Association between Whole-Grain Intake and Obesity Defined by Different Anthropometric Indicators and Dose–Response Relationship Analysis among U.S. Adults: A Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Individual Whole-Grain Intake
2.3. Body Measures and Assessment of Obesity
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Description of the Characteristics of the Participants
3.2. Description of Multivariable Associations between Whole-Grain Intake and Obesity
3.3. Dose–Response Associations between Whole-Grain Intake or Proportion of Whole-Grain Intake and Obesity
3.3.1. Dose–Response Associations between Whole-Grain Intake and Obesity
3.3.2. Dose–Response Associations between Proportion of Whole-Grain Intake and Obesity
3.4. Stratified Analyses of the Associations between Whole-Grain Intake and Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wei, X.; Wang, J.; Wang, Y.; Zhao, Y.; Long, Y.; Tan, B.; Li, Q.X.; Dong, Z.; Wan, X. Dietary fiber and polyphenols from whole grains: Effects on the gut and health improvements. Food Funct. 2024, 15, 4682–4702. [Google Scholar] [CrossRef]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, M.; Sampson, L.; Willett, W.C.; Manson, J.E.; Wang, M.; Rosner, B.; Hu, F.B.; Sun, Q. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ 2020, 370, m2206. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhao, Y.; Feng, Y.; Yang, X.; Li, Y.; Wu, Y.; Yuan, L.; Zhang, J.; Li, T.; Huang, H.; et al. Consumption of whole grains and refined grains and associated risk of cardiovascular disease events and all-cause mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2023, 117, 149–159. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrate Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- US Department of Agriculture. US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 2020. Available online: https://dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf (accessed on 20 June 2024).
- World Obesity Federation. World Obesity Atlas 2023. 2023. Available online: https://data.worldobesity.org/publications/?cat=19 (accessed on 20 June 2024).
- Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Curr. Obes. Rep. 2015, 4, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Karl, J.P.; Saltzman, E. The role of whole grains in body weight regulation. Adv. Nutr. 2012, 3, 697–707. [Google Scholar] [CrossRef]
- Vanegas, S.M.; Meydani, M.; Barnett, J.B.; Goldin, B.; Kane, A.; Rasmussen, H.; Brown, C.; Vangay, P.; Knights, D.; Jonnalagadda, S.; et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017, 105, 635–650. [Google Scholar] [CrossRef]
- Sang, S.; Idehen, E.; Zhao, Y.; Chu, Y. Emerging science on whole grain intake and inflammation. Nutr. Rev. 2020, 78, 21–28. [Google Scholar] [CrossRef]
- Kristensen, M.; Toubro, S.; Jensen, M.G.; Ross, A.B.; Riboldi, G.; Petronio, M.; Bügel, S.; Tetens, I.; Astrup, A. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. J. Nutr. 2012, 142, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Pol, K.; Christensen, R.; Bartels, E.M.; Raben, A.; Tetens, I.; Kristensen, M. Whole grain and body weight changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2013, 98, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. In Vital Health Stat 2; Centers for Disease Control and Prevention National Center for Health Statistics: Washington, DC, USA, 2013. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. Food Surveys Research Group. 2020. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/ (accessed on 20 June 2024).
- National Health and Nutrition Examination Survey. National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/manuals/2016_Anthropometry_Procedures_Manual.pdf (accessed on 20 June 2024).
- World Health Organization. Body Mass Index (BMI) Classifications. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 15 June 2024).
- World Health Organization. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Lutsey, P.L.; Jacobs, D.R.; Kori, S.; Mayer-Davis, E.; Shea, S.; Steffen, L.M.; Szklo, M.; Tracy, R. Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: The MESA Study. Br. J. Nutr. 2007, 98, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Mostad, I.L.; Langaas, M.; Grill, V. Central obesity is associated with lower intake of whole-grain bread and less frequent breakfast and lunch: Results from the HUNT study, an adult all-population survey. Appl. Physiol. Nutr. Metab. 2014, 39, 819–828. [Google Scholar] [CrossRef]
- Harland, J.I.; Garton, L.E. Whole-grain intake as a marker of healthy body weight and adiposity. Public Health Nutr. 2008, 11, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef]
- Maki, K.C.; Palacios, O.M.; Koecher, K.; Sawicki, C.M.; Livingston, K.A.; Bell, M.; Nelson Cortes, H.; McKeown, N.M. The Relationship between Whole Grain Intake and Body Weight: Results of Meta-Analyses of Observational Studies and Randomized Controlled Trials. Nutrients 2019, 11, 1245. [Google Scholar] [CrossRef] [PubMed]
- Giacco, R.; Della Pepa, G.; Luongo, D.; Riccardi, G. Whole grain intake in relation to body weight: From epidemiological evidence to clinical trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 901–908. [Google Scholar] [CrossRef]
- Sadeghi, O.; Sadeghian, M.; Rahmani, S.; Maleki, V.; Larijani, B.; Esmaillzadeh, A. Whole-Grain Consumption Does Not Affect Obesity Measures: An Updated Systematic Review and Meta-analysis of Randomized Clinical Trials. Adv. Nutr. 2020, 11, 280–292. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Skeie, G.; Fadnes, L.T. Cereals and cereal products—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2024, 68, 10457. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Mozaffarian, D.; Wong, J.B.; Pomeranz, J.L.; Wilde, P.; Zhang, F.F. Whole-grain food intake among US adults, based on different definitions of whole-grain foods, NHANES 2003–2018. Am. J. Clin. Nutr. 2022, 116, 1704–1714. [Google Scholar] [CrossRef]
- Sinkovič, L.; Rakszegi, M.; Pipan, B.; Meglič, V. Compositional Traits of Grains and Groats of Barley, Oat and Spelt Grown at Organic and Conventional Fields. Foods 2023, 12, 1054. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, K.S.; Niskanen, L.K.; Liukkonen, K.H.; Poutanen, K.S.; Holst, J.J.; Mykkänen, H.M. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am. J. Clin. Nutr. 2002, 75, 254–262. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frøkiær, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef]
- Procházková, N.; Venlet, N.; Hansen, M.L.; Lieberoth, C.B.; Dragsted, L.O.; Bahl, M.I.; Licht, T.R.; Kleerebezem, M.; Lauritzen, L.; Roager, H.M. Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome: A randomised controlled cross-over trial. Front. Nutr. 2023, 10, 1187165. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Zhong, L.-Y.; Jiang, H.-B.; Zhu, C.; Wei, F.-F.; Wu, Y.; Song, L.-H. Elucidation of the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus on rats fed a western-style diet via a multi-omics approach. Food Res. Int. 2024, 187, 114345. [Google Scholar] [CrossRef]
Characteristic | Whole-Grain Intake (oz/day) | p-Value | |||
---|---|---|---|---|---|
Total | Tertial 1 (<0.08) | Tertial 2 (0.08–0.91) | Tertial 3 (>0.91) | ||
No. of participants | 27,862 | 9273 | 9273 | 9316 | |
Age, y | 47.1 ± 0.2 | 44.1 ± 0.3 | 47.2 ± 0.3 | 49.6 ± 0.4 | <0.001 |
Sex, n (%) | <0.001 | ||||
Female | 14,403 (51.7) | 4422 (48.2) | 5350 (57.1) | 4631 (50.3) | |
Male | 13,459 (48.3) | 4851 (51.8) | 3923 (42.9) | 4685 (49.7) | |
Race, n (%) | <0.001 | ||||
Non-Hispanic White | 13,014 (46.7) | 3672 (61.6) | 4368 (70.7) | 4974 (75.8) | |
Non-Hispanic Black | 5738 (20.6) | 2157 (13.6) | 1979 (10.7) | 1602 (7.8) | |
Mexican American | 4269 (15.3) | 1734 (10.9) | 1461 (8.1) | 1074 (5.5) | |
Other race | 4841 (17.4) | 1710 (13.9) | 1465 (10.5) | 1666 (10.9) | |
Education level, n (%) | <0.001 | ||||
Below high school | 6224 (22.3) | 2749 (20.2) | 1962 (13.1) | 1513 (9.7) | |
High school | 6434 (23.1) | 2359 (27.4) | 2162 (23.6) | 1913 (18.8) | |
College or above | 15,204 (54.6) | 4165 (52.4) | 5149 (63.3) | 5890 (71.5) | |
Marital status, n (%) | <0.001 | ||||
Married/cohabiting | 17,102 (61.4) | 5536 (61.7) | 5686 (64.6) | 5880 (65.9) | |
Never married | 4785 (17.2) | 1872 (21.1) | 1563 (17.8) | 1350 (15.6) | |
Widowed/divorced/separated | 5975 (21.4) | 1865 (17.3) | 2024 (17.6) | 2086 (18.5) | |
PIR, n (%) | <0.001 | ||||
<1.0 | 5328 (19.1) | 2325 (18.1) | 1686 (12.2) | 1317 (9.3) | |
1.0–3.0 | 11,706 (42) | 4121 (39.3) | 3858 (35.7) | 3727 (32.7) | |
>3.0 | 10,828 (38.9) | 2827 (42.6) | 3729 (52.1) | 4272 (58.0) | |
Height, cm | 168.8 ± 0.1 | 168.8 ± 0.2 | 168.1 ± 0.1 | 169.5 ± 0.2 | <0.001 |
Weight, kg | 82.7 ± 0.2 | 84.1 ± 0.4 | 82.1 ± 0.3 | 82.0 ± 0.4 | <0.001 |
BMI, kg/m2 | 28.9 ± 0.1 | 29.5 ± 0.1 | 29.0 ± 0.1 | 28.4 ± 0.1 | <0.001 |
Waist circumference, cm | 99.1 ± 0.2 | 100.1 ± 0.3 | 98.9 ± 0.3 | 98.3 ± 0.3 | <0.001 |
Smoking status, n (%) | <0.001 | ||||
Never | 15,239 (54.7) | 4668 (50.3) | 5154 (56.7) | 5417 (58.3) | |
Former | 7075 (25.4) | 2072 (21.8) | 2344 (24.2) | 2659 (28.5) | |
Now | 5548 (19.9) | 2533 (27.9) | 1775 (19.1) | 1240 (13.1) | |
Drinking status, n (%) | <0.001 | ||||
Never | 3751 (13.5) | 1163 (10.5) | 1294 (10.4) | 1294 (11.3) | |
Former | 4800 (17.2) | 1596 (14.1) | 1583 (13.3) | 1621 (13.9) | |
Mild to moderate | 13,927 (50) | 4139 (47.8) | 4704 (55.8) | 5084 (59.6) | |
Heavy | 5384 (19.3) | 2375 (27.6) | 1692 (20.5) | 1317 (15.3) | |
Physical activity, n (%) | <0.001 | ||||
Inactive | 7193 (25.8) | 2699 (24.7) | 2411 (20.3) | 2083 (17.9) | |
Insufficiently active | 5640 (20.2) | 1831 (21.1) | 1993 (21.9) | 1816 (19.2) | |
Active | 15,029 (53.9) | 4743 (54.2) | 4869 (57.8) | 5417 (62.9) | |
Sedentary time, n (%) | 0.02 | ||||
≥6 | 15,765 (56.6) | 4993 (58.1) | 5337 (58.5) | 5435 (60.7) | |
4 to <6 | 6110 (21.9) | 2082 (21.9) | 1967 (22.7) | 2061 (22.2) | |
0 to <4 | 5987 (21.5) | 2198 (20.0) | 1969 (18.8) | 1820 (17.1) | |
Vegetable intake, cup/day | 1.6 ± 0.0 | 1.5 ± 0.0 | 1.6 ± 0.0 | 1.8 ± 0.0 | <0.001 |
Fruit intake, cup/day | 1.0 ± 0.0 | 0.7 ± 0.0 | 0.9 ± 0.0 | 1.3 ± 0.0 | <0.001 |
Meat intake, oz/day | 4.9 ± 0.0 | 5.1 ± 0.1 | 4.8 ± 0.1 | 4.7 ± 0.1 | <0.001 |
Dairy intake, cup/day | 1.6 ± 0.0 | 1.4 ± 0.0 | 1.6 ± 0.0 | 1.8 ± 0.0 | <0.001 |
Added sugar intake, tsp/day | 17.2 ± 0.2 | 18.9 ± 0.3 | 17.2 ± 0.3 | 15.6 ± 0.2 | <0.001 |
Energy intake, kcal/day | 2063.3 ± 10.3 | 1992.4 ± 16.0 | 2002.3 ± 14.6 | 2183.6 ± 14.4 | <0.001 |
Obesity defined by Body mass index, n (%) | <0.001 | ||||
Non-obesity | 17,201 (61.7) | 5516 (59.4) | 5626 (63.2) | 6059 (66.4) | |
Obesity | 10,661 (38.3) | 3757 (40.6) | 3647 (36.8) | 3257 (33.6) | |
Obesity defined by Waist circumference, n (%) | 0.02 | ||||
Non-obesity | 11,619 (41.7) | 3911 (42.4) | 3673 (42.2) | 4035 (45.0) | |
Obesity | 16,243 (58.3) | 5362 (57.6) | 5600 (57.8) | 5281 (55.0) |
Characteristic | Whole-Grain Intake | p for Trend | Per-SD Increase | ||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
General obesity defined by body mass index | |||||
No. obesity/total | 3757/9273 | 3647/9273 | 3257/9316 | ||
Model 1 | 1.00 | 0.84 (0.77, 0.93) | 0.74 (0.68, 0.82) | 0.001 | 0.89 (0.85, 0.93) |
Model 2 | 1.00 | 0.86 (0.78, 0.95) | 0.77 (0.69, 0.85) | 0.007 | 0.90 (0.86, 0.94) |
Model 3 | 1.00 | 0.87 (0.79, 0.96) | 0.79 (0.72, 0.88) | 0.011 | 0.91 (0.87, 0.96) |
Abdominal obesity defined by waist circumference | |||||
No. obesity/total | 3911/9273 | 3673/9273 | 4035/9316 | ||
Model 1 | 1.00 | 0.86 (0.78, 0.94) | 0.75 (0.68, 0.83) | 0.003 | 0.88 (0.84, 0.92) |
Model 2 | 1.00 | 0.88 (0.80, 0.97) | 0.78 (0.71, 0.86) | 0.024 | 0.89 (0.85, 0.93) |
Model 3 | 1.00 | 0.89 (0.81, 0.98) | 0.80 (0.73, 0.89) | 0.034 | 0.90 (0.86, 0.94) |
Characteristic | Whole-Grain Intake | p for Trend | p for Interaction | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
General obesity defined by body mass index | |||||
Age | 0.79 | ||||
≤60 | 1.00 | 0.90 (0.81, 1.01) | 0.82 (0.74, 0.92) | <0.001 | |
>60 | 1.00 | 0.81 (0.66, 1.00) | 0.75 (0.62, 0.92) | 0.38 | |
Sex | 0.03 | ||||
Female | 1.00 | 0.85 (0.74, 0.96) | 0.73 (0.63, 0.85) | <0.001 | |
Male | 1.00 | 0.90 (0.78, 1.04) | 0.86 (0.75, 0.99) | 0.15 | |
Race | 0.25 | ||||
Non-Hispanic White | 1.00 | 0.85 (0.74, 0.96) | 0.75 (0.66, 0.87) | 0.03 | |
Non-Hispanic Black | 1.00 | 0.97 (0.83, 1.15) | 0.92 (0.78, 1.09) | 0.64 | |
Mexican American | 1.00 | 0.85 (0.65, 1.12) | 0.91 (0.72, 1.16) | 0.41 | |
Other race | 1.00 | 0.93 (0.77, 1.12) | 0.86 (0.69, 1.06) | 0.50 | |
Marital status | 0.49 | ||||
Married/cohabiting | 1.00 | 0.89 (0.78, 1.02) | 0.75 (0.67, 0.85) | 0.16 | |
Never married | 1.00 | 0.83 (0.67, 1.03) | 0.80 (0.65, 0.99) | 0.88 | |
Widowed/divorced/separated | 1.00 | 0.89 (0.73, 1.08) | 0.94 (0.76, 1.17) | 0.23 | |
Smoking status | 0.03 | ||||
Never | 1.00 | 0.81 (0.71, 0.92) | 0.71 (0.62, 0.81) | <0.001 | |
Former | 1.00 | 0.97 (0.79, 1.19) | 0.79 (0.66, 0.96) | 0.01 | |
Now | 1.00 | 0.90 (0.74, 1.09) | 1.09 (0.88, 1.36) | 0.60 | |
Drinking status | 0.70 | ||||
Never | 1.00 | 0.80 (0.62, 1.02) | 0.76 (0.58, 1.00) | 0.09 | |
Former | 1.00 | 0.87 (0.68, 1.11) | 0.73 (0.57, 0.93) | 0.29 | |
Mild to moderate | 1.00 | 0.86 (0.74, 0.98) | 0.77 (0.67, 0.88) | 0.07 | |
Heavy | 1.00 | 0.95 (0.76, 1.19) | 0.93 (0.73, 1.19) | 0.56 | |
Physical activity | 0.08 | ||||
Inactive | 1.00 | 0.83 (0.67, 1.02) | 0.86 (0.69, 1.06) | 0.08 | |
Insufficiently active | 1.00 | 0.81 (0.66, 0.98) | 0.85 (0.69, 1.05) | 0.04 | |
Active | 1.00 | 0.92 (0.81, 1.05) | 0.76 (0.66, 0.87) | 0.01 | |
Sedentary time | 0.47 | ||||
≥6 | 1.00 | 0.82 (0.72, 0.93) | 0.79 (0.69, 0.91) | 0.003 | |
4 to <6 | 1.00 | 0.97 (0.77, 1.22) | 0.82 (0.65, 1.04) | 0.09 | |
0 to <4 | 1.00 | 0.96 (0.76, 1.20) | 0.75 (0.60, 0.94) | 0.02 | |
Abdominal obesity defined by waist circumference | |||||
Age | 0.90 | ||||
≤60 | 1.00 | 0.92 (0.82, 1.04) | 0.86 (0.76, 0.96) | 0.01 | |
>60 | 1.00 | 0.85 (0.70, 1.04) | 0.82 (0.67, 1.01) | 0.68 | |
Sex | 0.07 | ||||
Female | 1.00 | 0.85 (0.74, 0.96) | 0.73 (0.63, 0.85) | <0.001 | |
Male | 1.00 | 0.90 (0.78, 1.04) | 0.86 (0.75, 0.99) | 0.15 | |
Race | 0.08 | ||||
Non-Hispanic White | 1.00 | 0.86 (0.75, 0.98) | 0.76 (0.67, 0.87) | 0.06 | |
Non-Hispanic Black | 1.00 | 0.95 (0.81, 1.13) | 0.92 (0.75, 1.12) | 0.80 | |
Mexican American | 1.00 | 0.79 (0.61, 1.03) | 0.89 (0.71, 1.13) | 0.25 | |
Other race | 1.00 | 1.09 (0.87, 1.38) | 0.98 (0.78, 1.23) | 0.31 | |
Marital status | 0.89 | ||||
Married/cohabiting | 1.00 | 0.87 (0.76, 0.99) | 0.76 (0.67, 0.87) | 0.07 | |
Never married | 1.00 | 0.95 (0.77, 1.18) | 0.84 (0.67, 1.05) | 0.38 | |
Widowed/divorced/separated | 1.00 | 0.94 (0.77, 1.16) | 0.94 (0.72, 1.22) | 0.58 | |
Smoking status | 0.01 | ||||
Never | 1.00 | 0.82 (0.72, 0.94) | 0.72 (0.63, 0.83) | <0.001 | |
Former | 1.00 | 0.96 (0.78, 1.19) | 0.79 (0.64, 0.97) | 0.02 | |
Now | 1.00 | 0.94 (0.78, 1.13) | 1.13 (0.89, 1.43) | 0.39 | |
Drinking status | 0.28 | ||||
Never | 1.00 | 0.85 (0.65, 1.12) | 0.80 (0.60, 1.07) | 0.26 | |
Former | 1.00 | 0.80 (0.63, 1.01) | 0.68 (0.53, 0.88) | 0.07 | |
Mild to moderate | 1.00 | 0.90 (0.78, 1.04) | 0.77 (0.67, 0.88) | 0.28 | |
Heavy | 1.00 | 0.93 (0.73, 1.18) | 1.01 (0.79, 1.30) | 0.99 | |
Physical activity | 0.08 | ||||
Inactive | 1.00 | 0.78 (0.64, 0.95) | 0.85 (0.69, 1.05) | 0.01 | |
Insufficiently active | 1.00 | 0.85 (0.68, 1.07) | 0.86 (0.66, 1.12) | 0.17 | |
Active | 1.00 | 0.94 (0.84, 1.06) | 0.78 (0.68, 0.89) | 0.01 | |
Sedentary time | 0.16 | ||||
≥6 | 1.00 | 0.80 (0.70, 0.92) | 0.73 (0.64, 0.84) | 0.003 | |
4 to <6 | 1.00 | 1.08 (0.87, 1.33) | 0.89 (0.73, 1.10) | 0.25 | |
0 to <4 | 1.00 | 0.97 (0.78, 1.20) | 0.94 (0.76, 1.16) | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, J.; Liu, T.; Gong, Z.; Zhuo, Q. Association between Whole-Grain Intake and Obesity Defined by Different Anthropometric Indicators and Dose–Response Relationship Analysis among U.S. Adults: A Population-Based Study. Nutrients 2024, 16, 2373. https://doi.org/10.3390/nu16142373
Wang Y, Feng J, Liu T, Gong Z, Zhuo Q. Association between Whole-Grain Intake and Obesity Defined by Different Anthropometric Indicators and Dose–Response Relationship Analysis among U.S. Adults: A Population-Based Study. Nutrients. 2024; 16(14):2373. https://doi.org/10.3390/nu16142373
Chicago/Turabian StyleWang, Yongjun, Jing Feng, Tingting Liu, Zhaolong Gong, and Qin Zhuo. 2024. "Association between Whole-Grain Intake and Obesity Defined by Different Anthropometric Indicators and Dose–Response Relationship Analysis among U.S. Adults: A Population-Based Study" Nutrients 16, no. 14: 2373. https://doi.org/10.3390/nu16142373
APA StyleWang, Y., Feng, J., Liu, T., Gong, Z., & Zhuo, Q. (2024). Association between Whole-Grain Intake and Obesity Defined by Different Anthropometric Indicators and Dose–Response Relationship Analysis among U.S. Adults: A Population-Based Study. Nutrients, 16(14), 2373. https://doi.org/10.3390/nu16142373