Google Scholar] [CrossRef] [PubMed]
- Donega, V.; van Velthoven, C.T.J.; Nijboer, C.H.; van Bel, F.; Kas, M.J.H.; Kavelaars, A.; Heijnen, C.J. Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Damage: Long-Term Cognitive and Sensorimotor Improvement. PLoS ONE 2013, 8, e51253. [Google Scholar] [CrossRef]
- Percie, N.; Hurst, V.; Id, A.A.; Id, S.A.; Id, T.A.; Baker, M.; Id, W.J.B.; Id, A.C.; Id, I.C.C.; Id, U.D.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Vannucci, S.J.; Back, S.A. The Vannucci Model of Hypoxic-Ischemic Injury in the Neonatal Rodent: 40 Years Later. Dev. Neurosci. 2022, 44, 186–193. [Google Scholar] [CrossRef]
- Jene, T.; Gassen, N.C.; Opitz, V.; Endres, K.; Müller, M.B.; van der Kooij, M.A. Temporal Profiling of an Acute Stress-Induced Behavioral Phenotype in Mice and Role of Hippocampal DRR1. Psychoneuroendocrinology 2018, 91, 149–158. [Google Scholar] [CrossRef]
- Yakovlev, A.G.; Di Giovanni, S.; Wang, G.; Liu, W.; Stoica, B.; Faden, A.I. BOK and NOXA Are Essential Mediators of P53-Dependent Apoptosis. J. Biol. Chem. 2004, 279, 28367–28374. [Google Scholar] [CrossRef]
- van Velthoven, C.; van de Looij, Y.; Kavelaars, A.; Zijlstra, J.; van Bel, F.; Huppi, P.; Sizonenko, S.; Heijnen, C. Mesenchymal Stem Cells Restore Cortical Rewiring after Neonatal Ischemia in Mice. Ann. Neurol. 2012, 71, 785–796. [Google Scholar] [CrossRef]
- Archambault, J.; Moreira, A.; McDaniel, D.; Winter, L.; Sun, L.Z.; Hornsby, P. Therapeutic Potential of Mesenchymal Stromal Cells for Hypoxic Ischemic Encephalopathy: A Systematic Review and Meta-Analysis of Preclinical Studies. PLoS ONE 2017, 12, e0189895. [Google Scholar] [CrossRef]
- Park, W.S.; Sung, S.I.; Ahn, S.Y.; Yoo, H.S.; Sung, D.K.; Im, G.H.; Choi, S.J.; Chang, Y.S. Hypothermia Augments Neuroprotective Activity of Mesenchymal Stem Cells for Neonatal Hypoxic-Ischemic Encephalopathy. PLoS ONE 2015, 10, e0120893. [Google Scholar] [CrossRef]
- Ahn, S.H.; Lim, S.J.; Ryu, Y.M.; Park, H.R.; Suh, H.J.; Han, S.H. Absorption Rate of Krill Oil and Fish Oil in Blood and Brain of Rats. Lipids Health Dis. 2018, 17, 162. [Google Scholar] [CrossRef]
- Huang, W.L.; King, V.R.; Curran, O.E.; Dyall, S.C.; Ward, R.E.; Lal, N.; Priestley, J.V.; Michael-Titus, A.T. A Combination of Intravenous and Dietary Docosahexaenoic Acid Significantly Improves Outcome after Spinal Cord Injury. Brain 2007, 130, 3004–3019. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Campillo, M.; Ruiz-Palacios, M.; Ruiz-Alcaraz, A.J.; Prieto-Sánchez, M.T.; Blanco-Carnero, J.E.; Zornoza, M.; Ruiz-Pastor, M.J.; Demmelmair, H.; Sánchez-Solís, M.; Koletzko, B.; et al. Child Head Circumference and Placental MFSD2a Expression Are Associated to the Level of MFSD2a in Maternal Blood During Pregnancy. Front. Endocrinol. 2020, 11, 38. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Chang, J.; Zhang, C.; Li, L.; Dai, Y.; Yang, H.; Wang, Y. Mfsd2a Attenuated Hypoxic-Ischemic Brain Damage via Protection of the Blood–Brain Barrier in Mfat-1 Transgenic Mice. Cell. Mol. Life Sci. 2023, 80, 71. [Google Scholar] [CrossRef]
- Pal, A.; Metherel, A.H.; Fiabane, L.; Buddenbaum, N.; Bazinet, R.P.; Shaikh, S.R. Do Eicosapentaenoic Acid and Docosahexaenoic Acid Have the Potential to Compete against Each Other? Nutrients 2020, 12, 3718. [Google Scholar] [CrossRef] [PubMed]
- Huun, M.U.; Garberg, H.T.; Escobar, J.; Chafer, C.; Vento, M.; Holme, I.M.; Saugstad, O.D.; Solberg, R. DHA Reduces Oxidative Stress Following Hypoxia-Ischemia in Newborn Piglets: A Study of Lipid Peroxidation Products in Urine and Plasma. J. Perinat. Med. 2018, 46, 209–217. [Google Scholar] [CrossRef]
- Katakura, M.; Hashimoto, M.; Okui, T.; Shahdat, H.M.; Matsuzaki, K.; Shido, O. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells. Stem Cells Int. 2013, 2013, 490476. [Google Scholar] [CrossRef]
- Katakura, M.; Hashimoto, M.; Shahdat, H.M.; Gamoh, S.; Okui, T.; Matsuzaki, K.; Shido, O. Docosahexaenoic Acid Promotes Neuronal Differentiation by Regulating Basic Helix-Loop-Helix Transcription Factors and Cell Cycle in Neural Stem Cells. Neuroscience 2009, 160, 651–660. [Google Scholar] [CrossRef]
- Vaes, J.E.G.; van Kammen, C.M.; Trayford, C.; van der Toorn, A.; Ruhwedel, T.; Benders, M.J.N.L.; Dijkhuizen, R.M.; Möbius, W.; van Rijt, S.H.; Nijboer, C.H. Intranasal Mesenchymal Stem Cell Therapy to Boost Myelination after Encephalopathy of Prematurity. Glia 2021, 69, 655–680. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Hoggatt, A.F.; Hoggatt, J.; Honerlaw, M.; Pelus, L.M. A Spoonful of Sugar Helps the Medicine Go down: A Novel Technique to Improve Oral Gavage in Mice. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 329–334. [Google Scholar] [PubMed]
- Miller, J.T.; Bartley, J.H.; Wimborne, H.J.C.; Walker, A.L.; Hess, D.C.; Hill, W.D.; Carroll, J.E. The Neuroblast and Angioblast Chemotaxic Factor SDF-1 (CXCL12) Expression Is Briefly up Regulated by Reactive Astrocytes in Brain Following Neonatal Hypoxic-Ischemic Injury. BMC Neurosci. 2005, 6, 63. [Google Scholar] [CrossRef]
- Hill, W.D.; Hess, D.C.; Martin-Studdard, A.; Carothers, J.J.; Zheng, J.; Hale, D.; Maeda, M.; Fagan, S.C.; Carroll, J.E.; Conway, S.J. SDF-1 (CXCL12) Is Upregulated in the Ischemic Penumbra Following Stroke: Association with Bone Marrow Cell Homing to Injury. J. Neuropathol. Exp. Neurol. 2004, 63, 84–96. [Google Scholar] [CrossRef]
- Douglas-Escobar, M.; Weiss, M.D. Hypoxic-Ischemic Encephalopathy: A Review for the Clinician. JAMA Pediatr. 2015, 169, 397–403. [Google Scholar] [CrossRef]
- Holopainen, M.; Impola, U.; Lehenkari, P.; Laitinen, S.; Kerkelä, E. Human Mesenchymal Stromal Cell Secretome Promotes the Immunoregulatory Phenotype and Phagocytosis Activity in Human Macrophages. Cells 2020, 9, 2142. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, D.; Yu, C.; Peng, Y.; Cheng, L.; Zhang, Y. Quantitative Profiling of Differentially Expressed Oxylipins in ADSCs under Proinflammatory Cytokine Stimulation. Biomed. Chromatogr. 2022, 36, e5452. [Google Scholar] [CrossRef]
- Abreu, S.C.; Lopes-Pacheco, M.; da Silva, A.L.; Xisto, D.G.; de Oliveira, T.B.; Kitoko, J.Z.; de Castro, L.L.; Amorim, N.R.; Martins, V.; Silva, L.H.A.; et al. Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Front. Immunol. 2018, 9, 1147. [Google Scholar] [CrossRef]
Experimental Group | Number of Animals Histological Outcome | Number of Animals Behavioral Outcome | ||||||
---|---|---|---|---|---|---|---|---|
Experimental Injury | Oral Treatment | Intranasal Treatment | Males | Females | Total | Males | Females | Total |
SHAM (no HI injury) | - | - | 12 | 12 | 24 | 14 | 14 | 28 |
HI injury | Vehicle | Vehicle | 15 | 9 | 24 | 16 | 10 | 26 |
HI injury | Lysoveta | Vehicle | 14 | 9 | 23 | 16 | 11 | 27 |
HI injury | Vehicle | MSCs | 15 | 9 | 24 | 16 | 10 | 26 |
HI injury | Lysoveta | MSCs | 13 | 11 | 24 | 15 | 13 | 28 |
Total number of animals used | 69 | 50 | 119 | 77 | 58 | 135 | ||
Number of litters used | 20 | 20 |
Fatty Acid Profile Lysoveta Nutritional Supplement | Content in g/100 g |
---|---|
Saturated fatty acids | 2.40 |
Palmitic acid (C16:0) | 1.47 |
Stearic acid (C18:0) | 0.75 |
Myristic acid (C14:0) | 0.18 |
Monounsaturated fatty acids | 2.23 |
Oleic acid (C18:1n9) | 1.45 |
Vaccenic acid (C18:1n7) | 0.37 |
Palmitoleic acid (C16:1) | 0.34 |
Cetoleic acid (C20:1n9) | 0.07 |
n-3 Polyunsaturated fatty acids | 32.39 |
Eicosapentaenoic acid (C20:5n-3) | 16.82 |
Docosahexaenoic acid (C22:6n-3) | 9.29 |
Stearidonic acid (C18:4n-3) | 3.08 |
α-Linolenic acid (C18:3n-3) | 1.83 |
Heneicosapentaenoic acid (C21:5n-3) | 0.72 |
Docosapentaenoic acid (C22:5n-3) | 0.35 |
Eicosatetraenoic acid (C20:4n-3) | 0.30 |
n-6 Polyunsaturated fatty acids | 0.74 |
Linoleic acid (C18:2n-6) | 0.59 |
Arachidonic acid (C20:4n-6) | 0.15 |
Total LPC | 41.7 |
LPC-n-3 LCPUFA | 35.8 |
LPC-Eicosapentaenoic acid (C20:5n-3) | 19.3 |
LPC-Docosahexaenoic acid (C22:6n-3) | 9.5 |
Fatty Acid Profile Coconut Oil | Content in g/100 g |
---|---|
Saturated fatty acids | 91.2 |
Lauric acid (C12:0) | 45.4 |
Myristic acid (C14:0) | 18.0 |
Palmitic acid (C16:0) | 10.5 |
Capric acid (C10:0) | 8.4 |
Caprylic acid (C8:0) | 5.4 |
Stearic acid (C18:0) | 2.3 |
Caproic acid (C6:0) | 0.8 |
Arachidic acid (C20:0) | 0.4 |
Monounsaturated fatty acids | 7.9 |
Oleic acid (C18:1n9) | 7.5 |
Palmitoleic acid (C16:1) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermans, E.C.; van Gerven, C.C.E.; Johnsen, L.; Tungen, J.E.; Nijboer, C.H.; de Theije, C.G.M. Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy. Nutrients 2024, 16, 2252. https://doi.org/10.3390/nu16142252
Hermans EC, van Gerven CCE, Johnsen L, Tungen JE, Nijboer CH, de Theije CGM. Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy. Nutrients. 2024; 16(14):2252. https://doi.org/10.3390/nu16142252
Chicago/Turabian StyleHermans, Eva C., Carlon C. E. van Gerven, Line Johnsen, Jørn E. Tungen, Cora H. Nijboer, and Caroline G. M. de Theije. 2024. "Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy" Nutrients 16, no. 14: 2252. https://doi.org/10.3390/nu16142252
APA StyleHermans, E. C., van Gerven, C. C. E., Johnsen, L., Tungen, J. E., Nijboer, C. H., & de Theije, C. G. M. (2024). Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy. Nutrients, 16(14), 2252. https://doi.org/10.3390/nu16142252