High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Case-Control Selection
2.3. Anthropometric and Biochemical Measurements
2.4. Dietary Assessment
2.5. Genotyping and Quality Control
2.6. Selection of Interacting Genetic Variants for Gastric Cancer
2.7. Molecular Docking and Molecular Dynamics Simulation (MDS) of Semaphorin-3C (SEMA3C)
2.8. Statistical Analyses
3. Results
3.1. Comparison of the General Characteristics of the Participants
3.2. Comparison of Nutrient Intakes of the GC and N-GC Groups
3.3. Genetic Variants for Gastric Cancer Risk and the Best Model for Gene-Gene Interactions
3.4. PRSs Obtained by the Summation of Risk Alleles in the Best Model for Gastric Cancer Risk
3.5. Interaction between the PRSs and Biochemical Parameters Influencing Gastric Cancer Risk
3.6. Interaction between PRSs and Lifestyle Factors Influencing Gastric Cancer Risk
3.7. Binding Free Energy of Food Components to Wild and Mutated Types of SEMA3C_rs1527482
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Boards Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, A.; Arnold, M.; Ferlay, J.; Goodman, K.J.; Forman, D.; Soerjomataram, I. Global patterns of cardia and non-cardia gastric cancer incidence in 2012. Gut 2015, 64, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Tsugane, S.; Sasazuki, S. Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer 2007, 10, 75–83. [Google Scholar] [CrossRef]
- Choi, S.; Jang, J.; Heo, Y.J.; Kang, S.Y.; Kim, S.T.; Lee, J.; Kang, W.K.; Kim, J.W.; Kim, K.M. CDH1 mutations in gastric cancers are not associated with family history. Pathol. Res. Pract. 2020, 216, 152941. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Balch, C.; Park, S.; Lee, J.; Sung, J.; Nam, S. Systematic Inspection of the Clinical Relevance of TP53 Missense Mutations in Gastric Cancer. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1693–1701. [Google Scholar] [CrossRef]
- Chang, Y.W.; Jang, J.Y.; Kim, N.H.; Lee, J.W.; Lee, H.J.; Jung, W.W.; Dong, S.H.; Kim, H.J.; Kim, B.H.; Lee, J.I.; et al. Interleukin-1B (IL-1B) polymorphisms and gastric mucosal levels of IL-1beta cytokine in Korean patients with gastric cancer. Int. J. Cancer 2005, 114, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Garza-González, E.; Bosques-Padilla, F.J.; El-Omar, E.; Hold, G.; Tijerina-Menchaca, R.; Maldonado-Garza, H.J.; Pérez-Pérez, G.I. Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int. J. Cancer 2005, 114, 237–241. [Google Scholar] [CrossRef]
- Park, G.T.; Lee, O.Y.; Kwon, S.J.; Lee, C.G.; Yoon, B.C.; Hahm, J.S.; Lee, M.H.; Hoo Lee, D.; Kee, C.S.; Sun, H.S. Analysis of CYP2E1 polymorphism for the determination of genetic susceptibility to gastric cancer in Koreans. J. Gastroenterol. Hepatol. 2003, 18, 1257–1263. [Google Scholar] [CrossRef]
- Chen, Z.H.; Xian, J.F.; Luo, L.P. Association between GSTM1, GSTT1, and GSTP1 polymorphisms and gastric cancer risk, and their interactions with environmental factors. Genet. Mol. Res. 2017, 16, gmr16018877. [Google Scholar] [CrossRef]
- Han, Z.; Sheng, H.; Gao, Q.; Fan, Y.; Xie, X. Associations of the MTHFR rs1801133 polymorphism with gastric cancer risk in the Chinese Han population. Biomed. Rep. 2021, 14, 14. [Google Scholar] [CrossRef]
- Putthanachote, N.; Promthet, S.; Hurst, C.; Suwanrungruang, K.; Chopjitt, P.; Wiangnon, S.; Chen, S.L.; Yen, A.M.; Chen, T.H. The XRCC 1 DNA repair gene modifies the environmental risk of stomach cancer: A hospital-based matched case-control study. BMC Cancer 2017, 17, 680. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Yim, D.H.; Eom, S.Y.; Moon, S.I.; Yun, H.Y.; Song, Y.J.; Youn, S.J.; Hyun, T.; Park, J.S.; Kim, B.S.; et al. Risk of gastric cancer is associated with PRKAA1 gene polymorphisms in Koreans. World J. Gastroenterol. 2014, 20, 8592–8598. [Google Scholar] [CrossRef] [PubMed]
- Song, H.R.; Kim, H.N.; Kweon, S.S.; Choi, J.S.; Shim, H.J.; Cho, S.H.; Chung, I.J.; Park, Y.K.; Kim, S.H.; Choi, Y.D.; et al. Common genetic variants at 1q22 and 10q23 and gastric cancer susceptibility in a Korean population. Tumour Biol. 2014, 35, 3133–3137. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yang, S.; Lee, J.; Woo, H.D.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, Y.I.; Kim, J. Genome-Wide Association of Genetic Variation in the PSCA Gene with Gastric Cancer Susceptibility in a Korean Population. Cancer Res. Treat. 2019, 51, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Wang, T.P.; Yan, C.W.; Zhu, M.; Yang, M.; Wang, M.Y.; Hu, Z.B.; Shen, H.B.; Jin, G.F. Association between polygenic risk score and age at onset of gastric cancer. Zhonghua Liu Xing Bing. Xue Za Zhi 2021, 42, 1092–1096. [Google Scholar]
- Park, B.; Yang, S.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kim, J. Gastric Cancer Risk Prediction Using an Epidemiological Risk Assessment Model and Polygenic Risk Score. Cancers 2021, 13, 876. [Google Scholar] [CrossRef]
- Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; et al. Genetic risk, incident gastric cancer, and healthy lifestyle: A meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol. 2020, 21, 1378–1386. [Google Scholar] [CrossRef]
- Liu, M.; Jin, H.S.; Park, S. Protein and fat intake interacts with the haplotype of PTPN11_rs11066325, RPH3A_rs886477, and OAS3_rs2072134 to modulate serum HDL concentrations in middle-aged people. Clin. Nutr. 2020, 39, 942–949. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.; Lee, B.K. Self-rated Subjective Health Status Is Strongly Associated with Sociodemographic Factors, Lifestyle, Nutrient Intakes, and Biochemical Indices, but Not Smoking Status: KNHANES 2007-2012. J. Korean Med. Sci. 2015, 30, 1279–1287. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kim, M.K. Relationship of sodium intake with obesity among Korean children and adolescents: Korea National Health and Nutrition Examination Survey. Br. J. Nutr. 2016, 115, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Rabbee, N.; Speed, T.P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006, 22, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-B.; Xu, Y.; Xu, H.-M.; Li, M.D.; Zhu, J.; Lou, X.-Y. Practical and theoretical considerations in study design for detecting gene-gene interactions using MDR and GMDR approaches. PLoS ONE 2011, 6, e16981. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, L.; Zhou, J.; Zhang, T.; Daily, J.W.; Park, S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J. Med. Food 2022, 25, 355–366. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, C.-Y.; Xie, J.; Dai, J.-H.; He, S.-L.; Tian, Y. Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules 2020, 25, 189. [Google Scholar] [CrossRef]
- Uma Jyothi, K.; Reddy, B.M. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene 2015, 5, 9–20. [Google Scholar] [CrossRef]
- Hong, K.W.; Kim, S.H.; Zhang, X.; Park, S. Interactions among the variants of insulin-related genes and nutrients increase the risk of type 2 diabetes. Nutr. Res. 2018, 51, 82–92. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.Y.; Chen, Y.N.; Yuan, F.; Zhang, H.; Yan, F.H.; Wang, M.J.; Wang, G.; Su, M.; Lu, G.; et al. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci. Rep. 2015, 5, 13750. [Google Scholar] [CrossRef]
- McAvoy, S.; Zhu, Y.; Perez, D.S.; James, C.D.; Smith, D.I. Disabled-1 is a large common fragile site gene, inactivated in multiple cancers. Genes Chromosomes Cancer 2008, 47, 165–174. [Google Scholar] [CrossRef]
- Gadea, G.; Blangy, A. Dock-family exchange factors in cell migration and disease. Eur. J. Cell Biol. 2014, 93, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Namekata, K.; Guo, X.; Kimura, A.; Azuchi, Y.; Kitamura, Y.; Harada, C.; Harada, T. Roles of the DOCK-D family proteins in a mouse model of neuroinflammation. J. Biol. Chem. 2020, 295, 6710–6720. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Gao, N.; Wu, T. Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer. Medicine 2021, 100, e23788. [Google Scholar] [CrossRef]
- Chen, X.L.; Hong, L.L.; Wang, K.L.; Liu, X.; Wang, J.L.; Lei, L.; Xu, Z.Y.; Cheng, X.D.; Ling, Z.Q. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int. J. Biol. Sci. 2019, 15, 2075–2086. [Google Scholar] [CrossRef]
- Knobel, M.; Medeiros-Neto, G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq. Bras. Endocrinol. Metabol. 2007, 51, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Min, P.; Wang, Q.; Wang, Y.; Song, Y.; Zhang, Y.; Bibi, M.; Du, J. MICAL2 Contributes to Gastric Cancer Cell Proliferation by Promoting YAP Dephosphorylation and Nuclear Translocation. Oxidative Med. Cell. Longev. 2021, 2021, 9955717. [Google Scholar] [CrossRef]
- Jiang, C.; Ma, Z.; Zhang, G.; Yang, X.; Du, Q.; Wang, W. CSNK2A1 Promotes Gastric Cancer Invasion Through the PI3K-Akt-mTOR Signaling Pathway. Cancer Manag. Res. 2019, 11, 10135–10143. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S. Clinical significance of ADAM29 promoting the invasion and growth of gastric cancer cells in vitro. Oncol. Lett. 2018, 16, 1483–1490. [Google Scholar] [CrossRef]
- Park, S.; Kang, S. A Western-style diet interacts with genetic variants of the LDL receptor to hyper-LDL cholesterolemia in Korean adults. Public Health Nutr. 2021, 24, 2964–2974. [Google Scholar] [CrossRef]
- Iida, M.; Ikeda, F.; Ninomiya, T.; Yonemoto, K.; Doi, Y.; Hata, J.; Matsumoto, T.; Iida, M.; Kiyohara, Y. White blood cell count and risk of gastric cancer incidence in a general Japanese population: The Hisayama study. Am. J. Epidemiol. 2012, 175, 504–510. [Google Scholar] [CrossRef]
- Tobacco smoke and involuntary smoking. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 83, 1–1438.
- Hishida, A.; Matsuo, K.; Goto, Y.; Naito, M.; Wakai, K.; Tajima, K.; Hamajima, N. Smoking behavior and risk of Helicobacter pylori infection, gastric atrophy and gastric cancer in Japanese. Asian Pac. J. Cancer Prev. 2010, 11, 669–673. [Google Scholar] [PubMed]
- Martimianaki, G.; Bertuccio, P.; Alicandro, G.; Pelucchi, C.; Bravi, F.; Carioli, G.; Bonzi, R.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; et al. Coffee consumption and gastric cancer: A pooled analysis from the Stomach cancer Pooling Project consortium. Eur. J. Cancer Prev. 2022, 31, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Huang, S.; He, T.; Su, Y. Coffee consumption and risk of gastric cancer: An updated meta-analysis. Asia Pac. J. Clin. Nutr. 2016, 25, 578–588. [Google Scholar]
- Miyato, H.; Tsuno, N.H.; Kitayama, J. Semaphorin 3C is involved in the progression of gastric cancer. Cancer Sci. 2012, 103, 1961–1966. [Google Scholar] [CrossRef]
- Peacock, J.W.; Takeuchi, A.; Hayashi, N.; Liu, L.; Tam, K.J.; Al Nakouzi, N.; Khazamipour, N.; Tombe, T.; Dejima, T.; Lee, K.C.; et al. SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Mol. Med. 2018, 10, 219–238. [Google Scholar] [CrossRef]
Non-Gastric Cancer (n = 47,994) | Gastric Cancer (n = 312) | Adjusted OR (95% CI) | |
---|---|---|---|
Age (years) 1 | 53.48 ± 8.04 | 58.12 ± 7.85 *** | 1.455 (0.987~2.145) |
Genders (men: N, %) | 16,808 (35.0) | 168 (53.8) *** | 3.369 (2.173~5.225) |
Initial menstruation age 2 | 15.10 ± 1.76 | 15.40 ± 1.83 * | 1.606 (0.771~3.345) |
Menopause age 3 | 49.30 ± 4.81 | 49.50 ± 4.29 | 0.902 (0.518~1.571) |
Pregnancy experience (Yes, %) 4 | 30,076 (96.6) | 137 (95.8) | 0.543 (0.162~1.822) |
Hormone replacement therapy (Yes, %) | 4963 (26.4) | 28 (26.2) | 0.620 (0.324~1.188) |
Oral contraceptive (Yes, %) | 4816 (15.5) | 22 (15.4) | 1.277 (0.649~2.509) |
Breastfeeding (Yes, %) | 25,453 (85.8) | 122 (89.1) | 1.234 (0.575~2.651) |
Ovariectomy (Yes, %) | 664 (7.5) | 5 (10.4) | 1.217 (0.312~4.743) |
Hysterectomy (Yes, %) | 3434 (11.1) | 19 (13.3) | 1.012 (0.519~1.976) |
Body mass index (BMI, kg/m2) 5 | 24.00 ± 2.88 | 22.40 ± 3.12 *** | 0.353 (0.222~0.563) |
Waist circumference (cm) 6 | 80.90 ± 8.65 | 78.00 ± 9.04 *** | 1.422 (0.636~3.179) |
Plasma total cholesterol (mg/dL) 7 | 197.6 ± 35.7 | 186.3 ± 36.3 *** | 0.492 (0.277~0.874) |
Plasma triglyceride (mg/dL) 8 | 119.4 ± 64.9 | 99.6 ± 52.3 *** | 0.606 (0.380~0.968) |
Hypertension (N, %) 9 | 13,709 (28.6) | 70 (22.4) * | 0.757 (0.497~1.152) |
Type 2 diabetes (N, %) 10 | 4256 (9.1) | 28 (9.2) | 0.755 (0.431~1.324) |
White blood cell counts (109/L) 11 | 5.73 ± 1.55 | 5.37 ± 1.40 *** | 0.426 (0.237~0.765) |
Plasma hs-CRP (mg/dL) 12 | 0.14 ± 0.36 | 0.15 ± 0.47 | 2.080 (0.937~4.615) |
Education (Number, %) 13 | |||
<High school | 14,110 (29.7) | 122 (39.2) * | |
High school | 20,658 (43.4) | 110 (35.4) | 0.602 (0.388~0.935) |
College more | 12,778 (26.9) | 79 (25.4) | 0.480 (0.301~0.764) |
Income (Number, %) 14 | |||
<$2000/month | 13,851 (30.5) | 125 (42.7) *** | |
$2000–4000 | 27,761 (61.1) | 156 (53.2) | 0.803 (0.547~1.181) |
>$4000 | 3851 (8.5) | 12 (4.1) | 0.288 (0.097~0.855) |
Non-Gastric Cancer (n = 47,994) | Gastric Cancer (n = 312) | Adjusted OR (95% CI) | |
---|---|---|---|
Energy intake 1 (%) | 98.70 ± 31.5 | 91.80 ± 32.6 *** | 0.976 (0.683~1.397) |
Carbohydrate intake (En%) 2 | 71.53 ± 7.01 | 73.24 ± 7.16 *** | 0.928 (0.552~1.561) |
Protein intake (En%) 3 | 13.45 ± 2.59 | 13.17 ± 2.63 | 1.050 (0.749~1.472) |
Fat intake (En%) 4 | 14.00 ± 5.43 | 12.63 ± 5.56 *** | 0.744 (0.502~1.103) |
Na intake (mg/day) 5 | 2454 ± 1389 | 2387 ± 1549 | 0.940 (0.640~1.380) |
Fiber intake(g/day) 6 | 5.71 ± 2.83 | 5.90 ± 3.27 | 0.895 (0.198~4.051) |
Exercise (Number, %) No Yes | 21,927 (45.8) 25,932 (54.2) | 121 (38.9) * 190 (61.1) | 1.136 (0.801~1.612) |
Smoking (Number, %) No Former smoking Smoking | 34,996 (73.1) 7484 (15.6) 5383 (11.3) | 185 (59.7) *** 101 (32.6) 24 (7.7) | 2.715 (1.558~4.731) 0.628 (0.282~1.396) |
Alcohol intake (Number, %) Mild drink (0–20 g) Moderate drink (≥20 g) | 45,383 (95.2) 2291 (4.8) | 307 (98.4) ** 5 (1.6) | 0.181 (0.039~0.840) |
Coffee intake (Number, %) 7 Low High | 15,427 (32.4) 32,145 (67.6) | 136 (43.7) *** 175 (56.3) | 0.658 (0.467~0.927) |
Multivitamin No Yes | 43,157 (89.9) 4837 (10.1) | 281 (90.1) 31 (9.9) | 0.775 (0.450~1.333) |
Total phenol (g/day) | 2.51 ± 0.005 | 2.52 ± 0.041 | 1.204 (0.999~1.451) |
Dietary inflammatory index | −19.9 ± 0.067 | −21.5 ± 0.56 ** | 0.857 (0.716~1.026) |
Fried food (Number, %) 8 | |||
Low | 45,184 (94.8) | 300 (96.5) | |
High | 2481 (5.2) | 11 (3.5) | 1.647 (0.645~4.210) |
Chr 1 | SNP 2 | Position | Mi 3 | Ma 4 | OR 5 | 6 p Value Adjusted | 7 MAF | 8 p Value for HWE | Gene | Functional Consequence |
---|---|---|---|---|---|---|---|---|---|---|
1 | rs7521784 | 58175325 | A | G | 1.38 | 3.99 × 10−4 | 0.4178 | 0.7795 | DAB1 | Upstream of transcript |
2 | rs12693006 | 173467213 | C | T | 1.59 | 1.70 × 10−6 | 0.2374 | 0.6649 | PDK1 | 3′ UTR |
2 | rs1045653 | 225630435 | T | C | 0.63 | 1.90 × 10−5 | 0.3389 | 0.2458 | DOCK10 | 3′ UTR |
3 | rs9835646 | 114148557 | A | C | 0.61 | 4.44 × 10−5 | 0.196 | 0.4959 | ZBTB20 | Upstream of transcript |
3 | rs630760 | 124149174 | G | A | 1.48 | 2.53 × 10−4 | 0.1762 | 0.3554 | KALRN | Downstream of transcript |
4 | rs11946315 | 175870844 | C | T | 0.69 | 4.59 × 10−4 | 0.2759 | 0.2781 | ADAM29 | Intron |
7 | rs1207808 | 78496427 | C | G | 0.66 | 2.28 × 10−4 | 0.2762 | 0.3319 | MAGI2 | Upstream of transcript |
7 | rs1527482 | 80427530 | T | C | 1.93 | 2.60 × 10−5 | 0.055 | 0.2334 | SEMA3C | Missense |
8 | rs58499534 | 3471561 | G | A | 1.58 | 3.85 × 10−6 | 0.2156 | 0.2413 | CSMD1 | Upstream of transcript |
11 | rs10831776 | 12297403 | G | A | 0.68 | 3.46 × 10−4 | 0.2622 | 0.5937 | MICAL2 | Intron |
20 | rs205881 | 486771 | T | C | 1.47 | 1.03 × 10−4 | 0.2407 | 0.4981 | CSNK2A1 | Intron |
Low-PRS (n = 10,166) | Medium-PRS (n = 20,168) | High-PRS (n = 17,972) | Gene-Nutrient Interaction p Value | |
---|---|---|---|---|
Low WBC 1 High WBC | 1 | 2.355(0.604~9.181) 1.780(1.020~3.105) | 5.126(1.415~18.567) 3.506(2.063~5.959) | 0.014 |
Low energy 2 High energy | 1 | 1.661(1.000~2.760) 2.709(1.044~7.033) | 3.400(2.104~5.493) 7.355(2.956~18.302) | 0.244 |
Low CHO 3 High CHO | 1 | 2.004(0.421~9.529) 1.837(1.154~2.923) | 7.552(1.769~32.236) 3.817(2.456~5.931) | 0.298 |
Low protein 4 High protein | 1 | 1.790(0.962~3.329) 1.909(1.007~3.622) | 4.200(2.340~7.538) 4.097(2.231~7.525) | 0.945 |
Low fat 5 High fat | 1 | 1.830(1.083~3.091) 1.929(0.830~4.484) | 4.294(2.617~7.044) 3.829(1.716~8.543) | 0.400 |
No exercise Exercise | 1 | 1.453(0.748~2.822) 2.212(1.207~4.054) | 3.195(1.718~5.939) 4.985(2.799~8.878) | 0.795 |
Non-smoke Smoke + former | 1 | 2.208(1.232~3.957) 1.376(0.685~2.763) | 4.295(2.453~7.521) 3.825(2.019~7.249) | p < 0.0001 |
Low Coffee 6 High Coffee | 1 | 2.299(1.065~4.964) 1.669(0.964~2.889) | 6.301(3.039~13.07) 3.129(1.858~5.267) | 0.04 |
Both of WT and MT | ||
---|---|---|
Natural compounds | Binding energy (kcal/mol) | Foods containing the selected natural compound |
Trisjuglone | −11.1 | Juglans regia (walnut) roots. |
Rugosin E | −11.8 | Cloves |
Theaflavate B | −11.3 | Black tea (Camellia sinensis). |
Theaflavate A | −11.4 | Black tea (Camellia sinensis). |
Theaflavin 3′-gallate | −11.3 | Black tea and commercial oolong tea |
Lettowianthine | −11.7 | Annona glabra (pond apple). |
Vitisifuran B | −11.8 | wine grape, Vitis vinifera ‘Kyohou’ |
Tragopogonsaponin J | −11.3 | Tragopogon porrifolius (salsify), green vegetables |
Mongolicain A | −11.1 | Guava |
Plantacyanin | −12.5 | Cucumber, green vegetables. |
WT only | ||
Natural compounds | Binding energy (kcal/mol) | Foods containing the selected natural compound |
Pinotin A | −10.3 | Red wine, including Pinotage (CCD) |
Quercetin 3-O-rhamnosyl-(1->2)-rhamnosyl-(1->6)-glucoside | −10.2 | Common sage, common thyme, Italian oregano, and rosemary |
delta-Viniferin | −10.1 | Stressed grapevine (Vitis vinifera) leaves |
Murrayenol | −10.4 | Roots of Murraya koenigii (curry leaf tree). |
Sanguiin H6 | −10.1 | Sanguisorba officinalis (burnet bloodwort), blackberry, and red raspberry. |
Isovitexin 6″-rhamnoside | −10.0 | Grape and mung bean. |
C-K malonate | −10.5 | Chives |
MT only | ||
Natural compounds | Binding energy (kcal/mol) | Foods containing the selected natural compound |
Withanolide B | −10.6 | Leaves of Lycium chinense (Chinese boxthorn) |
Epitheaflagallin 3-O-gallate | −10.6 | Black tea. |
Pomolic acid | −10.8 | Apple peel, rosemary, lemon balm, pomes, and spearmint. |
19-Dehydroursolic acid | −10.6 | Sanguisorba officinalis (burnet bloodwort). |
Ganosporelactone B | −10.9 | Spores of Ganoderma lucidum (reishi). |
alpha-Amyrone | −10.9 | Sambucus nigra (elderberry) |
3,3′-Bisanigorufone | −11.5 | Rhizomes of Musa acuminata (dwarf banana) |
Epigallocatechin-(4 beta->6)-epicatechin 3,3′-digallate | −11.4 | Oolong tea, Camellia sinensis |
Artomunoxanthentrione epoxide | −10.8 | Root bark of Artocarpus communis (breadfruit). |
Khelmarin D | −10.7 | Citrus paradisi and Citrus tangerina (Rutaceae). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Song, S.-S.; Park, S. High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults. Nutrients 2024, 16, 3263. https://doi.org/10.3390/nu16193263
Liu M, Song S-S, Park S. High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults. Nutrients. 2024; 16(19):3263. https://doi.org/10.3390/nu16193263
Chicago/Turabian StyleLiu, Meiling, Sang-Shin Song, and Sunmin Park. 2024. "High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults" Nutrients 16, no. 19: 3263. https://doi.org/10.3390/nu16193263
APA StyleLiu, M., Song, S. -S., & Park, S. (2024). High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults. Nutrients, 16(19), 3263. https://doi.org/10.3390/nu16193263