The Gender Gap in the Relationship between Metabolic Syndrome and Restrictive Ventilatory Defects
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Analysis of Covariates
2.4. Definition of Metabolic Abnormalities
2.5. Pulmonary Function Testing
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Effects of MetS on Pulmonary Function and Ventilatory Defects
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belete, R.; Ataro, Z.; Abdu, A.; Sheleme, M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 25. [Google Scholar] [CrossRef]
- Wen-Harn, P. Nutrition and Health Survey in Taiwan (NAHSIT) 2017–2022; Ministry of Health and Welfare: Taipei, Taiwan, 2022; pp. 91–92. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=3999&pid=15562 (accessed on 2 July 2024).
- Tai, T.Y. Metabolic Syndrome Prevention and Control Handbook; Ministry of Health and Welfare: Taipei, Taiwan, 2007; pp. 67–118.
- Martinez-Pitre, P.J.; Sabbula, B.R.; Cascella, M. Restrictive Lung Disease. StatPearls: 25 July 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560880/ (accessed on 25 January 2023).
- Tantisuwat, A.; Thaveeratitham, P. Effects of smoking on chest expansion, lung function, and respiratory muscle strength of youths. J. Phys. Ther. Sci. 2014, 26, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Tommola, M.; Ilmarinen, P.; Tuomisto, L.E.; Haanpää, J.; Kankaanranta, T.; Niemelä, O.; Kankaanranta, H. The effect of smoking on lung function: A clinical study of adult-onset asthma. Eur. Respir. J. 2016, 48, 1298–1306. [Google Scholar] [CrossRef]
- Kim, W.; Moll, M.; Qiao, D.; Hobbs, B.D.; Shrine, N.; Sakornsakolpat, P.; Tobin, M.D.; Dudbridge, F.; Wain, L.V.; Ladd-Acosta, C.; et al. Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function. JAMA Netw. Open 2021, 4, e2139525. [Google Scholar] [CrossRef] [PubMed]
- Lugg, S.T.; Scott, A.; Parekh, D.; Naidu, B.; Thickett, D.R. Cigarette smoke exposure and alveolar macrophages: Mechanisms for lung disease. Thorax 2022, 77, 94–101. [Google Scholar] [CrossRef]
- Kaneko, H.; Horie, J. Breathing movements of the chest and abdominal wall in healthy subjects. Respir. Care 2012, 57, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Park, S.; Shin, Y.H.; Kim, M.Y.; Lee, Y.J. Sex differences in the relationship between metabolic syndrome and pulmonary function: The 2007 Korean National Health and Nutrition Examination Survey. Endocr. J. 2011, 58, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Tsao, Y.C.; Yang, C.K.; Chuang, C.H.; Yu, W.; Chen, J.C.; Li, W.C. Association between risk factors of metabolic syndrome with lung function. Eur. J. Clin. Nutr. 2020, 74, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-C.A.; Chen, C.-Y.; Chen, T.-T.; Kuo, P.-H.; Hsu, Y.-H.; Yang, H.-I.; Chen, W.J.; Su, M.-W.; Chu, H.-W.; Shen, C.-Y.; et al. Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genom. 2022, 2, 100197. [Google Scholar] [CrossRef]
- Lu, M.Y.; Cheng, H.Y.; Lai, J.C.; Chen, S.J. The Relationship between Habitual Coffee Drinking and the Prevalence of Metabolic Syndrome in Taiwanese Adults: Evidence from the Taiwan Biobank Database. Nutrients 2022, 14, 1867. [Google Scholar] [CrossRef]
- Hsu, C.L.; Huang, W.L.; Chen, H.H.; Lai, J.C.-Y. Non-fermented tea consumption protects against osteoporosis among Chinese male elders using the Taiwan biobank database. Sci. Rep. 2022, 12, 70–79. [Google Scholar] [CrossRef]
- Liu, C.Y.; Hung, Y.T.; Chuang, Y.L.; Chen, Y.J.; Weng, W.S.; Liu, J.S. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J. Health Manag. 2006, 4, 1517. [Google Scholar]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Heng, D.; Ma, S.; Lee, J.J.; Tai, B.C.; Mak, K.H.; Hughes, K.; Chew, S.K.; Chia, K.S.; Tan, C.E.; Tai, E.S. Modification of the NCEP ATP III definitions of the metabolic syndrome for use in Asians identifies individuals at risk of ischemic heart disease. Atherosclerosis 2006, 186, 367–373. [Google Scholar] [CrossRef]
- Beachey, W. Respiratory Care Anatomy and Physiology: Foundations for Clinical Practice, 2nd ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2009; pp. 43–78. [Google Scholar]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Thompson, B.R. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Spirometrically-defined restrictive ventilatory defect: Population variability and individual determinants. Prim. Care Respir. J. 2012, 21, 187–193. [Google Scholar]
- Pauwels, R.A.; Buist, A.S.; Calverley, P.M.; Jenkins, C.R.; Hurd, S.S. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 2001, 163, 1256–1276. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Cunningham, T.J.; Mercado, C.I. Lung function and metabolic syndrome: Findings of National Health and Nutrition Examination Survey 2007–2010. J. Diabetes 2014, 6, 603–613. [Google Scholar] [CrossRef]
- Leone, N.; Courbon, D.; Thomas, F.; Bean, K.; Jego, B.; Leynaert, B.; Guize, L.; Zureik, M. Lung function impairment and metabolic syndrome: The critical role of abdominal obesity. Am. J. Respir. Crit. Care Med. 2009, 179, 509–516. [Google Scholar] [CrossRef]
- Nakajima, K.; Kubouchi, Y.; Muneyuki, T.; Ebata, M.; Eguchi, S.; Munakata, H. A possible association between suspected restrictive pattern as assessed by ordinary pulmonary function test and the metabolic syndrome. Chest 2008, 134, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Paek, Y.J.; Jung, K.S.; Hwang, Y.I.; Lee, K.S.; Lee, D.R.; Lee, J.U. Association between low pulmonary function and metabolic risk factors in Korean adults: The Korean National Health and Nutrition Survey. Metabolism 2010, 59, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Huang, T.J.; Yeh, M.H.; Lin, M.S.; Chen, M.Y. Lung function impairment and cardiometabolic risks among rural adults: Implication for an aging society. BMC Public Health 2021, 21, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Fimognari, F.L.; Pasqualetti, P.; Moro, L.; Franco, A.; Piccirillo, G.; Pastorelli, R.; Rossini, P.M.; Incalzi, R.A. The association between metabolic syndrome and restrictive ventilatory dysfunction in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tian, D.; Zhao, Y.; Li, J.; Chen, X.; Zhang, Y. High-Density Lipoprotein Cholesterol: A Component of the Metabolic Syndrome with a New Role in Lung Function. Evid. Based Complement. Alternat. Med. 2021, 2021, 6615595. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Gi, M.Y.; Cha, J.A.; Yoo, C.U.; Park, S.M. The association between the metabolic syndrome and metabolic syndrome score and pulmonary function in non-smoking adults. Diab Vasc. Dis. Res. 2018, 15, 131–138. [Google Scholar] [CrossRef]
- Lam, K.H.; Jordan, R.E.; Jiang, C.Q.; Thomas, G.N.; Miller, M.R.; Zhang, W.S.; Adab, P. Airflow obstruction and metabolic syndrome: The Guangzhou Biobank Cohort Study. Eur. Respir. J. 2010, 35, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi, Y.; Omori, H.; Mihara, S.; Marubayashi, T.; Katoh, T. Association between airflow obstruction and the metabolic syndrome or its components in Japanese men. Intern. Med. 2010, 49, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Nam, S.M. Association between restrictive pulmonary disease and type 2 diabetes in Koreans: A cross-sectional study. World J. Diabetes 2020, 11, 425–434. [Google Scholar] [CrossRef]
- Lin, W.Y.; Yao, C.A.; Wang, H.C.; Huang, K.C. Impaired lung function is associated with obesity and metabolic syndrome in adults. Obesity 2006, 14, 1654–1661. [Google Scholar] [CrossRef]
- Salome, C.M.; King, G.G.; Berend, N. Physiology of obesity and effects on lung function. J. Appl. Physiol. 2010, 108, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Barcelar, J.D.M.; Aliverti, A.; Rattes, C.; Ximenes, M.E.; Campos, S.L.; Brandão, D.C.; de Andrade, A.D. The expansion of the pulmonary rib cage during breath stacking is influenced by age in obese women. PLoS ONE 2014, 9, e110959. [Google Scholar] [CrossRef] [PubMed]
- Barcelar, J.d.M.; Aliverti, A.; Rattes, C.; Ximenes, M.E.; Campos, S.L.; Brandão, D.C.; Fregonezi, G.; de Andrade, A.D. Association between fasting plasma glucose and high-sensitivity C-reactive protein: Gender differences in a Japanese community-dwelling population. Cardiovasc. Diabetol. 2011, 10, 51–58. [Google Scholar]
- Ferrannini, G.; De Bacquer, D.; Vynckier, P.; De Backer, G.; Gyberg, V.; Kotseva, K.; Mellbin, L.; Norhammar, A.; Tuomilehto, J.; EUROASPIRE IV & V Investigators; et al. Gender differences in screening for glucose perturbations, cardiovascular risk factor management and prognosis in patients with dysglycaemia and coronary artery disease: Results from the ESC-EORP EUROASPIRE surveys. Cardiovasc. Diabetol. 2021, 20, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Iikuni, N.; Lam, Q.L.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef]
Independent Variables | Men | Women | p-Value |
---|---|---|---|
Participants, n (%) | 15,859 (34.6) | 29,929 (65.4) | <0.001 |
Age, mean (SD), y | 48.8 (11.3) | 49.3 (10.6) | <0.001 |
Age, n (%) | |||
30–39 y | 4198 (26.5) | 6893 (23.0) | <0.001 |
40–49 y | 4053 (25.6) | 7618 (25.5) | |
50–59 y | 4123 (26.0) | 9513 (31.8) | |
60–69 y | 3396 (21.4) | 5828 (19.5) | |
≥70 y | 89 (0.6) | 77 (0.3) | |
Residential urbanicity, n (%) | |||
Urban | 9329 (58.8) | 18,002 (60.2) | 0.017 |
Suburban | 5695 (35.9) | 10,450 (34.9) | |
Rural | 835 (5.3) | 1477 (4.9) | |
Education level, n (%) | |||
College or graduate School | 10,840 (68.4) | 16,443 (54.9) | <0.001 |
High school | 4658 (29.4) | 11,842 (39.6) | |
None or elementary school | 361 (2.3) | 1644 (5.5) | |
Smoking experience, n (%) | |||
Never smoked | 8797 (55.5) | 28,305 (94.6) | <0.001 |
Formerly smoked | 3563 (22.5) | 747 (2.5) | |
Currently smokes | 3499 (22.1) | 877 (2.9) | |
Drinking habits, n (%) | |||
Never drank | 13,005 (82.0) | 29,132 (97.3) | <0.001 |
Formerly drank | 774 (4.9) | 235 (0.8) | |
Currently drinks | 2080 (13.1) | 562 (1.9) | |
Monthly exercise habits, n (%) | |||
Never or seldom physical activity | 9428 (59.5) | 18,266 (61.0) | <0.001 |
Light physical activity | 646 (4.1) | 1740 (5.8) | |
Moderate physical activity | 1696 (10.7) | 3756 (12.6) | |
Vigorous physical activity | 4089 (25.8) | 6167 (20.6) | |
BMI, mean (SD) | 25.2 (3.5) | 23.5 (3.7) | <0.001 |
Obese status (BMI ≧ 27), n(%) | 4109 (25.9) | 4549 (15.2) | <0.001 |
Body fat rate, n (%) | |||
Family medical history * | 22.9 (5.3) | 31.8 (6.3) | <0.001 |
Asthma | 1067 (6.7) | 2541 (8.5) | <0.001 |
Emphysema or Chronic bronchitis | 337 (2.1) | 828 (2.8) | <0.001 |
Cardiovascular disease | 5383 (33.9) | 11,262 (37.6) | <0.001 |
Diabetes | 5081 (32.0) | 11,109 (37.1) | <0.001 |
Metabolic syndrome, n (%) | 2955 (18.6) | 4304 (14.4) | <0.001 |
Metabolic abnormalities, n (%) | |||
Fasting glucose ≧ 100 mg/dL | 4642 (29.3) | 5143 (17.2) | <0.001 |
TGs ≧ 150 mg/dL | 4559 (28.8) | 4647 (15.5) | <0.001 |
HDL-C < 40 mg/dL in men or HDL-C < 50 mg/dL in women | 3421 (21.6) | 8005 (26.8) | <0.001 |
SBP ≧ 130 mmHg or DBP ≧ 85 mmHg, | 5834 (36.8) | 6180 (20.7) | <0.001 |
WC ≧ 90 cm in men or WC ≧ 80 cm in women | 3061 (19.3) | 8468 (28.3) | <0.001 |
Lung function parameters | |||
FEV1, mean (SD), L | 2.9 (0.8) | 2.0 (0.6) | <0.001 |
FVC, mean (SD), L | 3.6 (0.7) | 2.4 (0.5) | <0.001 |
FEV1, % predicted | 89.1 (22.0) | 83.8 (22.5) | <0.001 |
FVC, % predicted | 94.2 (15.2) | 91.0 (16.8) | <0.001 |
FEV1/FVC ratio | 95.2 (20.8) | 92.5 (20.7) | <0.001 |
Lung function parameters, n (%) | |||
FEV1 < 80% predicted | 4084 (25.8) | 10,667 (35.6) | <0.001 |
FVC < 80% predicted | 2348 (14.8) | 6674 (22.3) | <0.001 |
Lung function diagnosis, n (%) | |||
Normal ventilatory function | 11,855 (74.8) | 20,025 (66.9) | <0.001 |
Restrictive ventilatory defect | 2058 (13.0) | 5610 (18.7) | |
Obstructive ventilatory defect | 1946 (12.3) | 4294 (14.3) |
FVC < 80%, Predicted | FEV1 < 80%, Predicted | |||||||
---|---|---|---|---|---|---|---|---|
Independent Variables | Age–Sex-Adjusted OR, (95% CI) | Multivariable-Adjusted OR, (95% CI) | Age–Sex-Adjusted OR, (95% CI) | Multivariable-Adjusted OR, (95% CI) | ||||
All participants | 1.20 (1.13–1.27) c | *** | 1.34 (1.25–1.44) d | *** | 1.05 (1.00–1.11) c | 1.22 (1.15–1.30) d | *** | |
Men | 1.37 (1.23–1.52) b | *** | 1.33 (1.18–1.50) a | *** | 1.18 (1.08–1.29) b | *** | 1.23 (1.11–1.36) a | *** |
Women | 1.13 (1.05–1.22) b | ** | 1.34 (1.23–1.46) e | *** | 0.99 (0.92–1.06) b | 1.19 (1.10–1.29) e | *** |
Restrictive Ventilatory Defect | Obstructive Ventilatory Defect | ||||||
---|---|---|---|---|---|---|---|
Independent Variables | Age–Sex-Adjusted OR, (95% CI) | Multivariable-Adjusted OR, (95% CI) | Age–Sex-Adjusted OR, (95% CI) | Multivariable-Adjusted OR, (95% CI) | |||
All participants | 1.27 (1.19–1.35) c | *** | 1.35 (1.26–1.45) d | *** | 0.86 (0.79–0.93) c | *** | 0.97 (0.89–1.06) d |
Men | 1.44 (1.29–1.61) b | *** | 1.31 (1.16–1.49) a | *** | 0.92 (0.81–1.04) b | 1.05 (0.91–1.21) a | |
Women | 1.20 (1.11–1.30) b | *** | 1.36 (1.24–1.48) e | *** | 0.82 (0.74–0.91) b | ** | 0.92 (0.82–1.03) e |
OR, (95% CI) | Non-Metabolic Syndrome | Metabolic Syndrome | ||||
---|---|---|---|---|---|---|
MSS = 0 | MSS = 1 | MSS = 2 | MSS = 3 | MSS = 4 | MSS = 5 | |
Multivariable-adjusted b | 1 | 1.06 (0.99–1.13) | 1.21 (1.11–1.31) *** | 1.41 (1.28–1.56) *** | 1.51 (1.33–1.72) *** | 2.40 (1.94–2.97) *** |
Men a | 1 | 1.15 (1.00–1.32) * | 1.34 (1.16–1.56) *** | 1.52 (1.27–1.81) *** | 1.58 (1.26–1.99) *** | 2.75 (1.87–4.04) *** |
Women c | 1 | 1.04 (0.96–1.13) | 1.16 (1.06–1.28) ** | 1.38 (1.23–1.55) *** | 1.49 (1.27–1.74) *** | 2.26 (1.75–2.91) *** |
Independent Variables OR, (95% CI) | ||||||
---|---|---|---|---|---|---|
Whole Population | Men | Women | ||||
Elevated BP f | 1.33 (1.25–1.41) c | *** | 1.27 (1.14–1.40) b | *** | 1.36 (1.26–1.46) e | *** |
<55 years old | 1.31 (1.13–1.52) a | *** | 1.32 (1.16–1.49) d | *** | ||
>=55 years old | 1.40 (1.22–1.61) a | *** | 1.46 (1.34–1.60) d | *** | ||
Elevated FPG g | 1.12 (1.05–1.20) c | *** | 1.05 (0.94–1.16) b | 1.15 (1.07–1.25) e | *** | |
<55 years old | 1.07 (0.91–1.26) a | 1.38 (1.21–1.57) d | *** | |||
>=55 years old | 1.21 (1.05–1.39) a | ** | 1.14 (1.04–1.26) d | ** | ||
Reduced HDL-C h | 1.11 (1.04–1.18) c | *** | 1.14 (1.02–1.28) b | * | 1.10 (1.03–1.18) e | ** |
<55 years old | 1.15 (0.98–1.36) a | 1.13 (1.02–1.24) d | * | |||
>=55 years old | 1.13 (0.96–1.33) a | 1.07 (0.97–1.18) d | ||||
Elevated TGs i | 1.22 (1.14–1.30) c | *** | 1.27 (1.15–1.42) b | *** | 1.19 (1.09–1.29) e | *** |
<55 years old | 1.35 (1.16–1.56) a | *** | 1.22 (1.07–1.38) d | *** | ||
>=55 years old | 1.25 (1.07–1.46) a | ** | 1.20 (1.08–1.34) d | *** | ||
Abdominal obesity j | 1.07 (1.00–1.16) c | * | 1.26 (1.08–1.46) b | ** | 1.03 (0.95–1.13) e | |
<55 years old | 1.30 (1.04–1.61) a | * | 1.09 (0.96–1.24) d | |||
>=55 years old | 1.24 (1.00–1.53) a | * | 1.00 (0.89–1.12) d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.-C.; Yang, C.-C.; Chen, S.-J.; Cheng, P.-L.; Wu, M.-C.; Wu, H.-H.; Lai, C.-Y. The Gender Gap in the Relationship between Metabolic Syndrome and Restrictive Ventilatory Defects. Nutrients 2024, 16, 2548. https://doi.org/10.3390/nu16152548
Chu Y-C, Yang C-C, Chen S-J, Cheng P-L, Wu M-C, Wu H-H, Lai C-Y. The Gender Gap in the Relationship between Metabolic Syndrome and Restrictive Ventilatory Defects. Nutrients. 2024; 16(15):2548. https://doi.org/10.3390/nu16152548
Chicago/Turabian StyleChu, Ya-Chun, Chi-Chiang Yang, Shaw-Ji Chen, Pei-Ling Cheng, Mei-Chuan Wu, Hsin-Hung Wu, and Cheng-Yen Lai. 2024. "The Gender Gap in the Relationship between Metabolic Syndrome and Restrictive Ventilatory Defects" Nutrients 16, no. 15: 2548. https://doi.org/10.3390/nu16152548
APA StyleChu, Y. -C., Yang, C. -C., Chen, S. -J., Cheng, P. -L., Wu, M. -C., Wu, H. -H., & Lai, C. -Y. (2024). The Gender Gap in the Relationship between Metabolic Syndrome and Restrictive Ventilatory Defects. Nutrients, 16(15), 2548. https://doi.org/10.3390/nu16152548