An HPLC-UV Method to Assess Human Plasma 25(OH)D3
Abstract
:1. Introduction
2. Methods
2.1. Chemicals and Equipment
2.2. Vitamin D Standard, Calibration Curve, and Blank
2.3. HPLC Equipment
2.4. Chromatographic Conditions
2.5. Validation of the Chromatographic Method
2.6. Linearity
2.7. Detection and Quantitation Limits
2.8. Precision and Repeatability
2.9. Robustness
2.10. Accuracy
2.11. Plasma Samples
2.12. Extraction of Vitamin D from Plasma Samples
2.13. Percentage of Recovery
2.14. Plasma Levels of 25(OH)D3
2.15. Ethics and Laboratory Biosafety
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano, N.; Guío, E.; González, A.; Plata, L.; Quintero, D.C.; Becerra, S. Cuantificación de vitamina D: De la investigación a la práctica clínica. Biosalud 2017, 16, 67–79. [Google Scholar] [CrossRef]
- Brunetto, M.R.; Obando, M.A.; Gallignani, M.; Alarcón, O.M.; Nieto, E.; Salinas, R.; Burguera, J.L.; Burguera, M. HPLC determination of Vitamin D3 and its metabolite in human plasma with on-line sample cleanup. Talanta 2004, 64, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D deficiency in adults: When to test and how to treat. Mayo Clin. Proc. 2010, 85, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [PubMed]
- Jukic, A.M.Z.; Hoofnagle, A.N.; Lutsey, P.M. Measurement of Vitamin D for Epidemiologic and Clinical Research: Shining Light on a Complex Decision. Am. J. Epidemiol. 2018, 187, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Zelzer, S.; Goessler, W.; Herrmann, M. Measurement of vitamin D metabolites by mass spectrometry, an analytical challenge. J. Lab. Precis. Med. 2018, 3, 99. [Google Scholar] [CrossRef]
- Hewison, M.; Burke, F.; Evans, K.N. Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 2007, 103, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; He, X.; Li, H.D.; Deng, Y.; Yan, M.; Cai, H.L.; Tang, M.M.; Dang, R.L.; Jiang, P. Simultaneous quantification of 25-hydroxyvitamin D3 and 24, 25-dihydroxyvitamin D3 in rats shows strong correlations between serum and brain tissue levels. Int. J. Endocrinol. 2015, 2015, 296531. [Google Scholar] [CrossRef] [PubMed]
- Mata-Granados, J.M.; de Castro, M.L.; Gomez, J.Q. Inappropriate serum levels of retinol, α-tocopherol, 25 hydroxyvitamin D3 and 24, 25 dihydroxyvitamin D3 levels in healthy Spanish adults: Simultaneous assessment by HPLC. Clin. Biochem. 2008, 41, 676–680. [Google Scholar] [CrossRef]
- Kand’ár, R.; Žáková, P. Determination of 25-hydroxyvitamin D3 in human plasma using HPLC with UV detection based on SPE sample preparation. J. Separat Sci. 2009, 32, 2953–2957. [Google Scholar] [CrossRef]
- Wang, Z.; Senn, T.; Kalhorn, T.; Zheng, X.E.; Zheng, S.; Davis, C.L.; Hebert, M.F.; Lin, Y.S.; Thummel, K.E. Simultaneous measurement of plasma vitamin D3 metabolites, including 4β, 25-dihydroxyvitamin D3, using liquid chromatography–tandem mass spectrometry. Anal. Biochem. 2011, 418, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Keyfi, F.; Nahid, S.; Mokhtariye, A.; Nayerabadi, S.; Alaei, A.; Varasteh, A.R. Evaluation of 25-OH vitamin D by high performance liquid chromatography: Validation and comparison with electrochemiluminescence. J. Anal. Sci. Technol. 2018, 9, 25. [Google Scholar] [CrossRef]
- Santa, K.; Kumazawa, Y.; Nagaoka, I. Prevention of metabolic syndrome by phytochemicals and vitamin D. Int. J. Mol. Sci. 2023, 24, 2627. [Google Scholar] [CrossRef] [PubMed]
- De los Santos, L.; Calderón-Santiago, M.; Herrera-Martínez, A.D.; León-Idougourram, S.; Gálvez-Moreno, M.Á.; Sánchez-Cano, R.L.; Bouillon, R.; Quesada.Gómez, J.L.; Priego-Capote, F. Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations 2022, 9, 141. [Google Scholar] [CrossRef]
- Martínez, G.T. Laboratorio Clínico y Nutrición, 1st ed.; Editorial El Manual Moderno: Mexico City, México, 2012. [Google Scholar]
- Stokes, C.S.; Lammert, F.; Volmer, D.A. Analytical methods for quantification of vitamin D and implications for research and clinical practice. Anticancer Res. 2018, 38, 1137–1144. [Google Scholar] [PubMed]
- Wallace, A.M.; Gibson, S.; de la Hunty, A.; Lamberg-Allardt, C.; Ashwell, M. Measurement of 25-hydroxyvitamin D in the clinical laboratory: Current procedures, performance characteristics and limitations. Steroids 2010, 75, 477–488. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Statistical Manual of the Association of Official Analytical Chemists, 22nd ed.; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Tariq, S.; Roohi, S.; Zahoor, R.; Iqbal, Z.; Haider, I. Development of Vitamin D3 HPLC method and its application in blood serum analysis of workers of radiation area. J. Liq. Chromat. Rel. Technol. 2012, 35, 2765–2776. [Google Scholar] [CrossRef]
- Mathew, E.M.; Moorkoth, S.; Rane, P.D.; Lewis, L.; Rao, P. Cost-effective HPLC-UV method for quantification of Vitamin D2 and D3 in dried blood spot: A potential adjunct to newborn screening for prophylaxis of intractable paediatric seizures. Chem. Pharm. Bull. 2019, 67, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Olkowski, A.A.; Aranda-Osorio, G.; McKinnon, J. Rapid HPLC method for measurement of vitamin D3 and 25(OH)D3 in blood plasma. Int. J. Vitam. Nutr. Res. 2003, 73, 15–18. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. FDA Guidance for Industry: Q2(R2) Validation of Analytical Procedures. 2024. Available online: https://www.fda.gov/media/161201/download (accessed on 10 June 2024).
- César, I.; Pianetti, G.A. Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden’s test. Braz. J. Pharm. Sci. 2009, 45, 235–240. [Google Scholar] [CrossRef]
- Abyntek. At What Temperature to Store Biological Samples. 2017. Available online: https://www.abyntek.com/almacenar-muestras-biologicas/ (accessed on 2 July 2024).
- Agborsangaya, C.; Toriola, A.T.; Grankvist, K.; Surcel, H.M.; Holl, K.; Parkkila, S.; Tuohimaa, P.; Lukanova, A.; Lehtinen, M. The Effects of Storage Time and Sampling Season on the Stability of Serum 25-Hydroxy Vitamin D and Androstenedione. Nutr. Cancer 2009, 62, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E. Long-term stability of 25-hydroxyvitamin D: Importance of the analytical method and of the patient matrix. Clin. Chem. Lab. Med. (CCLM) 2021, 59, e389–e391. [Google Scholar] [CrossRef] [PubMed]
- NOM-087-ECOL-SSA1-2002. Norma Oficial Mexicana: Protección Ambiental—Salud Ambiental—Residuos Peligrosos Biológico-Infecciosos—Clasificación y Especificaciones de Manejo. Available online: https://dof.gob.mx/nota_detalle.php?codigo=704675&fecha=17/02/2003#gsc.tab=0 (accessed on 10 June 2024).
- Le, J.; Yuan, T.F.; Zhang, Y.; Wang, S.T.; Li, Y. New LC-MS/MS method with single-step pretreatment analyzes fat-soluble vitamins in plasma and amniotic fluid. J. Lipid Res. 2018, 59, 1783–1790. [Google Scholar] [PubMed]
- Lee, D.; Garrett, T.J.; Goldberger, B.A.; Bazydlo, L.A. Quantitation of 25-hydroxyvitamin D2 and D3 in serum and plasma by LCMS/MS. Bioanalysis 2015, 7, 167–178. [Google Scholar] [CrossRef] [PubMed]
Method (Ref.) | Solvents for Extraction |
---|---|
Brunetto et al., 2004 [2] | Ethanol–Acetonitrile (2:1 (v/v)) |
Mathew et al., 2019 [20] | Acetonitrile–Methanol–0.1% Formic acid (60:20:20 (v/v)) |
Proposed * | Acetonitrile–0.1% Formic acid (2:1 (v/v)) |
Calibration Point (ng/mL 25(OH)D3) | Average Area (AU) | SD | %CV |
---|---|---|---|
5 | 1552.93 | 46.33 | 2.98 |
10 | 3536.67 | 163.37 | 4.62 |
20 | 7208.17 | 365.66 | 5.07 |
30 | 11,514.40 | 781.37 | 6.79 |
40 | 14,638.83 | 836.27 | 5.71 |
50 | 18,705.67 | 555.33 | 2.97 |
Limit | Equation | Concentration (ng/mL) |
---|---|---|
Detection limit (DL) | DL = 3.3 SD/m | 1.1703 |
Quantitation limit (QL) | QL = 10 SD/m | 3.5462 |
Calibration Point (ng/mL 25(OH)D3) | Average Area (AU) | SD | %CV |
---|---|---|---|
5 (low) | 1555.78 | 41.72 | 2.68 |
30 (moderate) | 10,942.80 | 759.07 | 6.94 |
50 (high) | 18,713.90 | 653.93 | 3.49 |
Condition | Average Area (AU) | Rt (min) |
---|---|---|
| 16,541 | 4.121 |
| 16,617 | 4.052 |
| 19,218 | 4.913 |
| 18,947 | 3.500 |
Vx | SDx × √2 | | Vx | > SDx × √2 | ||||
---|---|---|---|---|---|---|
HPLC Conditions | Area (AU) | Rt (min) | Area (AU) | Rt (min) | Area (AU) | Rt (min) |
condition 1 29 °C—1.2 mL/min | 594.125 600.625 618.375 | −0.019 −0.019 −0.018 | 180.408 | 0.0071 | Yes | Yes |
condition 2 31 °C—1.2 mL/min | 579.875 581.625 594.875 | −0.002 −0.000 −0.001 | 180.408 | 0.0071 | Yes | No |
condition 3 30 °C—1.0 mL/min | −65.375 −62.875 −66.125 | −0.216 −0.217 −0.216 | 180.408 | 0.0071 | No | Yes |
condition 4 30 °C—1.4 mL/min | 10.375 −5.625 3.625 | 0.137 0.138 0.137 | 180.408 | 0.0071 | No | Yes |
Plasma Sample | Concentration (ng/mL) | Recovery (%) |
---|---|---|
NF 1 | 85.9 ± 5.5 | 97.1 ± 5.4 |
F 1 | 124.7 ± 5.8 | |
NF 2 | 78.9 ± 10.2 | 92.2 ± 19.8 |
F 2 | 115.8 ± 3.7 | |
NF 3 | 58.9 ± 7.9 | 94.0 ± 27.7 |
F 3 | 96.5 ± 13.1 |
Method (Ref.) | Solvent for Extraction | Calculated Recovery (%) |
---|---|---|
Brunetto et al., 2004 [2] | Ethanol—Acetonitrile (2:1 v/v) | 40 * |
Mathew et al., 2019 [20] | Acetonitrile—Methanol—0.1% Formic acid (60:20:20 v/v) | 50–65 * |
Proposed | Acetonitrile—0.1% Formic acid (2:1 v/v) | 92.2–97.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tijerina, A.; Garza, A.; López, A.; Cavazos, N.; Romo, A.; Heya, M.S.; Bouzas, C.; Tur, J.A.; Salas, R. An HPLC-UV Method to Assess Human Plasma 25(OH)D3. Nutrients 2024, 16, 2304. https://doi.org/10.3390/nu16142304
Tijerina A, Garza A, López A, Cavazos N, Romo A, Heya MS, Bouzas C, Tur JA, Salas R. An HPLC-UV Method to Assess Human Plasma 25(OH)D3. Nutrients. 2024; 16(14):2304. https://doi.org/10.3390/nu16142304
Chicago/Turabian StyleTijerina, Alexandra, Aurora Garza, Abad López, Norma Cavazos, Ana Romo, Michel S. Heya, Cristina Bouzas, Josep A. Tur, and Rogelio Salas. 2024. "An HPLC-UV Method to Assess Human Plasma 25(OH)D3" Nutrients 16, no. 14: 2304. https://doi.org/10.3390/nu16142304
APA StyleTijerina, A., Garza, A., López, A., Cavazos, N., Romo, A., Heya, M. S., Bouzas, C., Tur, J. A., & Salas, R. (2024). An HPLC-UV Method to Assess Human Plasma 25(OH)D3. Nutrients, 16(14), 2304. https://doi.org/10.3390/nu16142304