Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males
Highlights
- In a group of 42 healthy adult males, α-tocopherol (α-TOC) concentration in white adipose tissue, the main α-TOC storage site, exhibited elevated interindividual variability (CV = 61%).
- Adipose tissue α-TOC concentration was not associated with fasting plasma concentration (Pearson’s r = 0.24, 95% CI: [−0.08, 0.51]).
- A combination of 10 SNPs in 5 genes (PPARG, ABCA1, BUD13, CD36, and MGLL) explained 60% (adjusted R2) of the interindividual variability in adipose tissue α-TOC concentration.
- This study highlights key associations between genes and adipose tissue α-TOC concentration, which may have important implications for exploring vitamin E antioxidant and anti-inflammatory functions within adipose tissue.
- This study provides a basis to better understand the determinants of adipose tissue vitamin E concentration, which is considered the best marker of vitamin E status.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biochemical Measurements
2.3. Plasma and Subcutaneous Adipose Tissue α-TOC Concentration Measurements
2.4. Saliva DNA Extraction and Genotyping
2.5. Candidate Gene and SNP Selection
2.6. SNP Function Prediction
2.7. Statistical Analysis
2.8. Retrospective Multivariate Power Analysis Calculations
3. Results
3.1. α-TOC Concentration in the Adipose Tissue
3.2. SNPs Associated with the Interindividual Variability of α-TOC Concentration in the Adipose Tissue
3.3. Combinations of SNPs Associated with the Interindividual Variability of α-TOC Concentration in the Adipose Tissue
3.4. Genetic Score of α-TOC Concentration in the Adipose Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and Metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Azzi, A.; Atkinson, J.; Ozer, N.K.; Manor, D.; Wallert, M.; Galli, F. Vitamin E Discussion Forum Position Paper on the Revision of the Nomenclature of Vitamin E. Free Radic. Biol. Med. 2023, 207, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Human Vitamin E Deficiency, and What Is and Is Not Vitamin E? Free Radic. Biol. Med. 2024, 213, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Lebold, K.M.; Traber, M.G. Interactions between α-Tocopherol, Polyunsaturated Fatty Acids, and Lipoxygenases during Embryogenesis. Free Radic. Biol. Med. 2014, 66, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Li, Y.-F.; Jiao, G.; Sun, W.-Y.; He, R.-R. Unveiling the Antioxidant Superiority of α-Tocopherol: Implications for Vitamin E Nomenclature and Classification. Free Radic. Biol. Med. 2024, 216, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Zingg, J.-M.; Azzi, A. Non-Antioxidant Activities of Vitamin E. Curr. Med. Chem. 2004, 11, 1113–1133. [Google Scholar] [CrossRef]
- Lee, G.; Han, S. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory Role of Vitamin E in the Immune System and Inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wong, J.; Fyrst, H.; Saba, J.D.; Ames, B.N. γ-Tocopherol or Combinations of Vitamin E Forms Induce Cell Death in Human Prostate Cancer Cells by Interrupting Sphingolipid Synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 17825–17830. [Google Scholar] [CrossRef]
- Jandak, J.; Steiner, M.; Richardson, P.D. Alpha-Tocopherol, an Effective Inhibitor of Platelet Adhesion. Blood 1989, 73, 141–149. [Google Scholar] [CrossRef]
- Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takitani, K.; Negishi-Koga, T.; Sunamura, S.; Kodama, T.; et al. Vitamin E Decreases Bone Mass by Stimulating Osteoclast Fusion. Nat. Med. 2012, 18, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Pein, H.; Ville, A.; Pace, S.; Temml, V.; Garscha, U.; Raasch, M.; Alsabil, K.; Viault, G.; Dinh, C.-P.; Guilet, D.; et al. Endogenous Metabolites of Vitamin E Limit Inflammation by Targeting 5-Lipoxygenase. Nat. Commun. 2018, 9, 3834. [Google Scholar] [CrossRef] [PubMed]
- Azzi, A. Reflections on a Century of Vitamin E Research: Looking at the Past with an Eye on the Future. Free Radic. Biol. Med. 2021, 175, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Kayden, H.J. Tocopherol Distribution and Intracellular Localization in Human Adipose Tissue. Am. J. Clin. Nutr. 1987, 46, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.; Traber, M.; Acuff, R.; Walters, D.; Kayden, H.; Hughes, L.; Ingold, K. Human Plasma and Tissue Alpha-Tocopherol Concentrations in Response to Supplementation with Deuterated Natural and Synthetic Vitamin E. Am. J. Clin. Nutr. 1998, 67, 669–684. [Google Scholar] [CrossRef] [PubMed]
- El-Sohemy, A.; Baylin, A.; Ascherio, A.; Kabagambe, E.; Spiegelman, D.; Campos, H. Population-Based Study of Alpha- and Gamma-Tocopherol in Plasma and Adipose Tissue as Biomarkers of Intake in Costa Rican Adults. Am. J. Clin. Nutr. 2001, 74, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Su, L.C.; Bui, M.; Kardinaal, A.; Gomez-Aracena, J.; Martin-Moreno, J.; Martin, B.; Thamm, M.; Simonsen, N.; van’t Veer, P.; Kok, F.; et al. Differences between Plasma and Adipose Tissue Biomarkers of Carotenoids and Tocopherols. Cancer Epidemiol. Biomark. Prev. 1998, 7, 1043–1048. [Google Scholar]
- Handelman, G.J.; Epstein, W.L.; Peerson, J.; Spiegelman, D.; Machlin, L.J.; Dratz, E.A. Human Adipose Alpha-Tocopherol and Gamma-Tocopherol Kinetics during and after 1 y of Alpha-Tocopherol Supplementation. Am. J. Clin. Nutr. 1994, 59, 1025–1032. [Google Scholar] [CrossRef]
- Traber, M.G. Mechanisms for the Prevention of Vitamin E Excess. J. Lipid Res. 2013, 54, 2295–2306. [Google Scholar] [CrossRef]
- Landrier, J.-F.; Marcotorchino, J.; Tourniaire, F. Lipophilic Micronutrients and Adipose Tissue Biology. Nutrients 2012, 4, 1622–1649. [Google Scholar] [CrossRef]
- Alcalá, M.; Sánchez-Vera, I.; Sevillano, J.; Herrero, L.; Serra, D.; Ramos, M.P.; Viana, M. Vitamin E Reduces Adipose Tissue Fibrosis, Inflammation, and Oxidative Stress and Improves Metabolic Profile in Obesity. Obesity 2015, 23, 1598–1606. [Google Scholar] [CrossRef]
- Shen, X.-H.; Tang, Q.-Y.; Huang, J.; Cai, W. Vitamin E Regulates Adipocytokine Expression in a Rat Model of Dietary-Induced Obesity. Exp. Biol. Med. 2010, 235, 47–51. [Google Scholar] [CrossRef]
- Lira, F.S.; Rosa, J.C.; Cunha, C.A.; Ribeiro, E.B.; do Nascimento, C.O.; Oyama, L.M.; Mota, J.F. Supplementing Alpha-Tocopherol (Vitamin E) and Vitamin D3 in High Fat Diet Decrease IL-6 Production in Murine Epididymal Adipose Tissue and 3T3-L1 Adipocytes Following LPS Stimulation. Lipids Health Dis. 2011, 10, 37. [Google Scholar] [CrossRef]
- Landrier, J.-F.; Gouranton, E.; El Yazidi, C.; Malezet, C.; Balaguer, P.; Borel, P.; Amiot, M.-J. Adiponectin Expression Is Induced by Vitamin E via a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Mechanism. Endocrinology 2009, 150, 5318–5325. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Atkinson, J. Vitamin E, Antioxidant and Nothing More. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [PubMed]
- González-Calvo, L.; Joy, M.; Alberti, C.; Ripoll, G.; Molino, F.; Serrano, M.; Calvo, J.H. Effect of Finishing Period Length with α-Tocopherol Supplementation on the Expression of Vitamin E-Related Genes in the Muscle and Subcutaneous Fat of Light Lambs. Gene 2014, 552, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Willems, S.; Gellrich, L.; Chaikuad, A.; Kluge, S.; Werz, O.; Heering, J.; Knapp, S.; Lorkowski, S.; Schubert-Zsilavecz, M.; Merk, D. Endogenous Vitamin E Metabolites Mediate Allosteric PPARγ Activation with Unprecedented Co-Regulatory Interactions. Cell Chem. Biol. 2021, 28, 1489–1500. [Google Scholar] [CrossRef]
- Schäfer, L.; Overvad, K. Subcutaneous Adipose-Tissue Fatty Acids and Vitamin E in Humans: Relation to Diet and Sampling Site. Am. J. Clin. Nutr. 1990, 52, 486–490. [Google Scholar] [CrossRef]
- Kardinaal, A.F.M.; Van’t Veer, P.; Brants, H.A.M.; Van Den Berg, H.; Van Schoonhoven, J.; Hermus, R.J.J. Relations between Antioxidant Vitamins in Adipose Tissue, Plasma, and Diet. Am. J. Epidemiol. 1995, 141, 440–450. [Google Scholar] [CrossRef]
- Colombo, M.L. An Update on Vitamin E, Tocopherol and Tocotrienol-Perspectives. Molecules 2010, 15, 2103–2113. [Google Scholar] [CrossRef]
- Oram, J.F.; Vaughan, A.M.; Stocker, R. ATP-Binding Cassette Transporter A1 Mediates Cellular Secretion of Alpha-Tocopherol. J. Biol. Chem. 2001, 276, 39898–39902. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Tomizaki, T.; Schulze-Briese, C.; Baumann, U.; Stocker, A. The Molecular Basis of Vitamin E Retention: Structure of Human α-Tocopherol Transfer Protein. J. Mol. Biol. 2003, 331, 725–734. [Google Scholar] [CrossRef]
- Major, J.M.; Yu, K.; Weinstein, S.J.; Berndt, S.I.; Hyland, P.L.; Yeager, M.; Chanock, S.; Albanes, D. Genetic Variants Reflecting Higher Vitamin e Status in Men Are Associated with Reduced Risk of Prostate Cancer. J. Nutr. 2014, 144, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Lecompte, S.; Szabo de Edelenyi, F.; Goumidi, L.; Maiani, G.; Moschonis, G.; Widhalm, K.; Molnár, D.; Kafatos, A.; Spinneker, A.; Breidenassel, C.; et al. Polymorphisms in the CD36/FAT Gene Are Associated with Plasma Vitamin E Concentrations in Humans. Am. J. Clin. Nutr. 2011, 93, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Major, J.M.; Yu, K.; Chung, C.C.; Weinstein, S.J.; Yeager, M.; Wheeler, W.; Snyder, K.; Wright, M.E.; Virtamo, J.; Chanock, S.; et al. Genome-Wide Association Study Identifies Three Common Variants Associated with Serologic Response to Vitamin E Supplementation in Men. J. Nutr. 2012, 142, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Campos-Perez, W.; Torres-Castillo, N.; Perez-Robles, M.; Muñoz-Valle, J.F.; Vizmanos-Lamotte, B.; Martinez-Lopez, E. Interaction of Vitamin E Intake and Pro12Ala Polymorphism of PPARG with Adiponectin Levels. Lifestyle Genom. 2017, 10, 172–180. [Google Scholar] [CrossRef]
- Borel, P.; Moussa, M.; Reboul, E.; Lyan, B.; Defoort, C.; Vincent-Baudry, S.; Maillot, M.; Gastaldi, M.; Darmon, M.; Portugal, H. Human Plasma Levels of Vitamin E and Carotenoids Are Associated with Genetic Polymorphisms in Genes Involved in Lipid Metabolism. J. Nutr. 2007, 137, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Girona, J.; Guardiola, M.; Cabré, A.; Manzanares, J.M.; Heras, M.; Ribalta, J.; Masana, L. The Apolipoprotein A5 Gene –1131T→C Polymorphism Affects Vitamin E Plasma Concentrations in Type 2 Diabetic Patients. Clin. Chem. Lab. Med. 2008, 46, 453–457. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R.; Tourniaire, F. Can Genetic Variability in α-Tocopherol Bioavailability Explain the Heterogeneous Response to α-Tocopherol Supplements? Antioxid. Redox Signal. 2015, 22, 669–678. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R. A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Dietary β-Carotene Bioavailability in Healthy Men. J. Nutr. 2015, 145, 1740–1747. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Borel, P.; Goncalves, A.; Kopec, R.; Nowicki, M.; Morange, S.; Lesavre, N.; Portugal, H.; Reboul, E. A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men. J. Nutr. 2016, 146, 2421–2428. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R. Lycopene Bioavailability Is Associated with a Combination of Genetic Variants. Free Radic. Biol. Med. 2015, 83, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Zumaraga, M.P.; Borel, P.; Bott, R.; Nowicki, M.; Lairon, D.; Desmarchelier, C. The Interindividual Variability of Phytofluene Bioavailability Is Associated with a Combination of Single Nucleotide Polymorphisms. Mol. Nutr. Food Res. 2022, 67, e2200580. [Google Scholar] [CrossRef] [PubMed]
- Desmarchelier, C.; Wolff, E.; Defoort, C.; Nowicki, M.; Morange, P.-E.; Alessi, M.-C.; Valéro, R.; Nicolay, A.; Lairon, D.; Borel, P. A Combination of Single Nucleotide Polymorphisms Is Associated with the Interindividual Variability of Cholesterol Bioavailability in Healthy Adult Males. Mol. Nutr. Food Res. 2020, 64, e2000480. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Boyle, A.P. Predicting Functional Variants in Enhancer and Promoter Elements Using RegulomeDB. Human. Mutat. 2019, 40, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Forkman, J. Estimator and Tests for Common Coefficients of Variation in Normal Distributions. Commun. Stat. Theory Methods 2009, 38, 233–251. [Google Scholar] [CrossRef]
- Rajendiran, E.; Lamarche, B.; She, Y.; Ramprasath, V.; Eck, P.; Brassard, D.; Gigleux, I.; Levy, E.; Tremblay, A.; Couture, P.; et al. A Combination of Single Nucleotide Polymorphisms Is Associated with the Interindividual Variability in the Blood Lipid Response to Dietary Fatty Acid Consumption in a Randomized Clinical Trial. Am. J. Clin. Nutr. 2021, 114, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Le Floch, E.; Guillemot, V.; Frouin, V.; Pinel, P.; Lalanne, C.; Trinchera, L.; Tenenhaus, A.; Moreno, A.; Zilbovicius, M.; Bourgeron, T.; et al. Significant Correlation between a Set of Genetic Polymorphisms and a Functional Brain Network Revealed by Feature Selection and Sparse Partial Least Squares. Neuroimage 2012, 63, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Gauchi, J.-P.; Chagnon, P. Comparison of Selection Methods of Explanatory Variables in PLS Regression with Application to Manufacturing Process Data. Chemometr. Intell. Lab. 2001, 58, 171–193. [Google Scholar] [CrossRef]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for Significance Testing of PLS and OPLS® Models. J. Chemom. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Harrell, F.E., Jr.; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal Validation of Predictive Models: Efficiency of Some Procedures for Logistic Regression Analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.Y.; Pu, Y.S.; Inbaraj, B.S.; Chen, B.H. An Improved High Performance Liquid Chromatography–Diode Array Detection–Mass Spectrometry Method for Determination of Carotenoids and Their Precursors Phytoene and Phytofluene in Human Serum. J. Chromatogr. B 2012, 899, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Leonard, S.W.; Traber, D.L.; Traber, L.D.; Gallagher, J.; Bobe, G.; Jeschke, M.G.; Finnerty, C.C.; Herndon, D. α-Tocopherol Adipose Tissue Stores Are Depleted after Burn Injury in Pediatric Patients. Am. J. Clin. Nutr. 2010, 92, 1378–1384. [Google Scholar] [CrossRef]
- Cuerq, C.; Restier, L.; Drai, J.; Blond, E.; Roux, A.; Charriere, S.; Michalski, M.-C.; Di Filippo, M.; Levy, E.; Lachaux, A.; et al. Establishment of Reference Values of α-Tocopherol in Plasma, Red Blood Cells and Adipose Tissue in Healthy Children to Improve the Management of Chylomicron Retention Disease, a Rare Genetic Hypocholesterolemia. Orphanet J. Rare Dis. 2016, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.F.; Solvoll, K.; Johansson, L.R.; Salminen, I.; Aro, A.; Drevon, C.A. Evaluation of a Food Frequency Questionnaire with Weighed Records, Fatty Acids, and Alpha-Tocopherol in Adipose Tissue and Serum. Am. J. Epidemiol. 1999, 150, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, S.; Yasmeen, R.; Reichert, B.; Ziouzenkova, O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. In Carotenoids and Vitamin A in Translational Medicine; Oxidative Stress and Disease; CRC Press: Boca Raton, FL, USA, 2013; Volume 20135850, pp. 23–52. ISBN 978-1-4398-5526-3. [Google Scholar]
- Östh, M.; Öst, A.; Kjolhede, P.; Strålfors, P. The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE 2014, 9, e85610. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.; Roi, S.; Nowicki, M.; Niot, I.; Reboul, E. Cluster-determinant 36 (CD36) Impacts on Vitamin E Postprandial Response. Mol. Nutr. Food Res. 2014, 58, 2297–2306. [Google Scholar] [CrossRef]
- Hames, K.C.; Vella, A.; Kemp, B.J.; Jensen, M.D. Free Fatty Acid Uptake in Humans with CD36 Deficiency. Diabetes 2014, 63, 3606–3614. [Google Scholar] [CrossRef]
- Vaughan, M.; Berger, J.E.; Steinberg, D. Hormone-Sensitive Lipase and Monoglyceride Lipase Activities in Adipose Tissue. J. Biol. Chem. 1964, 239, 401–409. [Google Scholar] [CrossRef]
- Koppen, A.; Kalkhoven, E. Brown vs White Adipocytes: The PPARgamma Coregulator Story. FEBS Lett. 2010, 584, 3250–3259. [Google Scholar] [CrossRef]
- Jiang, Q. Metabolism of Natural Forms of Vitamin E and Biological Actions of Vitamin E Metabolites. Free Radic. Biol. Med. 2022, 179, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Reboul, E.; Trompier, D.; Moussa, M.; Klein, A.; Landrier, J.-F.; Chimini, G.; Borel, P. ATP-Binding Cassette Transporter A1 Is Significantly Involved in the Intestinal Absorption of α- and γ-Tocopherol but Not in That of Retinyl Palmitate in Mice. Am. J. Clin. Nutr. 2009, 89, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Shichiri, M.; Takanezawa, Y.; Rotzoll, D.E.; Yoshida, Y.; Kokubu, T.; Ueda, K.; Tamai, H.; Arai, H. ATP-Binding Cassette Transporter A1 Is Involved in Hepatic α-Tocopherol Secretion. J. Nutr. Biochem. 2010, 21, 451–456. [Google Scholar] [CrossRef] [PubMed]
- de Haan, W.; Bhattacharjee, A.; Ruddle, P.; Kang, M.H.; Hayden, M.R. ABCA1 in Adipocytes Regulates Adipose Tissue Lipid Content, Glucose Tolerance, and Insulin Sensitivity. J. Lipid Res. 2014, 55, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between Adipocytes and High-Density Lipoprotein:New Insights into the Mechanism of Obesity-Induced Dyslipidemia and Atherosclerosis. Lipids Health Dis. 2019, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Aung, L.H.H.; Yin, R.-X.; Wu, D.-F.; Wang, W.; Liu, C.-W.; Pan, S.-L. Association of the Variants in the BUD13-ZNF259 Genes and the Risk of Hyperlipidaemia. J. Cell Mol. Med. 2014, 18, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Major, J.M.; Yu, K.; Wheeler, W.; Zhang, H.; Cornelis, M.C.; Wright, M.E.; Yeager, M.; Snyder, K.; Weinstein, S.J.; Mondul, A.; et al. Genome-Wide Association Study Identifies Common Variants Associated with Circulating Vitamin E Levels. Hum. Mol. Genet. 2011, 20, 3876–3883. [Google Scholar] [CrossRef]
- Ferrucci, L.; Perry, J.R.B.; Matteini, A.; Perola, M.; Tanaka, T.; Silander, K.; Rice, N.; Melzer, D.; Murray, A.; Cluett, C. Common Variation in the β-Carotene 15, 15′-Monooxygenase 1 Gene Affects Circulating Levels of Carotenoids: A Genome-Wide Association Study. Am. J. Hum. Genet. 2009, 84, 123–133. [Google Scholar] [CrossRef]
- Strychalski, J.; Gugołek, A.; Kaczorek-Łukowska, E.; Antoszkiewicz, Z.; Matusevičius, P. The BCO2 Genotype and the Expression of BCO1, BCO2, LRAT, and TTPA Genes in the Adipose Tissue and Brain of Rabbits Fed a Diet with Marigold Flower Extract. Int. J. Mol. Sci. 2023, 24, 2304. [Google Scholar] [CrossRef]
- Torquato, P.; Marinelli, R.; Bartolini, D.; Giusepponi, D.; Cruciani, G.; Siragusa, L.; Galarini, R.; Sebastiani, B.; Gioiello, A.; Galli, F. Vitamin E: Metabolism and Molecular Aspects. In Molecular Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 487–518. ISBN 978-0-12-811907-5. [Google Scholar]
- Schmölz, L. Complexity of Vitamin E Metabolism. WJBC 2016, 7, 14. [Google Scholar] [CrossRef]
- Galmés, S.; Serra, F.; Palou, A. Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018, 10, 1919. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.Y.; Ward, N.C.; Indrawan, A.P.; Almeida, C.-A.; Hodgson, J.M.; Proudfoot, J.M.; Puddey, I.B.; Croft, K.D. Effects of Alpha-Tocopherol and Mixed Tocopherol Supplementation on Markers of Oxidative Stress and Inflammation in Type 2 Diabetes. Clin. Chem. 2007, 53, 511–519. [Google Scholar] [CrossRef] [PubMed]
Author/s | Publication Year | n, Population | Mean | SD | %CV a | Ref. |
---|---|---|---|---|---|---|
Schäefer and Overvad, | 1990 | 20 healthy participants from Denmark | 409.8 mmol/mol triglyceride b | 206.7 | 50.4 | [28] |
Kardinaal et al. | 1995 | 85 healthy participants from the Netherlands (47 females and 38 males) | 281.0 μg/g total fatty acid c | 152.0 | 54.1 | [29] |
240.0 μg/ g total fatty acid d | 106.0 | 44.2 | ||||
Su et al. | 1998 | 213 healthy participants from Spain, Germany, the Netherlands, Northern Ireland and Switzerland (122 females and 91 males) | 355.2 μg/g total fatty acid c | 181.5 | 51.1 | [17] |
268.4 μg/g total fatty acid d | 147.3 | 54.9 | ||||
El-Sohemy et al. | 2001 | 458 healthy participants from Costa Rica (111 females and 347 males) | 123.1 μg/g adipose tissue c | 69.5 | 56.5 | [16] |
82.9 μg/g adipose tissue d | 55.9 | 67.4 |
Characteristic | Mean (SEM) |
---|---|
Age, y | 31.3 (1.9) |
Weight, kg | 73.6 (1.3) |
BMI, kg/m2 | 23.0 (0.3) |
Total cholesterol, g/L a | 1.6 (0.1) |
Triglycerides, g/L a | 0.8 (0.1) |
HDL-C, g/L a | 0.5 (0.0) |
LDL-C, g/L a | 1.0 (0.1) |
Glucose, mmol/L a | 4.7 (0.1) |
Hemoglobin, g/dL a | 15.0 (0.1) |
α-tocopherol, μmol/L a | 25.5 (0.9) |
Pearson’s r | 95% CI | p-Value | |
---|---|---|---|
Age | 0.25 | −0.06, 0.52 | 0.11 |
BMI | 0.17 | −0.14, 0.45 | 0.28 |
Fasting lipid concentration | |||
Total cholesterol | 0.36 | 0.06, 0.60 | 0.02 b |
LDL-C | 0.27 | −0.07, 0.55 | 0.11 |
HDL-C | −0.01 | −0.33, 0.32 | 0.97 |
Fasting α-TOC/total cholesterol | −0.11 | −0.40, 0.20 | 0.49 |
Fasting α-TOC/LDL-C | 0.13 | −0.21, 0.44 | 0.45 |
Fasting α-TOC/HDL-C | −0.05 | −0.37, 0.28 | 0.76 |
Triglycerides (TG) | 0.24 | −0.07, 0.51 | 0.12 |
α-TOC concentration | |||
in fasting plasma | 0.24 | −0.07, 0.51 | 0.14 |
in postprandial chylomicrons a | 0.06 | −0.28, 0.38 | 0.73 |
SNPs | Gene | Alleles | Alternate Allele Frequency (European Population) | Gene Region a | Unstandardized Regression Coefficient b | p-Value c | Variant Effect Prediction Score d |
---|---|---|---|---|---|---|---|
Additive model | |||||||
rs709158 | PPARG | A>G | 0.35 | intron | 52.5 ± 14.3 | 0.0007 | 0.61 |
rs1151996 | PPARG | C>A | 0.62 | intron | 52.6 ± 15.2 | 0.0013 | 0.44 |
rs3211958 | CD36 | A>G | 0.45 | intron | 49.7 ± 16.0 | 0.0033 | 0.13 |
rs2921193 | PPARG | G>A | 0.47 | intron | 41.8 ± 14.0 | 0.0048 | 0.18 |
rs2575876 | ABCA1 | G>A | 0.26 | intron | 45.3 ± 15.5 | 0.0057 | 0.61 |
rs709150 | PPARG | C>G | 0.39 | intron | 41.4 ± 14.4 | 0.0064 | 0.61 |
rs4739050 | TTPA | A>G | 0.39 | intergenic | −43.7 ± 15.6 | 0.0078 | 0.18 |
rs1152002 | PPARG | C>T | 0.48 | intron | 39.8 ± 15.5 | 0.0143 | 0.61 |
rs1151998 | PPARG | A>G | 0.47 | intron | 36.2 ± 14.4 | 0.0157 | 0.61 |
rs7951761 | BUD13 | G>A | 0.50 | intergenic | 39.9 ± 16.3 | 0.0186 | 0.13 |
rs2777788 | ABCA1 | A>G | 0.39 | intron | 36.0 ± 15.8 | 0.0275 | 0.61 |
rs6472073 | TTPA | C>A | 0.48 | intergenic | 31.6 ± 14.0 | 0.0295 | 0.59 |
rs2297406 | ABCA1 | C>T | 0.30 | intron | 34.5 ± 15.5 | 0.0312 | 0.00 |
rs4823164 | PNPLA3 | C>T | 0.46 | intergenic | 34.2 ± 15.9 | 0.0372 | 0.38 |
rs10891938 | BUD13 | G>A | 0.37 | intergenic | 31.0 ± 15.0 | 0.0453 | 0.59 |
rs2280434 | CYP4F2 | C>A | 0.45 | 3′ UTR | 30.2 ± 14.7 | 0.0468 | 0.51 |
rs573126 | BUD13 | A>C | 0.32 | intergenic | 34.0 ± 16.8 | 0.0491 | 0.13 |
rs11216029 | BUD13 | G>T | 0.42 | intergenic | −33.2 ± 16.4 | 0.0498 | 0.13 |
Dominant Model e | |||||||
rs709157 | PPARG | G>A | 0.31 | intron | 37.1 ± 10.1 | 0.0007 | 0.55 |
rs1561166 | ABCA1 | T>C | 0.09 | intergenic | 56.9 ± 15.6 | 0.0008 | 0.13 |
rs1783225 | BUD13 | T>C | 0.11 | intergenic | 39.2 ± 11.4 | 0.0013 | 0.91 |
rs12686004 | ABCA1 | G>A | 0.12 | intergenic | 42.7 ± 12.5 | 0.0015 | 0.59 |
rs1648364 | BUD13 | T>C | 0.13 | intergenic | 42.5 ± 12.5 | 0.0016 | 0.13 |
rs2275542 | ABCA1 | C>T | 0.32 | intron | −34.3 ± 10.4 | 0.0021 | 0.85 |
rs4743764 | ABCA1 | T>C | 0.42 | intron | −34.8 ± 10.9 | 0.0027 | 0.61 |
rs13076933 | PPARG | T>G | 0.26 | 2 kb upstream | 32.9 ± 10.5 | 0.0032 | 0.24 |
rs3773161 | MGLL | T>C | 0.03 | intron | 49.6 ± 16.2 | 0.0039 | 0.69 |
rs12271395 | BUD13 | A>C | 0.17 | intergenic | 32.7 ± 10.9 | 0.0044 | 0.13 |
rs6778770 | MGLL | A>G | 0.23 | intron | 29.9 ± 10.7 | 0.0079 | 0.51 |
rs4475472 | TTPA | T>C | 0.08 | intergenic | 42.7 ± 15.3 | 0.0079 | 0.04 |
rs6008798 | PPARA | T>C | 0.27 | intergenic | −29.6 ± 10.7 | 0.0086 | 0.61 |
rs482795 | BUD13 | A>G | 0.26 | intergenic | 32.6 ± 11.9 | 0.0088 | 0.13 |
rs13288647 | PLIN2 | A>G | 0.32 | intergenic | −29.4 ± 10.8 | 0.0094 | 0.00 |
rs670345 | DGAT2 | G>A | 0.07 | intergenic | −36.1 ± 13.7 | 0.0120 | 0.61 |
rs608318 | MGLL | T>G | 0.14 | intron | −30.4 ± 11.7 | 0.0131 | 0.61 |
rs9289316 | MGLL | A>G | 0.11 | intron | 43.3 ± 16.7 | 0.0132 | 0.61 |
rs12629751 | PPARG | C>T | 0.09 | intron | 43.1 ± 16.7 | 0.0136 | 0.18 |
rs3904998 | ABCA1 | T>C | 0.21 | intron | 28.7 ± 11.1 | 0.0137 | 0.13 |
rs135549 | PPARA | T>C | 0.42 | intron | −29.7 ± 11.7 | 0.0153 | 0.72 |
rs2622621 | ABCG2 | C>G | 0.27 | intron | 27.4 ± 10.9 | 0.0157 | 0.61 |
rs135552 | PPARA | T>C | 0.27 | intron | −27.8 ± 11.1 | 0.0165 | 0.33 |
rs2074303 | TM6SF2 | C>T | 0.34 | intron | 28.5 ± 11.5 | 0.0180 | 0.61 |
rs519000 | BUD13 | C>T | 0.16 | intergenic | 28.4 ± 11.6 | 0.0184 | 0.61 |
rs11716997 | MGLL | T>G | 0.43 | intergenic | −31.4 ± 12.8 | 0.0185 | 0.36 |
rs1152001 | PPARG | A>G | 0.21 | intron | −26.0 ± 11.2 | 0.0249 | 0.61 |
rs4922131 | LPL | G>A | 0.44 | intergenic | 28.2 ± 12.1 | 0.0252 | 0.55 |
rs1383194 | NKAIN3 | T>C | 0.30 | intron | 26.8 ± 11.5 | 0.0252 | 0.18 |
rs13270035 | NKAIN3 | A>G | 0.16 | intergenic | −25.7 ± 11.2 | 0.0268 | 0.13 |
rs4149275 | ABCA1 | A>G | 0.18 | intron | 27.9 ± 12.2 | 0.0272 | 0.13 |
rs3934667 | SF4 | G>T | 0.35 | 2 kb upstream | 27.1 ± 11.9 | 0.0282 | 0.98 |
rs929090 | PNPLA3 | A>G | 0.47 | intergenic | 27.0 ± 11.9 | 0.0288 | 0.13 |
rs2886571 | CYP4F2 | T>C | 0.25 | intron | −25.9 ± 11.4 | 0.0290 | 0.18 |
rs7652615 | MGLL | T>G | 0.16 | intron | −26.7 ± 11.9 | 0.0304 | 0.52 |
rs1563325 | NKAIN3 | G>A | 0.18 | intron | 24.8 ± 11.1 | 0.0307 | 0.61 |
rs11204094 | LPL | A>G | 0.43 | intergenic | −24.6 ± 11.0 | 0.0309 | 0.27 |
rs1152004 | PPARG | A>G | 0.21 | intergenic | 25.2 ± 11.4 | 0.0323 | 0.61 |
rs11605293 | BUD13 | C>T | 0.09 | intergenic | −27.0 ± 12.2 | 0.0326 | 0.13 |
rs17193714 | NKAIN3 | C>T | 0.09 | intergenic | −31.1 ± 14.0 | 0.0327 | 0.13 |
rs7651814 | MGLL | C>T | 0.16 | intron | −26.2 ± 11.9 | 0.0340 | 0.98 |
rs4646437 | CYP3A4 | G>A | 0.11 | intron | −26.6 ± 12.2 | 0.0358 | 0.93 |
rs2174876 | BUD13 | G>A | 0.46 | intergenic | −25.3 ± 11.7 | 0.0373 | 0.13 |
rs9919066 | ABCA1 | C>T | 0.09 | intergenic | −27.9 ± 13.0 | 0.0380 | 0.00 |
rs3219281 | NR1H2 | C>T | 0.09 | 0.5 kb downstream | −33.9 ± 15.8 | 0.0383 | 0.39 |
rs2074296 | TM6SF2 | A>G | 0.33 | intergenic | 25.1 ± 11.8 | 0.0389 | 0.67 |
rs1350057 | NKAIN3 | C>T | 0.11 | intron | 26.8 ± 12.6 | 0.0396 | 0.18 |
rs11215905 | BUD13 | T>C | 0.45 | intergenic | −24.9 ± 11.7 | 0.0401 | 0.00 |
rs4823153 | PNPLA3 | T>C | 0.23 | intergenic | −23.4 ± 11.1 | 0.0414 | 0.61 |
rs2740486 | ABCA1 | T>G | 0.47 | intron | 26.5 ± 12.6 | 0.0421 | 0.51 |
rs4425750 | NKAIN3 | C>T | 0.11 | intron | 26.4 ± 12.6 | 0.0424 | 0.55 |
rs479504 | MGLL | C>A | 0.21 | intron | 25.6 ± 12.3 | 0.0439 | 0.76 |
rs6439099 | MGLL | T>C | 0.08 | intergenic | −31.0 ± 14.9 | 0.0439 | 0.18 |
rs3124016 | ABCA1 | G>A | 0.26 | intergenic | 23.4 ± 11.3 | 0.0453 | 0.11 |
rs573713 | BUD13 | A>G | 0.13 | intergenic | −23.8 ± 11.6 | 0.0466 | 0.13 |
rs11216157 | APOA1 | A>G | 0.13 | intron | −23.7 ± 11.6 | 0.0472 | 0.70 |
rs10991509 | ABCA1 | A>G | 0.28 | intergenic | −23.4 ± 11.4 | 0.0476 | 0.61 |
rs11216026 | BUD13 | A>G | 0.28 | intergenic | −22.6 ± 11.1 | 0.0484 | 0.13 |
rs11215728 | BUD13 | C>T | 0.40 | intergenic | −23.3 ± 11.5 | 0.0490 | 0.61 |
Gene a | SNP | VIP Value b | Regression Coefficient c |
---|---|---|---|
PPARG | rs709158 | 1.35 | 16.8 |
ABCA1 | rs1561166 | 1.34 | 36.4 |
BUD13 | rs1783225 | 1.29 | 25.0 |
ABCA1 | rs12686004 | 1.28 | 27.3 |
BUD13 | rs1648364 | 1.27 | 27.2 |
ABCA1 | rs2275542 | 1.24 | 21.9 |
ABCA1 | rs4743764 | 1.20 | 22.3 |
PPARG | rs13076933 | 1.20 | 21.0 |
CD36 | rs3211958 | 1.19 | 15.9 |
MGLL | rs3773161 | 1.17 | 31.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zumaraga, M.P.; Borel, P.; Gleize, B.; Nowicki, M.; Ould-Ali, D.; Landrier, J.-F.; Desmarchelier, C. Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males. Nutrients 2024, 16, 2556. https://doi.org/10.3390/nu16152556
Zumaraga MP, Borel P, Gleize B, Nowicki M, Ould-Ali D, Landrier J-F, Desmarchelier C. Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males. Nutrients. 2024; 16(15):2556. https://doi.org/10.3390/nu16152556
Chicago/Turabian StyleZumaraga, Mark Pretzel, Patrick Borel, Beatrice Gleize, Marion Nowicki, Djaffar Ould-Ali, Jean-François Landrier, and Charles Desmarchelier. 2024. "Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males" Nutrients 16, no. 15: 2556. https://doi.org/10.3390/nu16152556
APA StyleZumaraga, M. P., Borel, P., Gleize, B., Nowicki, M., Ould-Ali, D., Landrier, J. -F., & Desmarchelier, C. (2024). Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males. Nutrients, 16(15), 2556. https://doi.org/10.3390/nu16152556