A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Sample Analysis
2.3.1. Plasma Oxylipins and Statistical Procedures
2.3.2. Plasma Proteome
2.3.3. Urine Untargeted Metabolomics Analysis and Statistical Procedures
2.3.4. Gut Microbiome Analysis and Statistical Procedures
Illumina Whole Genome Shotgun (WGS) Sequencing [39]
Bioinformatics
2.4. Additional Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christ, T.; Ringleb, M.; Haunhorst, S.; Fennen, L.; Jordan, P.M.; Wagner, H.; Puta, C. The acute effects of pre- and mid-exercise carbohydrate ingestion on the immunoregulatory stress hormone release in experienced endurance athletes-a systematic review. Front. Sports Act. Living 2024, 6, 1264814. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical composition, antioxidant activity and impact on human health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef] [PubMed]
- Balawejder, M.; Piechowiak, T.; Kapusta, I.; Chęciek, A.; Matłok, N. In vitro analysis of selected antioxidant and biological properties of the extract from large-fruited cranberry fruits. Molecules 2023, 28, 7895. [Google Scholar] [CrossRef]
- Taibi, A.; Lofft, Z.; Laytouni-Imbriaco, B.; Comelli, E.M. The role of intestinal microbiota and microRNAs in the anti-inflammatory effects of cranberry: From pre-clinical to clinical studies. Front. Nutr. 2023, 10, 1092342. [Google Scholar] [CrossRef]
- de Souza Gouveia Moreira, L.; Resende Teixeira, K.T.; Cardozo, L.F.M.F.; Alvarenga, L.; Regis, B.; Sousa de Brito, J.; Leal, V.d.O.; Borges, N.A.; Brum, I.d.S.d.C.; Carraro-Eduardo, J.C.; et al. Effects of cranberry extract (Vaccinium macrocarpon) supplementation on lipid peroxidation and inflammation in patients with chronic kidney disease (stages 3–4): A randomized controlled trial. J. Nutr. Metab. 2024, 2024, 9590066. [Google Scholar] [CrossRef]
- Chew, B.; Mathison, B.; Kimble, L.; McKay, D.; Kaspar, K.; Khoo, C.; Chen, C.-Y.O.; Blumberg, J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 1223–1235. [Google Scholar] [CrossRef]
- Hsia, D.S.; Zhang, D.J.; Beyl, R.S.; Greenway, F.L.; Khoo, C. Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. Br. J. Nutr. 2020, 124, 577–585. [Google Scholar] [CrossRef]
- Lessard-Lord, J.; Roussel, C.; Lupien-Meilleur, J.; Généreux, P.; Richard, V.; Guay, V.; Roy, D.; Desjardins, Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024, 10, 18. [Google Scholar] [CrossRef]
- Déprez, S.; Brezillon, C.; Rabot, S.; Philippe, C.; Mila, I.; Lapierre, C.; Scalbert, A. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J. Nutr. 2000, 130, 2733–2738. [Google Scholar] [CrossRef]
- Straub, T.J.; Chou, W.C.; Manson, A.L.; Schreiber, H.L., 4th; Walker, B.J.; Desjardins, C.A.; Chapman, S.B.; Kaspar, K.L.; Kahsai, O.J.; Traylor, E.; et al. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol. 2021, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Prieto Martínez, A.; Coutiño Diaz, M.; Anaya Romero, L.; Ali Redha, A.; Zare, R.; Ventura Hernandez, S.; Prokopidis, K.; Clifford, T. Effects of Vaccinium berries (blueberries, cranberries and bilberries) on oxidative stress, inflammation, exercise performance, and recovery-a systematic review. Food Funct. 2024, 15, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Skarpańska-Stejnborn, A.; Basta, P.; Trzeciak, J.; Michalska, A.; Kafkas, M.E.; Woitas-Ślubowska, D. Effects of cranberry (Vaccinum macrocarpon) supplementation on iron status and inflammatory markers in rowers. J. Int. Soc. Sports Nutr. 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Parenteau, F.; Denis, A.; Roberts, M.; Comtois, A.S.; Bergdahl, A. A polyphenol-rich cranberry supplement improves muscle oxidative capacity in healthy adults. Appl. Physiol. Nutr. Metab. 2024, 49, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Parenteau, F.; Puglia, V.F.; Roberts, M.; Comtois, A.S.; Bergdahl, A. Cranberry supplementation improves physiological markers of performance in trained runners. Phys. Act. Nutr. 2023, 27, 8–14. [Google Scholar] [CrossRef]
- Spanakis, M.; Fragkiadaki, P.; Renieri, E.; Vakonaki, E.; Fragkiadoulaki, I.; Alegakis, A.; Kiriakakis, M.; Panagiotou, N.; Ntoumou, E.; Gratsias, I.; et al. Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front. Sports Act. Living 2024, 5, 1327792. [Google Scholar] [CrossRef]
- Nieman, D.C.; Sakaguchi, C.A.; Omar, A.M.; Davis, K.L.; Shaffner, C.E.; Strauch, R.C.; Lila, M.A.; Zhang, Q. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: A randomized trial. Sci. Rep. 2023, 13, 11976. [Google Scholar] [CrossRef]
- Nieman, D.C.; Woo, J.; Sakaguchi, C.A.; Omar, A.M.; Tang, Y.; Davis, K.; Pecorelli, A.; Valacchi, G.; Zhang, Q. Astaxanthin supplementation counters exercise-induced decreases in immune-related plasma proteins. Front. Nutr. 2023, 10, 1143385. [Google Scholar] [CrossRef]
- Nieman, D.C.; Omar, A.M.; Kay, C.D.; Kasote, D.M.; Sakaguchi, C.A.; Lkhagva, A.; Weldemariam, M.M.; Zhang, Q. Almond intake alters the acute plasma dihydroxy-octadecenoic acid (DiHOME) response to eccentric exercise. Front. Nutr. 2023, 9, 1042719. [Google Scholar] [CrossRef]
- Nieman, D.C.; Gillitt, N.D.; Chen, G.Y.; Zhang, Q.; Sha, W.; Kay, C.D.; Chandra, P.; Kay, K.L.; Lila, M.A. Blueberry and/or banana consumption mitigate arachidonic, cytochrome p450 oxylipin generation during recovery from 75-km cycling: A randomized trial. Front. Nutr. 2020, 7, 121. [Google Scholar] [CrossRef]
- Nieman, D.C.; Gillitt, N.D.; Chen, G.Y.; Zhang, Q.; Sakaguchi, C.A.; Stephan, E.H. Carbohydrate intake attenuates post-exercise plasma levels of cytochrome P450-generated oxylipins. PLoS ONE 2019, 14, e0213676. [Google Scholar] [CrossRef] [PubMed]
- Copetti, C.L.K.; Diefenthaeler, F.; Hansen, F.; Vieira, F.G.K.; Di Pietro, P.F. Fruit-derived anthocyanins: Effects on cycling-induced responses and cycling performance. Antioxidants 2022, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Moroni, A.; Zupo, R.; Castellana, F.; Amirante, F.; Zese, M.; Rondanelli, M.; Riso, P.; Perna, S. Berry fruits and their improving potential on skeletal muscle health and performance: A systematic review of the evidence in animal and in human studies. Foods 2024, 13, 2210. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Zhang, Q. Comprehensive analysis of oxylipins in human plasma using reversed-phase liquid chromatography-triple quadrupole mass spectrometry with heatmap-assisted selection of transitions. Anal. Bioanal. Chem. 2019, 411, 367–385. [Google Scholar] [CrossRef]
- Nieman, D.C.; Sakaguchi, C.A.; Williams, J.C.; Mulani, F.A.; Suresh, P.S.; Omar, A.M.; Zhang, Q. Beet supplementation mitigates post-exercise inflammation. Front. Nutr. 2024, 11, 1408804. [Google Scholar] [CrossRef]
- Woo, J.; Zhang, Q. A streamlined high-throughput plasma proteomics platform for clinical proteomics with improved proteome coverage, reproducibility, and robustness. J. Am. Soc. Mass Spectrom. 2023, 34, 754–762. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Geyer, P.E.; Arend, F.M.; Doll, S.; Louiset, M.-L.; Virreira Winter, S.; Müller-Reif, J.B.; Torun, F.M.; Weigand, M.; Eichhorn, P.; Bruegel, M.; et al. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol. Med. 2021, 13, e14167. [Google Scholar] [CrossRef]
- Pathmasiri, W.; Rushing, B.R.; McRitchie, S.; Choudhari, M.; Du, X.; Smirnov, A.; Pelleigrini, M.; Thompson, M.J.; Sakaguchi, C.A.; Nieman, D.C.; et al. Untargeted metabolomics reveal signatures of a healthy lifestyle. Sci. Rep. 2024, 14, 13630. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ghanbari, R.; Pathmasiri, W.; McRitchie, S.; Poustchi, H.; Shayanrad, A.; Roshandel, G.; Etemadi, A.; Pollock, J.D.; Malekzadeh, R.; et al. Untargeted metabolomics: Biochemical perturbations in golestan cohort study opium users inform intervention strategies. Front. Nutr. 2020, 7, 584585. [Google Scholar] [CrossRef]
- Ghanbari, R.; Li, Y.; Pathmasiri, W.; McRitchie, S.; Etemadi, A.; Pollock, J.D.; Poustchi, H.; Rahimi-Movaghar, A.; Amin-Esmaeili, M.; Roshandel, G.; et al. Metabolomics reveals biomarkers of opioid use disorder. Transl. Psychiatry 2021, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.H.; Rushing, B.R.; Pathmasiri, W.; McRitchie, S.; Batchek, D.J.; Petersen, C.L.; Gross, D.C.; Sumner, S.C.J.; Batsis, J.A. Baseline serum biomarkers predict response to a weight loss intervention in older adults with obesity: A pilot study. Metabolites 2023, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 2023, 11, 100979. [Google Scholar] [CrossRef] [PubMed]
- Välikangas, T.; Suomi, T.; Elo, L.L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform. 2018, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, A.; Liao, Y.; Fahy, E.; Subramaniam, S.; Du, X. ADAP-KDB: A spectral knowledgebase for tracking and prioritizing unknown GC-MS spectra in the NIH’s Metabolomics Data Repository. Anal. Chem. 2021, 93, 12213–12220. [Google Scholar] [CrossRef]
- Azcarate-Peril, M.A.; Butz, N.; Cadenas, M.B.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; Hassan, H. An attenuated salmonella enterica serovar typhimurium strain and galacto-oligosaccharides accelerate clearance of salmonella infections in poultry through modifications to the gut microbiome. Appl. Environ. Microbiol. 2018, 84, e02526-17. [Google Scholar] [CrossRef]
- Arnold, J.W.; Whittington, H.D.; Dagher, S.F.; Roach, J.; Azcarate-Peril, M.A.; Bruno-Barcena, J.M. Safety and modulatory effects of humanized galacto-oligosaccharides on the gut microbiome. Front. Nutr. 2021, 8, 640100. [Google Scholar] [CrossRef]
- Marsh, A.J.; Yaya, A.-M.A.; Ng, S.; Chandrashekhar, K.; Roach, J.; Magness, S.T.; Azcarate-Perilet, M.A. Lumen and mucosa-associated Lactobacillus rhamnosus from the intestinal tract of organ donors. Gut Microbiome 2020, 1, e4. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, X.; Huang, X.; Murff, H.J.; Ness, R.M.; Seidner, D.L.; Sorgen, A.A.; Blakley, I.C.; Yu, C.; Dai, Q.; et al. On the robustness of inference of association with the gut microbiota in stool, rectal swab and mucosal tissue samples. Sci. Rep. 2021, 11, 14828. [Google Scholar] [CrossRef]
- Seth-Smith, H.M.B.; Bonfiglio, F.; Cuénod, A.; Reist, J.; Egli, A.; Wüthrich, D. Evaluation of rapid library preparation protocols for whole genome sequencing based outbreak investigation. Front. Public Health 2019, 7, 241. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Abubucker, S.; Segata, N.; Goll, J.; Schubert, A.M.; Izard, J.; Cantarel, B.L.; Rodriguez-Mueller, B.; Zucker, J.; Thiagarajan, M.; Henrissat, B.; et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 2012, 8, e1002358. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cassidy, A.; Djousse, L.; Johnson, S.A.; Krikorian, R.; Lampe, J.W.; Mukamal, K.J.; Nieman, D.C.; Starr, K.N.P.; Rasmussen, H.; et al. The state of the science on the health benefits of blueberries: A perspective. Front. Nutr. 2024, 11, 1415737. [Google Scholar] [CrossRef]
- Kondža, M.; Brizić, I.; Jokić, S. Flavonoids as CYP3A4 inhibitors in vitro. Biomedicines 2024, 12, 644. [Google Scholar] [CrossRef]
- Andersen-Civil, A.I.S.; Leppä, M.M.; Thamsborg, S.M.; Salminen, J.P.; Williams, A.R. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun. Biol. 2021, 4, 896. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Salido, S.; Altarejos, J.N. Synthesis of A-type proanthocyanidins and their analogues: A comprehensive review. J. Agric. Food Chem. 2020, 68, 8104–8118. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq Patel, S.; Pan, X.; Naz, S.; Silva, A.S.; Saeed, F.; Suleria, H.A.R. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- González de Llano, D.; Roldán, M.; Taladrid, D.; Relaño de la Guía, E.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry polyphenols and prevention against urinary tract infections: New findings related to the integrity and functionality of intestinal and urinary barriers. J. Agric. Food Chem. 2024, 72, 10328–10338. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Kaspar, K.L.; Khoo, C.; Derrig, L.H.; Schild, A.L.; Gupta, K. Consumption of a cranberry juice beverage lowered the number of clinical urinary tract infection episodes in women with a recent history of urinary tract infection. Am. J. Clin. Nutr. 2016, 103, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J.; Crossland, H.; Atherton, P.J. Metabolomic and proteomic applications to exercise biomedicine. Transl. Exerc. Biomed. 2024, 1, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Hou, M.; Zhang, B.; Pan, X.; Liu, C.; Sun, C.; Jia, M.; Lin, S.; Xiong, K.; Ma, A. Effects of cranberry beverages on oxidative stress and gut microbiota in subjects with Helicobacter pylori infection: A randomized, double-blind, placebo-controlled trial. Food Funct. 2021, 12, 6878–6888. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Morató, J.; Matthan, N.R.; Liu, J.; de la Torre, R.; Chen, C.O. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: A randomized crossover controlled feeding trial. J. Nutr. Biochem. 2018, 62, 76–86. [Google Scholar] [CrossRef]
- Othaim, A.A.; Marasini, D.; Carbonero, F. Impact of cranberry juice consumption on gut and vaginal microbiota in postmenopausal women. Food Front. 2021, 2, 282–293. [Google Scholar] [CrossRef]
- Neto, C.C.; Mortzfeld, B.M.; Turbitt, J.R.; Bhattarai, S.K.; Yeliseyev, V.; DiBenedetto, N.; Bry, L.; Bucci, V. Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. Microb. Cell. 2021, 8, 131–142. [Google Scholar] [CrossRef]
Sex | Mean ± SE | |
---|---|---|
Age (years) | M | 43.2 ± 2.2 |
F | 41.8 ± 2.9 | |
Weight (kg) | M | 79.8 ± 2.5 * |
F | 61.4 ± 4.0 | |
Height (cm) | M | 178 ± 0.9 * |
F | 165 ± 2.4 | |
Body Mass Index (BMI) (kg/m2) | M | 25.2 ± 0.7 * |
F | 22.4 ± 1.1 | |
Body fat (%) | M | 22.1 ± 1.7 |
F | 26.0 ± 3.6 | |
VO2max (mL.kg−1 min−1) | M | 46.2 ± 2.1 * |
F | 37.4 ± 2.1 | |
Max watts | M | 269 ± 7.3 * |
F | 216 ± 22.1 | |
Max heart rate (beats/min) | M | 172 ± 2.1 |
F | 165 ± 3.4 | |
Max ventilation (L/min) | M | 136 ± 5.5 * |
F | 83.1 ± 4.7 | |
Max respiratory rate (breaths/min) | M | 46.6 ± 2.2 |
F | 45.0 ± 1.6 |
Performance Measurement | Mean ± SE | |
---|---|---|
Cycling power (watts, % maximum) | Cranberry | 159 ± 7.2 (62.8 ± 1.7% max) |
Placebo | 153 ± 6.9 (60.9 ± 2.0% max) | |
Heart rate (beats/min, % maximum) | Cranberry | 133 ± 2.3 (78.5 ± 1.5% max) |
Placebo | 134 ± 2.9 (78.7 ± 1.7% max) | |
Oxygen consumption (VO2) (mL.kg−1 min−1, % maximum) | Cranberry | 29.8 ± 1.3 (69.1 ± 1.7% max) |
Placebo | 28.6 ± 1.3 (66.6 ± 2.3% max) | |
Distance cycled (km) | Cranberry | 61.2 ± 2.7 |
Placebo | 61.6 ± 2.0 | |
Speed (km/h) | Cranberry | 27.5 ± 0.8 |
Placebo | 26.5 ± 0.9 |
Variable (ng/mL) | Trial | Pre- Suppl. | 4 Weeks Suppl. | 0 h Post-Ex | 1.5 h Post-Ex | 3 h Post-Ex | 24 h Post-Ex | p-Value |
---|---|---|---|---|---|---|---|---|
Arachidonic acid (ARA) | CRAN | 1122 ± 68.1 | 1084 ± 65.5 | 2592 ± 151 | 2015 ± 74.8 | 910 ± 49.9 | 1009 ± 52.5 | <0.001; |
PLAC | 1050 ± 61.0 | 1015 ± 56.3 | 2467 ± 123 | 1719 ± 72.4 | 829 ± 40.3 | 1029 ± 44.3 | 0.027 | |
Docosahexaenoic acid (DHA) | CRAN | 323 ± 40.3 | 336 ± 41.8 | 932 ± 81.3 | 748 ± 65.1 | 264 ± 32.7 | 314 ± 42.4 | <0.001; |
PLAC | 336 ± 45.3 | 278 ± 25.1 | 858 ± 87.6 | 622 ± 56.7 | 218 ± 19.4 | 297 ± 29.7 | 0.183 | |
Eicosapentaenoic acid (EPA) | CRAN | 278 ± 41.8 | 284 ± 51.3 | 687 ± 90.9 | 548 ± 77.9 | 238 ± 34.2 | 288 ± 63.6 | <0.001; |
PLAC | 292 ± 64.3 | 214 ± 20.1 | 617 ± 72.5 | 417 ± 46.4 | 189 ± 17.1 | 239 ± 27.0 | 0.104 | |
Oxylipins, total (n = 53 oxylipins) | CRAN | 46.5 ± 4.3 | 45.0 ± 2.6 | 94.3 ± 7.6 | 76.7 ± 5.8 | 54.0 ± 3.0 | 42.3 ± 2.6 | <0.001; |
PLAC | 47.9 ± 3.2 | 43.8 ± 2.6 | 92.9 ± 7.6 | 65.4 ± 4.2 | 47.4 ± 2.3 | 44.0 ± 2.6 | 0.189 | |
ARA-CYP † (n = 8 oxylipins) | CRAN | 7.2 ± 0.7 | 6.6 ± 0.4 | 12.7 ± 1.2 | 16.5 ± 1.9 | 13.6 ± 1.5 | 6.6 ± 0.4 | <0.001; |
PLAC | 6.3 ± 0.3 | 6.4 ± 0.4 | 12.9 ± 1.9 | 15.0 ± 2.2 | 12.3 ± 1.5 | 7.1 ± 0.5 | 0.446 | |
LA-CYP DiHOMES (9,10 + 12,13) †† | CRAN | 3.2 ± 0.3 | 4.8 ± 0.5 | 12.4 ± 1.5 | 6.6 ± 1.0 | 5.6 ± 0.4 | 4.2 ± 0.6 | <0.001; |
PLAC | 4.7 ± 0.6 | 3.7 ± 0.4 | 11.6 ± 1.2 | 6.2 ± 0.7 | 5.5 ± 0.4 | 4.3 ± 0.6 | 0.022 | |
LA-LOX HODES (9 + 13) ††† | CRAN | 5.4 ± 0.5 | 6.6 ± 0.5 | 17.6 ± 1.7 | 10.8 ± 1.2 | 5.3 ± 0.5 | 6.1 ± 0.6 | <0.001; |
PLAC | 6.6 ± 0.6 | 5.5 ± 0.5 | 17.0 ± 1.5 | 8.9 ± 0.8 | 4.8 ± 0.3 | 6.0 ± 0.7 | 0.008 |
Protein | Two-Way ANOVA p Value Supplement Effect | # of Interactions |
---|---|---|
Cathepsin D (CTSD): degrades proteins and activates precursors of bioactive proteins in pre-lysosomal compartments. | <0.0001 | 4 |
Complement factor H related 1 (CFHR1): involved in regulating innate immune complement reactions. | 0.0003 | 8 |
Protein C inhibitor, plasminogen activator inhibitor-3 (SERPINA5): serine protease inhibitor that limits protein C. | 0.0078 | 5 |
Complement component C6 (C6): a complement system protein involved in the membrane attack complex (MAC). | 0.0083 | 11 |
Protein disulfide isomerase family A member 3 (PDIA3): a chaperone protein that mediates protein folding. | 0.0108 | 5 |
Plasminogen (PLG): dissolves the fibrin of blood clots; it is a proteolytic factor in a variety of other processes, including inflammation. | 0.0117 | 12 |
Complement component C8 alpha chain A (C8A): a constituent of MAC that plays a key role in innate and adaptive immune responses. | 0.0131 | 9 |
Carboxypeptidase B2 (CPB2): it downregulates fibrinolysis. | 0.0144 | 12 |
Coagulation factor XII (F12): undertakes the initiation of blood coagulation, fibrinolysis, and the generation of bradykinin and angiotensin. | 0.0164 | 8 |
Mannan-binding lectin serine protease 2 (MASP2): a serum protease involved in complement system activation. | 0.0186 | 9 |
Protein | Two-Way ANOVA p Value Supplement Effect | # of Interactions |
---|---|---|
Heat shock protein family A (Hsp70) member 5 (HSPA5): HSP70 chaperone involved in the folding and assembly of proteins in the endoplasmic reticulum. | <0.0001 | 5 |
Complement component C3 (C3): plays a central role in the activation of the complement system. | <0.0001 | 11 |
Metalloproteinase inhibitor 1 (TIMP1): an inhibitor of the matrix metalloproteinases (MMPs), which is a group of peptidases involved in degradation of the extracellular matrix. | 0.0001 | 9 |
Serpin family A member 10 (SERPINA10): inhibits the activity of coagulation factors Xa and XIa in the presence of protein Z, calcium, and phospholipid. | 0.0002 | 5 |
Hemoglobin subunit beta (HBB): involved in oxygen transport from the lung to the various peripheral tissues. | 0.0009 | 5 |
Alpha-2-macroglobulin (A2M): protease inhibitor; inhibits inflammatory cytokines and disrupts inflammatory cascades. | 0.0012 | 14 |
Calreticulin (CALR): a calcium-binding chaperone that promotes folding, oligomeric assembly, and quality control in the endoplasmic reticulum. | 0.0025 | 5 |
Orosomucoid 2 (ORM2): an acute-phase reactant. | 0.0026 | 8 |
Clusterin (CLU): involved in numerous processes, including the regulation of complement activity and the clearance of cellular debris and apoptosis. | 0.0067 | 12 |
Haptoglobin-related protein (HPR): associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL). | 0.0087 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieman, D.C.; Sakaguchi, C.A.; Williams, J.C.; Woo, J.; Omar, A.M.; Mulani, F.A.; Zhang, Q.; Pathmasiri, W.; Rushing, B.R.; McRitchie, S.; et al. A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity. Nutrients 2024, 16, 3250. https://doi.org/10.3390/nu16193250
Nieman DC, Sakaguchi CA, Williams JC, Woo J, Omar AM, Mulani FA, Zhang Q, Pathmasiri W, Rushing BR, McRitchie S, et al. A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity. Nutrients. 2024; 16(19):3250. https://doi.org/10.3390/nu16193250
Chicago/Turabian StyleNieman, David C., Camila A. Sakaguchi, James C. Williams, Jongmin Woo, Ashraf M. Omar, Fayaj A. Mulani, Qibin Zhang, Wimal Pathmasiri, Blake R. Rushing, Susan McRitchie, and et al. 2024. "A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity" Nutrients 16, no. 19: 3250. https://doi.org/10.3390/nu16193250
APA StyleNieman, D. C., Sakaguchi, C. A., Williams, J. C., Woo, J., Omar, A. M., Mulani, F. A., Zhang, Q., Pathmasiri, W., Rushing, B. R., McRitchie, S., Sumner, S. J., Lawson, J., & Lambirth, K. C. (2024). A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity. Nutrients, 16(19), 3250. https://doi.org/10.3390/nu16193250