Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguiar, A.F.; Casonatto, J. Effects of Citrulline Malate Supplementation on Muscle Strength in Resistance-Trained Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Diet. Suppl. 2022, 19, 772–790. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common Ingredient Profiles of Multi-Ingredient Pre-Workout Supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.-M. Effect of Citrulline on Post-Exercise Rating of Perceived Exertion, Muscle Soreness, and Blood Lactate Levels: A Systematic Review and Meta-Analysis. J. Sport Health Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Chappell, A.J.; Allwood, D.M.; Johns, R.; Brown, S.; Sultana, K.; Anand, A.; Simper, T. Citrulline Malate Supplementation Does Not Improve German Volume Training Performance or Reduce Muscle Soreness in Moderately Trained Males and Females. J. Int. Soc. Sports Nutr. 2018, 15, 42. [Google Scholar] [CrossRef]
- Chappell, A.J.; Allwood, D.M.; Simper, T.N. Citrulline Malate Fails to Improve German Volume Training Performance in Healthy Young Men and Women. J. Diet. Suppl. 2020, 17, 249–260. [Google Scholar] [CrossRef]
- Bezuglov, E.; Morgans, R.; Lazarev, A.; Kalinin, E.; Butovsky, M.; Savin, E.; Tzgoev, E.; Pirmakhanov, B.; Emanov, A.; Zholinsky, A.; et al. The Effect of a Single Dose of Citrulline on the Physical Performance of Soccer-Specific Exercise in Adult Elite Soccer Players (A Pilot Randomized Double-Blind Trial). Nutrients 2022, 14, 5036. [Google Scholar] [CrossRef]
- Gough, L.A.; Sparks, S.A.; McNaughton, L.R.; Higgins, M.F.; Newbury, J.W.; Trexler, E.; Faghy, M.A.; Bridge, C.A. A Critical Review of Citrulline Malate Supplementation and Exercise Performance. Eur. J. Appl. Physiol. 2021, 121, 3283–3295. [Google Scholar] [CrossRef]
- Bendahan, D.; Mattei, J.P.; Ghattas, B.; Confort-Gouny, S.; Guern, M.E.L.; Cozzone, P.J. Citrulline/Malate Promotes Aerobic Energy Production in Human Exercising Muscle. Br. J. Sports Med. 2002, 36, 282–289. [Google Scholar] [CrossRef]
- Wax, B.; Kavazis, A.N.; Luckett, W. Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. J. Diet. Suppl. 2016, 13, 269–282. [Google Scholar] [CrossRef]
- Feito, Y.; Burrows, E.K.; Tabb, L.P. A 4-Year Analysis of the Incidence of Injuries Among CrossFit-Trained Participants. Orthop. J. Sports Med. 2018, 6, 2325967118803100. [Google Scholar] [CrossRef] [PubMed]
- CrossFit. Available online: https://www.crossfit.com/map (accessed on 4 July 2024).
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.D.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic Review and Meta-Analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Messina, G.; Polito, R.; Porro, C.; Monda, V.; Monda, M.; Scarinci, A.; Dipace, A.; Cibelli, G.; Messina, A.; et al. Aerobic and Anaerobic Effect of CrossFit Training: A Narrative Review. Sport Mont. 2023, 21, 123–128. [Google Scholar] [CrossRef]
- Meier, N.; Schlie, J.; Schmidt, A. Physiological Effects of Regular CrossFit® Training and the Impact of the COVID-19 Pandemic—A Systematic Review. Front. Physiol. 2023, 14, 1146718. [Google Scholar] [CrossRef] [PubMed]
- Drum, S.N.; Bellovary, B.N.; Jensen, R.L.; Moore, M.T.; Donath, L. Perceived demands and postexercise physical dysfunction in CrossFit® compared to an ACSM based training session. J. Sports Med. Phys. Fit. 2017, 57, 604–609. [Google Scholar] [CrossRef]
- Sprey, J.W.C.; Ferreira, T.; de Lima, M.V.; Duarte, A.; Jorge, P.B.; Santili, C. An Epidemiological Profile of CrossFit Athletes in Brazil. Orthop. J. Sports Med. 2016, 4, 2325967116663706. [Google Scholar] [CrossRef]
- Brisebois, M.; Kramer, S.; Lindsay, K.G.; Wu, C.-T.; Kamla, J. Dietary Practices and Supplement Use among CrossFit® Participants. J. Int. Soc. Sports Nutr. 2022, 19, 316–335. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Wethington, L.N.; Stone, M.S.; Stewart, R.W.; Moyen, N.E. Acute Citrulline Malate Supplementation Improves Upper- and Lower-Body Submaximal Weightlifting Exercise Performance in Resistance-Trained Females. Eur. J. Nutr. 2017, 56, 775–784. [Google Scholar] [CrossRef]
- Cunniffe, B.; Papageorgiou, M.; OʼBrien, B.; Davies, N.A.; Grimble, G.K.; Cardinale, M. Acute Citrulline-Malate Supplementation and High-Intensity Cycling Performance. J. Strength Cond. Res. 2016, 30, 2638–2647. [Google Scholar] [CrossRef]
- Gills, J.L.; Glenn, J.M.; Gray, M.; Romer, B.; Lu, H. Acute Citrulline-Malate Supplementation Is Ineffective during Aerobic Cycling and Subsequent Anaerobic Performance in Recreationally Active Males. Eur. J. Sport Sci. 2021, 21, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Spitz, R.W.; Ghigiarelli, J.J.; Sell, K.M.; Mangine, G.T. Acute Effect of Citrulline Malate Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men. J. Strength Cond. Res. 2018, 32, 3088. [Google Scholar] [CrossRef] [PubMed]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.A.; Ramirez, M.; Heinrich, K.M. Acute Caffeine Supplementation Does Not Improve Performance in Trained CrossFit® Athletes. Sports 2020, 8, 54. [Google Scholar] [CrossRef]
- Glaister, M. Multiple-Sprint Work: Methodological, Physiological, and Experimental Issues. Int. J. Sports Physiol. Perform. 2008, 3, 107–112. [Google Scholar] [CrossRef]
- Hibbert, A.W.; Billaut, F.; Varley, M.C.; Polman, R.C.J. Familiarization Protocol Influences Reproducibility of 20-Km Cycling Time-Trial Performance in Novice Participants. Front. Physiol. 2017, 8, 488. [Google Scholar] [CrossRef]
- Kliszczewicz, B.; Quindry, C.J.; Blessing, L.D.; Oliver, D.G.; Esco, R.M.; Taylor, J.K. Acute Exercise and Oxidative Stress: CrossFitTM vs. Treadmill Bout. J. Hum. Kinet. 2015, 47, 81–90. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334. [Google Scholar] [CrossRef]
- Ammar, A.; Boujelbane, M.; Simak, M.; Fraile-Fuente, I.; Rizz, N.; Washif, J.; Zmijewski, P.; Jahrami, H.; Schöllhorn, W. Unveiling the Acute Neurophysiological Responses to Strength Training: An Exploratory Study on Novices Performing Weightlifting Bouts with Different Motor Learning Models. Biol. Sport 2023, 41, 249–274. [Google Scholar] [CrossRef]
- Admin_Polar Running Heart Rate Zones|The Basics. Available online: https://www.polar.com/blog/running-heart-rate-zones-basics/ (accessed on 2 August 2024).
- Vårvik, F.T.; Bjørnsen, T.; Gonzalez, A.M. Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 350–358. [Google Scholar] [CrossRef]
- Farney, T.M.; Bliss, M.V.; Hearon, C.M.; Salazar, D.A. The Effect of Citrulline Malate Supplementation on Muscle Fatigue Among Healthy Participants. J. Strength Cond. Res. 2019, 33, 2464. [Google Scholar] [CrossRef] [PubMed]
- Fick, A.N.; Kowalsky, R.J.; Stone, M.S.; Hearon, C.M.; Farney, T.M. Acute and Chronic Citrulline Malate Supplementation on Muscle Contractile Properties and Fatigue Rate of the Quadriceps. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Mayo, J.; Lyons, B.C.; Tucker, W.S.; Wax, B. Acute Citrulline Malate Supplementation Does Not Improve Anaerobic Capacity in Healthy Young Adults: A Pilot Study: Original Research. JEN 2023, 6, 11–17. [Google Scholar] [CrossRef]
- da Silva, D.K.; Jacinto, J.L.; de Andrade, W.B.; Roveratti, M.C.; Estoche, J.M.; Balvedi, M.C.W.; de Oliveira, D.B.; da Silva, R.A.; Aguiar, A.F. Citrulline Malate Does Not Improve Muscle Recovery after Resistance Exercise in Untrained Young Adult Men. Nutrients 2017, 9, 1132. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD (n = 21) | |
---|---|
Age (year) | 22.2 ± 2.6 |
Training Experience (year) | 14.3 ± 3.8 |
Body Height (cm) | 178.3 ± 5.8 |
Body Weight (kg) | 75.9 ± 10.4 |
Fat Mass (kg) | 9.9 ± 4.8 |
Fat Percentage (%) | 12.7 ± 4.6 |
Lean Body Mass (kg) | 65.9 ± 7.0 |
Total Body Water (kg) | 49.6 ± 8.6 |
EA | CM | F | p | η2p | |
---|---|---|---|---|---|
Mean ± SD SD | Mean ± SD | ||||
PO (bpm) | 67.3 ± 23.0 | 72.8 ± 18.8 | 2.060 | 0.167 | 0.09 |
Pmax (bpm) | 183.8 ± 18.3 | 181.2 ± 11.5 | 0.433 | 0.518 | 0.02 |
Pmean (bpm) | 148.1 ± 14.8 | 151 ± 16 | 2.032 | 0.169 | 0.09 |
P intensity zone (4) (s) | 453 ± 334 | 527 a ± 395 | 2.217 | 0.152 | 0.10 |
P intensity zone (5) (s) | 237 ± 344 | 194 b ± 349 | 1.102 | 0.306 | 0.05 |
Total distance (m) | 482 ± 179 | 492 ± 178 | 0.231 | 0.636 | 0.01 |
Max. speed (km/h) | 6.9 ± 0.7 | 7.1 ± 1.2 | 0.761 | 0.393 | 0.04 |
Mean speed (km/h) | 1.21 ± 0.49 | 1.2 ± 0.5 | 1.079 | 0.311 | 0.05 |
Total load | 55.9 ± 17.6 | 57.3 ± 16.6 | 0.668 | 0.423 | 0.03 |
Cardio load | 42.6 ± 15.1 | 42.4 ± 14.2 | 0.005 | 0.945 | 0.00 |
Recovery time (h) | 6.9 ± 4.7 | 6.6 ± 4.7 | 0.529 | 0.475 | 0.03 |
Calories (Kcal) | 297 ± 60 | 297 ± 56 | 0.000 | 0.993 | 0.00 |
Mean R-R interval (ms) | 415 ± 42 | 403 ± 45 | 3.071 | 0.095 | 0.13 |
HRV (RMSSD) (ms) | 31.5 ± 21.0 | 25.9 ± 14.8 | 1.304 | 0.267 | 0.06 |
Subject ID | Session 1 Treatment | Session 1 Total Rounds | Session 2 Total Rounds | Percent Changes between Sessions | Percent Changes between Conditions |
---|---|---|---|---|---|
A01 | CM | 7.0 | 9.0 | 28.6 | −22.2 |
A02 | CM | 6.0 | 5.0 | −16.7 | 20.0 |
A03 | CM | 14.0 | 13.0 | −7.1 | 7.7 |
A04 | CM | 9.0 | 9.0 | 0.0 | 0.0 |
A05 | CM | 11.0 | 10.0 | 10.0 | −9.1 |
A06 | CM | 21.0 | 24.0 | 14.3 | −12.5 |
A07 | CM | 21.0 | 24.0 | 14.3 | −12.5 |
A08 | CM | 25.0 | 19.0 | 31.6 | −24.0 |
A09 | CM | 16.0 | 21.0 | 31.3 | −23.8 |
A10 | CM | 23.0 | 18.0 | 27.8 | −21.7 |
A11 | CM | 9.0 | 11.0 | 22.2 | −18.2 |
A12 | CM | 12.0 | 16.0 | 33.3 | −25.0 |
A13 | Placebo | 25.0 | 23.0 | 8.7 | 8.7 |
A14 | Placebo | 6.0 | 15.0 | 150.0 | 150.0 |
A15 | Placebo | 11.0 | 7.0 | 57.1 | 57.1 |
A16 | Placebo | 10.0 | 12.0 | 20.0 | 20.0 |
A17 | Placebo | 11.0 | 8.0 | 37.5 | 37.5 |
A18 | Placebo | 9.0 | 7.0 | −22.2 | −22.2 |
A19 | Placebo | 15.0 | 12.0 | 25.0 | 25.0 |
A20 | Placebo | 15.0 | 12.0 | 25.0 | 25.0 |
A21 | Placebo | 11.0 | 10.0 | −9.1 | −9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devrim-Lanpir, A.; Ihász, F.; Demcsik, M.; Horváth, A.C.; Góczán, P.; Czepek, P.; Takács, J.; Kimble, R.; Zare, R.; Gunes, F.E.; et al. Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Nutrients 2024, 16, 3235. https://doi.org/10.3390/nu16193235
Devrim-Lanpir A, Ihász F, Demcsik M, Horváth AC, Góczán P, Czepek P, Takács J, Kimble R, Zare R, Gunes FE, et al. Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Nutrients. 2024; 16(19):3235. https://doi.org/10.3390/nu16193235
Chicago/Turabian StyleDevrim-Lanpir, Asli, Ferenc Ihász, Máté Demcsik, András Csaba Horváth, Pál Góczán, Péter Czepek, Johanna Takács, Rachel Kimble, Reza Zare, Fatma Esra Gunes, and et al. 2024. "Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study" Nutrients 16, no. 19: 3235. https://doi.org/10.3390/nu16193235
APA StyleDevrim-Lanpir, A., Ihász, F., Demcsik, M., Horváth, A. C., Góczán, P., Czepek, P., Takács, J., Kimble, R., Zare, R., Gunes, F. E., Knechtle, B., Weiss, K., Rosemann, T., & Heinrich, K. M. (2024). Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Nutrients, 16(19), 3235. https://doi.org/10.3390/nu16193235