Japanese Diet Indices and Nutrient Density in US Adults: A Cross-Sectional Analysis with NHANES Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Dietary Survey Data
2.4. Japanese Diet Indices
2.5. Nutrient Density Score
2.6. Covariates
2.7. Statistical Analysis
2.8. Ethical Considerations
3. Results
3.1. Basic Characteristics
3.2. Correlation between JDI/mJDI and Nutrient Density
3.3. Food Items of mJDI and Nutrient Density
3.4. Correlation between wJDI and Nutrient Density
3.5. Correlation between Japanese Diet Indices and Nutritional Components
3.6. Stratified Analysis by Race
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr. 2021, 75, 921–928. [Google Scholar] [CrossRef]
- Willett, W.C. Diet and health: What should we eat? Science 1994, 264, 532–537. [Google Scholar] [CrossRef]
- Marmot, M.G.; Syme, S.L.; Kagan, A.; Kato, H.; Cohen, J.B.; Belsky, J. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: Prevalence of coronary and hypertensive heart disease and associated risk factors. Am. J. Epidemiol. 1975, 102, 514–525. [Google Scholar] [CrossRef]
- Robertson, T.L.; Kato, H.; Rhoads, G.G.; Kagan, A.; Marmot, M.; Syme, S.L.; Gordon, T.; Worth, R.M.; Belsky, J.L.; Dock, D.S.; et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. Am. J. Cardiol. 1977, 39, 239–243. [Google Scholar] [CrossRef]
- Pierce, B.L.; Austin, M.A.; Crane, P.K.; Retzlaff, B.M.; Fish, B.; Hutter, C.M.; Leonetti, D.L.; Fujimoto, W.Y. Measuring dietary acculturation in Japanese Americans with the use of confirmatory factor analysis of food-frequency data. Am. J. Clin. Nutr. 2007, 86, 496–503. [Google Scholar] [CrossRef]
- Abe, S.; Zhang, S.; Tomata, Y.; Tsuduki, T.; Sugawara, Y.; Tsuji, I. Japanese diet and survival time: The Ohsaki Cohort 1994 study. Clin. Nutr. 2020, 39, 298–303. [Google Scholar] [CrossRef]
- Zhang, S.; Tomata, Y.; Sugawara, Y.; Tsuduki, T.; Tsuji, I. The Japanese Dietary Pattern Is Associated with Longer Disability-Free Survival Time in the General Elderly Population in the Ohsaki Cohort 2006 Study. J. Nutr. 2019, 149, 1245–1251. [Google Scholar] [CrossRef]
- Okada, E.; Nakamura, K.; Ukawa, S.; Wakai, K.; Date, C.; Iso, H.; Tamakoshi, A. The Japanese food score and risk of all-cause, CVD and cancer mortality: The Japan Collaborative Cohort Study. Br. J. Nutr. 2018, 120, 464–471. [Google Scholar] [CrossRef]
- Tomata, Y.; Watanabe, T.; Sugawara, Y.; Chou, W.T.; Kakizaki, M.; Tsuji, I. Dietary patterns and incident functional disability in elderly Japanese: The Ohsaki Cohort 2006 study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 843–851. [Google Scholar] [CrossRef]
- Matsuyama, S.; Shimazu, T.; Tomata, Y.; Zhang, S.; Abe, S.; Lu, Y.; Tsuji, I. Japanese Diet and Mortality, Disability, and Dementia: Evidence from the Ohsaki Cohort Study. Nutrients 2022, 14, 2034. [Google Scholar] [CrossRef]
- Shimizu, A.; Okada, K.; Tomata, Y.; Uno, C.; Kawase, F.; Momosaki, R. Association of Japanese and Mediterranean Dietary Patterns with Muscle Weakness in Japanese Community-Dwelling Middle-Aged and Older Adults: Post Hoc Cross-Sectional Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Otsuka, R.; Tomata, Y.; Shimokata, H.; Tange, C.; Tomida, M.; Nishita, Y.; Matsuyama, S.; Tsuji, I. A cross-sectional study of the associations between the traditional Japanese diet and nutrient intakes: The NILS-LSA project. Nutr. J. 2019, 18, 43. [Google Scholar] [CrossRef]
- Tomata, Y.; Zhang, S.; Kaiho, Y.; Tanji, F.; Sugawara, Y.; Tsuji, I. Nutritional characteristics of the Japanese diet: A cross-sectional study of the correlation between Japanese Diet Index and nutrient intake among community-based elderly Japanese. Nutrition 2019, 57, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Goto, Y.; Ota, H.; Kito, K.; Mano, F.; Joo, E.; Ikeda, K.; Inagaki, N.; Nakayama, T. Characteristics of the Japanese Diet Described in Epidemiologic Publications: A Qualitative Systematic Review. J. Nutr. Sci. Vitaminol. 2018, 64, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention National Center for Health Statistics and National Health and Nutrition Examination Survey. About the National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 22 March 2024).
- Center for Disease Control and Prevention National Center for Health Statistics and National Health and Nutrition Examination Survey. NHANES 2017–2018. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2017 (accessed on 22 March 2024).
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H.I. National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures. Vital Health Stat. 2020, 2, 1–35. [Google Scholar]
- Lau, D.T.; Ahluwalia, N.; Fryar, C.D.; Kaufman, M.; Arispe, I.E.; Paulose-Ram, R. Data Related to Social Determinants of Health Captured in the National Health and Nutrition Examination Survey. Am. J. Public Health 2023, 113, 1290–1295. [Google Scholar] [CrossRef]
- Burcham, S.; Liu, Y.; Merianos, A.L.; Mendy, A. Outliers in nutrient intake data for U.S. adults: National health and nutrition examination survey 2017–2018. Epidemiol. Methods 2023, 12, 20230018. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Food Surveys Research Group: Beltsville, MD, USA. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-related-links/ (accessed on 22 March 2024).
- U.S. Department of Agriculture. 2017–2018 Food and Nutrient Database for Dietary Studies Documentation. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/2017_2018_FNDDS_Doc.pdf (accessed on 22 March 2024).
- Drewnowski, A. Defining nutrient density: Development and validation of the nutrient rich foods index. J. Am. Coll. Nutr. 2009, 28, 421s–426s. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Keast, D.R.; Drewnowski, A. Development and validation of the nutrient-rich foods index: A tool to measure nutritional quality of foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef]
- Drewnowski, A.; Fulgoni, V.L., 3rd. Nutrient density: Principles and evaluation tools. Am. J. Clin. Nutr. 2014, 99, 1223s–1228s. [Google Scholar] [CrossRef]
- Michels, K.B.; Bingham, S.A.; Luben, R.; Welch, A.A.; Day, N.E. The effect of correlated measurement error in multivariate models of diet. Am. J. Epidemiol. 2004, 160, 59–67. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention National Center for Health Statistics and National Health and Nutrition Examination Survey. NCHS Ethics Review Board (ERB) Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 22 March 2024).
- Ahmed, M.; Ng, A.P.; Christoforou, A.; Mulligan, C.; L’Abbé, M.R. Top Sodium Food Sources in the American Diet-Using National Health and Nutrition Examination Survey. Nutrients 2023, 15, 831. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Malavolti, M.; Whelton, P.K.; Naska, A.; Orsini, N.; Vinceti, M. Blood Pressure Effects of Sodium Reduction: Dose-Response Meta-Analysis of Experimental Studies. Circulation 2021, 143, 1542–1567. [Google Scholar] [CrossRef]
- Graudal, N.; Hubeck-Graudal, T.; Jürgens, G.; Taylor, R.S. Dose-response relation between dietary sodium and blood pressure: A meta-regression analysis of 133 randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L.; Rossi, G.; Ippolito, R.; Cappuccio, F.P.; Strazzullo, P. Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clin. Nutr. 2012, 31, 489–498. [Google Scholar] [CrossRef]
- Morais, S.; Costa, A.; Albuquerque, G.; Araújo, N.; Pelucchi, C.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; Zhang, Z.F.; Hu, J.; et al. Salt intake and gastric cancer: A pooled analysis within the Stomach cancer Pooling (StoP) Project. Cancer Causes Control 2022, 33, 779–791. [Google Scholar] [CrossRef]
- Wu, X.; Chen, L.; Cheng, J.; Qian, J.; Fang, Z.; Wu, J. Effect of Dietary Salt Intake on Risk of Gastric Cancer: A Systematic Review and Meta-Analysis of Case-Control Studies. Nutrients 2022, 14, 4260. [Google Scholar] [CrossRef]
- Ndanuko, R.N.; Ibrahim, R.; Hapsari, R.A.; Neale, E.P.; Raubenheimer, D.; Charlton, K.E. Association between the Urinary Sodium to Potassium Ratio and Blood Pressure in Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1751–1767. [Google Scholar] [CrossRef]
- Jayedi, A.; Ghomashi, F.; Zargar, M.S.; Shab-Bidar, S. Dietary sodium, sodium-to-potassium ratio, and risk of stroke: A systematic review and nonlinear dose-response meta-analysis. Clin. Nutr. 2019, 38, 1092–1100. [Google Scholar] [CrossRef]
- Hiza, H.A.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Willett, W.C. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- McLean, R.; Cameron, C.; Butcher, E.; Cook, N.R.; Woodward, M.; Campbell, N.R.C. Comparison of 24-hour urine and 24-hour diet recall for estimating dietary sodium intake in populations: A systematic review and meta-analysis. J. Clin. Hypertens. 2019, 21, 1753–1762. [Google Scholar] [CrossRef]
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. 2019, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, N. Dietary Intake of Manganese in the Japanese Diet and its Association with Cardiometabolic and Cardiovascular Diseases. J. Atheroscler. Thromb. 2022, 29, 1421–1422. [Google Scholar] [CrossRef]
- Gawrys-Kopczynska, M.; Konop, M.; Maksymiuk, K.; Kraszewska, K.; Derzsi, L.; Sozanski, K.; Holyst, R.; Pilz, M.; Samborowska, E.; Dobrowolski, L.; et al. TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife 2020, 9, e57028. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.; Tsuduki, T.; Murotani, K.; Hisada, T.; Sugimoto, T.; Kimura, A.; Niida, S.; Toba, K.; Sakurai, T. Relationship between the Japanese-style diet, gut microbiota, and dementia: A cross-sectional study. Nutrition 2022, 94, 111524. [Google Scholar] [CrossRef] [PubMed]
Reference Intake Values 1 | |
---|---|
Protein (g) | 50 |
Dietary fiber (g) | 28 |
Iron (g) | 18 |
Vitamin A (µg) | 900 |
Vitamin C (µg) | 90 |
Vitamin E (µg) | 20 |
Calcium (mg) | 1300 |
Potassium (mg) | 4700 |
Magnesium (mg) | 420 |
Sodium (mg) | 2300 |
Saturated fatty acids (g) | 20 |
Sugar (g) | 50 |
Explanatory Variables 1 | Beta 2 | Standard Error 3 | p | Standardized Beta 4 |
---|---|---|---|---|
Rice | 8.5 | 4.8 | 0.078 | - |
Miso soup | 17.5 | 24.8 | 0.480 | - |
Fish | 8.7 | 4.6 | 0.057 | - |
Green and yellow vegetables | 77.5 | 3.5 | <0.001 | 0.3 |
Seaweed | −1.2 | 30.8 | 0.968 | - |
Pickles | 8.0 | 6.2 | 0.192 | - |
Green tea | 14.5 | 6.7 | 0.031 | 0.0 |
Soybeans and soybean foods | 41.5 | 3.8 | <0.001 | 0.2 |
Fruits | 76.0 | 3.5 | <0.001 | 0.3 |
Mushrooms | 31.8 | 12.3 | 0.010 | 0.0 |
Beef and pork | 22.1 | 3.5 | <0.001 | 0.1 |
Coffee | −6.5 | 3.4 | 0.060 | - |
Energy intake (kcal) | −0.07 | 0.002 | <0.001 |
Crude | Energy-Adjusted | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JDI 1 | mJDI 2 | wJDI 3 | JDI 1 | mJDI 2 | wJDI 3 | |||||||
CC 4 | p | CC 4 | p | CC 4 | p | CC 4 | p | CC 4 | p | CC 4 | p | |
Energy (kcal) | −0.02 | 0.226 | −0.01 | 0.470 | 0.03 | 0.062 | ||||||
Protein (g) | 0.06 | <0.001 | 0.07 | <0.001 | 0.05 | 0.006 | 0.08 | <0.001 | 0.11 | <0.001 | 0.09 | <0.001 |
Dietary fiber (g) | 0.22 | <0.001 | 0.43 | <0.001 | 0.54 | <0.001 | 0.26 | <0.001 | 0.41 | <0.001 | 0.55 | <0.001 |
Iron (g) | 0.06 | 0.001 | 0.14 | <0.001 | 0.18 | <0.001 | 0.15 | <0.001 | 0.22 | <0.001 | 0.23 | <0.001 |
Vitamin A (µg) | 0.18 | <0.001 | 0.21 | <0.001 | 0.31 | <0.001 | 0.22 | <0.001 | 0.26 | <0.001 | 0.34 | <0.001 |
Vitamin C (µg) | 0.24 | <0.001 | 0.35 | <0.001 | 0.41 | <0.001 | 0.24 | <0.001 | 0.33 | <0.001 | 0.44 | <0.001 |
Vitamin E (µg) | 0.20 | <0.001 | 0.24 | <0.001 | 0.26 | <0.001 | 0.17 | <0.001 | 0.19 | <0.001 | 0.26 | <0.001 |
Calcium (mg) | 0.01 | 0.614 | 0.05 | 0.008 | 0.11 | <0.001 | 0.10 | <0.001 | 0.14 | <0.001 | 0.14 | <0.001 |
Potassium (mg) | 0.11 | <0.001 | 0.25 | <0.001 | 0.36 | <0.001 | 0.21 | <0.001 | 0.34 | <0.001 | 0.43 | <0.001 |
Magnesium (mg) | 0.17 | <0.001 | 0.31 | <0.001 | 0.37 | <0.001 | 0.27 | <0.001 | 0.40 | <0.001 | 0.43 | <0.001 |
Sodium (mg) | 0.17 | <0.001 | 0.11 | <0.001 | 0.04 | 0.024 | 0.15 | <0.001 | 0.11 | <0.001 | 0.06 | <0.001 |
Saturated fatty acids (g) | −0.20 | <0.001 | −0.23 | <0.001 | −0.16 | <0.001 | −0.21 | <0.001 | −0.24 | <0.001 | −0.19 | <0.001 |
Sugar (g) | −0.05 | 0.002 | 0.00 | 0.823 | 0.04 | 0.017 | 0.00 | 0.876 | 0.03 | 0.067 | 0.05 | <0.001 |
Sodium/potassium | 0.04 | 0.034 | −0.12 | <0.001 | −0.26 | <0.001 | −0.05 | 0.004 | −0.18 | <0.001 | −0.30 | <0.001 |
JDI 1 | mJDI 2 | wJDI 3 | ||||
---|---|---|---|---|---|---|
CC 4 | p | CC 4 | p | CC 4 | p | |
Mexican American | 0.15 | <0.001 | 0.33 | <0.001 | 0.44 | <0.001 |
Other Hispanic | 0.33 | <0.001 | 0.49 | <0.001 | 0.55 | <0.001 |
Non-Hispanic White | 0.19 | <0.001 | 0.33 | <0.001 | 0.44 | <0.001 |
Non-Hispanic Black | 0.26 | <0.001 | 0.37 | <0.001 | 0.44 | <0.001 |
Non-Hispanic Asian | 0.18 | <0.001 | 0.28 | <0.001 | 0.42 | <0.001 |
Other Races—Including Multi-Racial | 0.21 | 0.009 | 0.35 | <0.001 | 0.44 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aono, M.; Ushio, S.; Araki, Y.; Ueno, R.; Iwano, S.; Takaoka, A.; Tomata, Y. Japanese Diet Indices and Nutrient Density in US Adults: A Cross-Sectional Analysis with NHANES Data. Nutrients 2024, 16, 2431. https://doi.org/10.3390/nu16152431
Aono M, Ushio S, Araki Y, Ueno R, Iwano S, Takaoka A, Tomata Y. Japanese Diet Indices and Nutrient Density in US Adults: A Cross-Sectional Analysis with NHANES Data. Nutrients. 2024; 16(15):2431. https://doi.org/10.3390/nu16152431
Chicago/Turabian StyleAono, Marin, Serika Ushio, Yuno Araki, Ririko Ueno, Suzuna Iwano, Aru Takaoka, and Yasutake Tomata. 2024. "Japanese Diet Indices and Nutrient Density in US Adults: A Cross-Sectional Analysis with NHANES Data" Nutrients 16, no. 15: 2431. https://doi.org/10.3390/nu16152431
APA StyleAono, M., Ushio, S., Araki, Y., Ueno, R., Iwano, S., Takaoka, A., & Tomata, Y. (2024). Japanese Diet Indices and Nutrient Density in US Adults: A Cross-Sectional Analysis with NHANES Data. Nutrients, 16(15), 2431. https://doi.org/10.3390/nu16152431