Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Laboratory and Clinical Data
2.3. Statistical Analysis
3. Results
3.1. Evaluation of Clinical, Biochemical, and Immunological Parameters in OA and OA + T2DM
3.2. Correlation Analysis of Data in Patients with OA and OA + T2DM
3.3. Comparative Analysis of Treatment Outcomes in Patients with OA and T2DM with and without ALA Supplementation
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oo, W.M. Prospects of Disease-Modifying Osteoarthritis Drugs. Rheum. Dis. Clin. N. Am. 2024, 50, 483–518. [Google Scholar] [CrossRef]
- Halabitska, I.; Babinets, L. Different consequences of the treatment of osteoarthritis in gastrointestinal comorbidity with exocrine pancreatic insufficiency. Fam. Med. Prim. Care Rev. 2021, 23, 422–428. [Google Scholar] [CrossRef]
- Liang, J.; Liu, L.; Feng, H.; Yue, Y.; Zhang, Y.; Wang, Q.; Zhao, H. Therapeutics of osteoarthritis and pharmacological mechanisms: A focus on RANK/RANKL signaling. Biomed. Pharmacother. 2023, 167, 115646. [Google Scholar] [CrossRef]
- Pi, P.; Zeng, L.; Zeng, Z.; Zong, K.; Han, B.; Bai, X.; Wang, Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: A narrative review. Front. Endocrinol. 2024, 15, 1319827. [Google Scholar] [CrossRef]
- Shawl, M.; Geetha, T.; Burnett, D.; Babu, J.R. Omega-3 Supplementation and Its Effects on Osteoarthritis. Nutrients 2024, 16, 1650. [Google Scholar] [CrossRef]
- Buchanan, W.W.; Kean, C.A.; Kean, W.F.; Rainsford, K.D. Osteoarthritis. Inflammopharmacology 2024, 32, 13–22. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, S.; Kamath, S.; Shah, U.; Patel, S.; Kherajani, K.; Gupta, A.; Shaw, P.; Unnithan, V.; Kaithathara, S.; et al. Interplay Between Diabetes Mellitus and the Occurrence of Osteoarthritis and Associated Conditions in Women of Menopausal Age. Cureus 2024, 16, e58502. [Google Scholar] [CrossRef]
- Yu, M.G.; Gordin, D.; Fu, J.; Park, K.; Li, Q.; King, G.L. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr. Rev. 2024, 45, 227–252. [Google Scholar] [CrossRef]
- Kumar, A.; Gangwar, R.; Zargar, A.A.; Kumar, R.; Sharma, A. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Curr. Diabetes Rev. 2024, 20, e130423215752. [Google Scholar] [CrossRef]
- An, Y.; Xu, B.T.; Wan, S.R.; Ma, X.M.; Long, Y.; Xu, Y.; Jiang, Z.Z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc. Diabetol. 2023, 22, 237. [Google Scholar] [CrossRef]
- Strati, M.; Moustaki, M.; Psaltopoulou, T.; Vryonidou, A.; Paschou, S.A. Early onset type 2 diabetes mellitus: An update. Endocrine 2024, 85, 965–978. [Google Scholar] [CrossRef]
- Zemlyak, O.S.; Babinets, L.S.; Halabitska, I.M. The Role of Endotoxicosis and Inflammation in Deepening the Pancreatic Functional Insufficiency in Chronic Pancreatitis in Combination with Type 2 Diabetes. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2023, 51, 207–215. [Google Scholar] [CrossRef]
- Rios-Arce, N.D.; Hum, N.R.; Loots, G.G. Interactions Between Diabetes Mellitus and Osteoarthritis: From Animal Studies to Clinical Data. JBMR Plus 2022, 6, e10626. [Google Scholar] [CrossRef]
- Chowdhury, T.; Bellamkonda, A.; Gousy, N.; Deb Roy, P. The Association Between Diabetes Mellitus and Osteoarthritis: Does Diabetes Mellitus Play a Role in the Severity of Pain in Osteoarthritis? Cureus 2022, 14, e21449. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, J.; Li, H.; Lv, J.; Zhang, Y.; Niu, R.; Wang, J.; Zhao, Y.; Sun, Z. α-Lipoic acid improves mitochondrial biogenesis and dynamics by enhancing antioxidant and inhibiting Wnt/Ca(2+) pathway to relieve fluoride-induced hepatotoxic injury. Chem. Biol. Interact. 2023, 385, 110719. [Google Scholar] [CrossRef]
- Capece, U.; Moffa, S.; Improta, I.; Di Giuseppe, G.; Nista, E.C.; Cefalo, C.M.A.; Cinti, F.; Pontecorvi, A.; Gasbarrini, A.; Giaccari, A.; et al. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022, 15, 18. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Tziona, P.; Rekka, E.A. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol. Biol. Rep. 2021, 48, 6539–6550. [Google Scholar] [CrossRef]
- Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol. Nutr. Food Res. 2013, 57, 114–125. [Google Scholar] [CrossRef]
- Halabitska, I.M.; Babinets, L.S.; Vysotskyi, V.I. Possibilities of Metabolic and Functional Disorders Correction in Osteoarthritis with Complex Comorbidity. Wiad. Lek. 2022, 75, 645–648. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Fu, Z.; Liu, M. Chondroprotective effects of alpha-lipoic acid in a rat model of osteoarthritis. Free Radic. Res. 2016, 50, 767–780. [Google Scholar] [CrossRef]
- Frondoza, C.G.; Fortuno, L.V.; Grzanna, M.W.; Ownby, S.L.; Au, A.Y.; Rashmir-Raven, A.M. α-Lipoic Acid Potentiates the Anti-Inflammatory Activity of Avocado/Soybean Unsaponifiables in Chondrocyte Cultures. Cartilage 2018, 9, 304–312. [Google Scholar] [CrossRef]
- Sabha, M.; Hochberg, M.C. Non-surgical management of hip and knee osteoarthritis; comparison of ACR/AF and OARSI 2019 and VA/DoD 2020 guidelines. Osteoarthr. Cartil. Open 2022, 4, 100232. [Google Scholar] [CrossRef]
- Marathe, P.H.; Gao, H.X.; Close, K.L. American Diabetes Association Standards of Medical Care in Diabetes 2017. J. Diabetes 2017, 9, 320–324. [Google Scholar] [CrossRef]
- Salehi, R.; Valizadeh, L.; Negahban, H.; Karimi, M.; Goharpey, S.; Shahali, S. The Western Ontario and McMaster Universities Osteoarthritis, Lequesne Algofunctional index, Arthritis Impact Measurement Scale-short form, and Visual Analogue Scale in patients with knee osteoarthritis: Responsiveness and minimal clinically important differences. Disabil. Rehabil. 2023, 45, 2185–2191. [Google Scholar]
- Sung, Y.T.; Wu, J.S. The Visual Analogue Scale for Rating, Ranking and Paired-Comparison (VAS-RRP): A new technique for psychological measurement. Behav. Res. Methods 2018, 50, 1694–1715. [Google Scholar] [CrossRef]
- Gignac, M.A.; Cao, X.; McAlpine, J.; Badley, E.M. Measures of disability: Arthritis Impact Measurement Scales 2 (AIMS2), Arthritis Impact Measurement Scales 2-Short Form (AIMS2-SF), The Organization for Economic Cooperation and Development (OECD) Long-Term Disability (LTD) Questionnaire, EQ-5D, World Health Organization Disability Assessment Schedule II (WHODASII), Late-Life Function and Disability Instrument (LLFDI), and Late-Life Function and Disability Instrument-Abbreviated Version (LLFDI-Abbreviated). Arthritis Care Res. 2011, 63 (Suppl. S11), S308–S324. [Google Scholar]
- Polonsky, W.H.; Fisher, L.; Earles, J.; Dudl, R.J.; Lees, J.; Mullan, J.; Jackson, R.A. Assessing psychosocial distress in diabetes: Development of the diabetes distress scale. Diabetes Care 2005, 28, 626–631. [Google Scholar] [CrossRef]
- Sayed Ahmed, H.A.; Mohamed, S.F.; Mostafa, M.; Elotla, S.F.; Shah, A.; Shah, J.; Fouad, A.M. Psychometric evaluation of the Arabic version of the 5-item Problem Areas in Diabetes (AR-PAID-5) scale. BMC Prim. Care 2022, 23, 148. [Google Scholar] [CrossRef]
- Veronese, N.; Cooper, C.; Reginster, J.Y.; Hochberg, M.; Branco, J.; Bruyère, O.; Chapurlat, R.; Al-Daghri, N.; Dennison, E.; Herrero-Beaumont, G.; et al. Type 2 diabetes mellitus and osteoarthritis. Semin. Arthritis Rheum. 2019, 49, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Courties, A.; Sellam, J. Osteoarthritis and type 2 diabetes mellitus: What are the links? Diabetes Res. Clin. Pract. 2016, 122, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Arruda, A.L.; Hartley, A.; Katsoula, G.; Smith, G.D.; Morris, A.P.; Zeggini, E. Genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. Am. J. Hum. Genet. 2023, 110, 1304–1318. [Google Scholar] [CrossRef]
- Schwarz, S.; Mrosewski, I.; Silawal, S.; Schulze-Tanzil, G. The interrelation of osteoarthritis and diabetes mellitus: Considering the potential role of interleukin-10 and in vitro models for further analysis. Inflamm. Res. 2018, 67, 285–300. [Google Scholar] [CrossRef]
- Eitner, A.; Wildemann, B. Diabetes—Osteoarthritis and joint pain. Bone Jt. Res. 2021, 10, 307–309. [Google Scholar] [CrossRef]
- Motta, F.; Barone, E.; Sica, A.; Selmi, C. Inflammaging and Osteoarthritis. Clin. Rev. Allergy Immunol. 2023, 64, 222–238. [Google Scholar] [CrossRef]
- Burbank, K.M.; Stevenson, J.H.; Czarnecki, G.R.; Dorfman, J. Chronic shoulder pain: Part I. Evaluation and diagnosis. Am. Fam. Physician 2008, 77, 453–460. [Google Scholar]
- Colletti, A.; Cicero, A.F.G. Nutraceutical Approach to Chronic Osteoarthritis: From Molecular Research to Clinical Evidence. Int. J. Mol. Sci. 2021, 22, 12920. [Google Scholar] [CrossRef]
- Li, M.; Xiao, Y.B.; Wang, X.T.; Zhuang, J.P.; Zhou, C.L. Proline-Serine-Threonine Phosphatase-Interacting Protein 2 Alleviates Diabetes Mellitus-Osteoarthritis in Rats through Attenuating Synovial Inflammation and Cartilage Injury. Orthop. Surg. 2021, 13, 1398–1407. [Google Scholar] [CrossRef]
- Ebrahim, H.A.; Alzamil, N.M.; Al-Ani, B.; Haidara, M.A.; Kamar, S.S.; Dawood, A.F. Suppression of knee joint osteoarthritis induced secondary to type 2 diabetes mellitus in rats by resveratrol: Role of glycated haemoglobin and hyperlipidaemia and biomarkers of inflammation and oxidative stress. Arch. Physiol. Biochem. 2022, 128, 1375–1382. [Google Scholar] [CrossRef]
- Mazidi, M.; Karimi, E.; Rezaie, P.; Ferns, G.A. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Its Complicat. 2017, 31, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.C.; Fernandez, M.L. Inflammation and type 2 diabetes. Diabetes Metab. 2012, 38, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Lane, N.E. Bone and Joint Complications in Diabetes. In Diabetes in America; Cowie, C.C., Casagrande, S.S., Menke, A., Cissell, M.A., Eberhardt, M.S., Meigs, J.B., Gregg, E.W., Knowler, W.C., Barrett-Connor, E., Becker, D.J., et al., Eds.; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, USA, 2018. [Google Scholar]
- Qu, Z.A.; Ma, X.J.; Huang, S.B.; Hao, X.R.; Li, D.M.; Feng, K.Y.; Wang, W.M. SIRT2 inhibits oxidative stress and inflammatory response in diabetic osteoarthritis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2855–2864. [Google Scholar]
- Mas-Bargues, C.; Alique, M.; Barrús-Ortiz, M.T.; Borrás, C.; Rodrigues-Díez, R. Special Issue “Oxidative Stress in Aging and Associated Chronic Diseases”. Antioxidants 2022, 11, 701. [Google Scholar] [CrossRef]
- Nadella, H.; Bloom, A.W.; Demory Beckler, M.; Kesselman, M.M. The Overlap of Diabetes and Osteoarthritis in American Populations. Cureus 2023, 15, e38287. [Google Scholar] [CrossRef]
- Courties, A.; Sellam, J.; Berenbaum, F. Metabolic syndrome-associated osteoarthritis. Curr. Opin. Rheumatol. 2017, 29, 214–222. [Google Scholar] [CrossRef]
- Sampath, S.J.P.; Venkatesan, V.; Ghosh, S.; Kotikalapudi, N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr. Obes. Rep. 2023, 12, 308–331. [Google Scholar] [CrossRef]
- Ma, H.; Li, X.; Zhou, T.; Sun, D.; Liang, Z.; Li, Y.; Heianza, Y.; Qi, L. Glucosamine Use, Inflammation, and Genetic Susceptibility, and Incidence of Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care 2020, 43, 719–725. [Google Scholar] [CrossRef]
- Francisco, V.; Pino, J.; González-Gay, M.; Lago, F.; Karppinen, J.; Tervonen, O.; Mobasheri, A.; Gualillo, O. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 2022, 18, 47–60. [Google Scholar] [CrossRef]
- Petakh, P.; Oksenych, V.; Kamyshnyi, A. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin. Biomed. Pharmacother. 2023, 163, 114892. [Google Scholar] [CrossRef]
- Xing, X.; Wang, Y.; Pan, F.; Cai, G. Osteoarthritis and risk of type 2 diabetes: A two-sample Mendelian randomization analysis. J. Diabetes 2023, 15, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures—2019 Update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists—Executive Summary. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2019, 25, 1346–1359. [Google Scholar]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Repchuk, Y.; Sydorchuk, L.P.; Sydorchuk, A.R.; Fedonyuk, L.Y.; Kamyshnyi, O.; Korovenkova, O.; Plehutsa, I.M.; Dzhuryak, V.S.; Myshkovskii, Y.M.; Iftoda, O.M.; et al. Linkage of blood pressure, obesity and diabetes mellitus with angiotensinogen gene (AGT 704T>C/rs699) polymorphism in hypertensive patients. Bratisl. Lek. Listy 2021, 122, 715–720. [Google Scholar] [CrossRef]
- Kamyshna, I.I.; Pavlovych, L.B.; Maslyanko, V.A.; Kamyshnyi, A.M. Analysis of the transcriptional activity of genes of neuropeptides and their receptors in the blood of patients with thyroid pathology. J. Med. Life 2021, 14, 243–249. [Google Scholar] [CrossRef]
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef]
- Kamyshnyi, O.; Matskevych, V.; Lenchuk, T.; Strilbytska, O.; Storey, K.; Lushchak, O. Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomed. Pharmacother. 2021, 144, 112230. [Google Scholar] [CrossRef]
- Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. Metformin: Is it a drug for all reasons and diseases? Metab. Clin. Exp. 2022, 133, 155223. [Google Scholar] [CrossRef]
- Petakh, P.; Kobyliak, N.; Kamyshnyi, A. Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method. Front. Cell. Infect. Microbiol. 2023, 13, 1142578. [Google Scholar] [CrossRef]
- Petakh, P.; Kamyshna, I.; Kamyshnyi, A. Gene expression of protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), solute carrier family 2 member 1 (SLC2A1) and mechanistic target of rapamycin (MTOR) in metformin-treated type 2 diabetes patients with COVID-19: Impact on inflammation markers. Inflammopharmacology 2024, 32, 885–891. [Google Scholar]
- Petakh, P.; Kamyshna, I.; Oksenych, V.; Kamyshnyi, O. Metformin Alters mRNA Expression of FOXP3, RORC, and TBX21 and Modulates Gut Microbiota in COVID-19 Patients with Type 2 Diabetes. Viruses 2024, 16, 281. [Google Scholar] [CrossRef] [PubMed]
- Pavlo, P.; Kamyshna, I.; Kamyshnyi, A. Effects of metformin on the gut microbiota: A systematic review. Mol. Metab. 2023, 77, 101805. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Griga, V.; Mohammed, I.B.; Loshak, K.; Poliak, I.; Kamyshnyiy, A. Effects of Metformin, Insulin on Hematological Parameters of COVID-19 Patients with Type 2 Diabetes. Med. Arch. 2022, 76, 329–332. [Google Scholar] [CrossRef]
- Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.; Kamyshnyi, A. Metformin Therapy Changes Gut Microbiota Alpha-Diversity in COVID-19 Patients with Type 2 Diabetes: The Role of SARS-CoV-2 Variants and Antibiotic Treatment. Pharmaceuticals 2023, 16, 904. [Google Scholar] [CrossRef]
- Solmonson, A.; DeBerardinis, R.J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 2018, 293, 7522–7530. [Google Scholar] [CrossRef]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef]
- Nguyen, H.; Pellegrini, M.V.; Gupta, V. Alpha-Lipoic Acid. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Zwierz, M.; Chabowski, A.; Sztolsztener, K. α-Lipoic acid—A promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch. Biochem. Biophys. 2023, 750, 109811. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Arisha, A.H.; Metwally, M.M.M.; Abdel-Warith, A.A.; Younis, E.M.; Davies, S.J.; Hassan, B.A.; Abd-Elhakim, Y.M. Alpha-lipoic acid suppresses gibberellic acid nephrotoxicity in Nile tilapia (Oreochromis niloticus) via modulating oxidative stress, inflammation, cytokine production, and apoptosis. Pestic. Biochem. Physiol. 2023, 196, 105598. [Google Scholar] [CrossRef]
- Shen, C.; Chen, X.; Cao, Y.; Du, Y.; Xu, X.; Wu, Q.; Lin, L.; Qin, Y.; Meng, R.; Gan, L.; et al. Alpha-Lipoic Acid Protects against Chronic Alcohol Consumption-Induced Cardiac Damage by the Aldehyde Dehydrogenase 2-Associated PINK/Parkin Pathway. J. Cardiovasc. Pharmacol. 2023, 82, 407–418. [Google Scholar]
- Abdullah Ali, M.; Naji Alhassani, A.; Kareem Hamad, B. Impacts of trelagliptin and remogliflozin alone and in combination with Alpha Lipoic Acid on cardiac function in streptozotocin-induced diabetes mellitus in rats. Cell. Mol. Biol. 2023, 69, 106–112. [Google Scholar] [CrossRef]
- Petersen Shay, K.; Moreau, R.F.; Smith, E.J.; Hagen, T.M. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life 2008, 60, 362–367. [Google Scholar] [CrossRef]
- Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol. 2015, 93, 1021–1027. [Google Scholar] [CrossRef]
- Cakatay, U. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med. Hypotheses 2006, 66, 110–117. [Google Scholar] [CrossRef]
- Baicus, C.; Purcarea, A.; von Elm, E.; Delcea, C.; Furtunescu, F.L. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst. Rev. 2024, 1, Cd012967. [Google Scholar] [CrossRef]
- Wang, J.Q.; Ling, X.; Wang, H.J.; Chen, F.E. α-Lipoic acid chemistry: The past 70 years. RSC Adv. 2023, 13, 36346–36363. [Google Scholar] [CrossRef]
- Cronan, J.E. Lipoic acid attachment to proteins: Stimulating new developments. Microbiol. Mol. Biol. Rev. MMBR 2024, 88, e0000524. [Google Scholar] [CrossRef]
- Banihani, S.A. Role of Lipoic Acid in Testosterone Production in Males. World J. Men’s Health 2024, 42, e52. [Google Scholar] [CrossRef]
- Longhitano, L.; Distefano, A.; Amorini, A.M.; Orlando, L.; Giallongo, S.; Tibullo, D.; Lazzarino, G.; Nicolosi, A.; Alanazi, A.M.; Saoca, C.; et al. (+)-Lipoic Acid Reduces Lipotoxicity and Regulates Mitochondrial Homeostasis and Energy Balance in an In Vitro Model of Liver Steatosis. Int. J. Mol. Sci. 2023, 24, 14491. [Google Scholar] [CrossRef]
- Kabin, E.; Dong, Y.; Roy, S.; Smirnova, J.; Smith, J.W.; Ralle, M.; Summers, K.; Yang, H.; Dev, S.; Wang, Y.; et al. α-lipoic acid ameliorates consequences of copper overload by up-regulating selenoproteins and decreasing redox misbalance. Proc. Natl. Acad. Sci. USA 2023, 120, e2305961120. [Google Scholar] [CrossRef]
- Orellana-Donoso, M.; López-Chaparro, M.; Barahona-Vásquez, M.; Santana-Machuca, A.; Bruna-Mejias, A.; Nova-Baeza, P.; Valenzuela-Fuenzalida, J.J. Effectiveness of alpha-lipoic acid in patients with neuropathic pain associated with type I and type II diabetes mellitus: A systematic review and meta-analysis. Medicine 2023, 102, e35368. [Google Scholar] [CrossRef]
- Jang, H.N.; Oh, T.J. Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy. Diabetes Metab. J. 2023, 47, 743–756. [Google Scholar] [CrossRef]
- Gilron, I.; Robb, S.; Tu, D.; Holden, R.R.; Jackson, A.C.; Duggan, S.; Milev, R. Randomized, double-blind, controlled trial of a combination of alpha-lipoic acid and pregabalin for neuropathic pain: The PAIN-CARE trial. Pain 2024, 165, 461–469. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Battipaglia, C.; Rusce, L.; Prampolini, G.; Aio, C.; Ricciardiello, F.; Foschi, M.; Sponzilli, A.; Semprini, E.; Petrillo, T. Alpha lipoic acid administration improved both peripheral sensitivity to insulin and liver clearance of insulin reducing potential risk of diabetes and nonalcoholic fatty liver disease in overweight/obese PCOS patients. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2024, 40, 2341701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Frei, B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15, 2423–2432. [Google Scholar]
- Roy, P.; Tomassoni, D.; Martinelli, I.; Bellitto, V.; Nittari, G.; Amenta, F.; Tayebati, S.K. Protective effects of the R-(+)-thioctic acid treatment: Possible anti-inflammatory activity on heart of hypertensive rats. BMC Complement. Med. Ther. 2024, 24, 281. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Q.; Yang, X.; Wang, Y.; Sun, L. Puerarin inhibits adhesion molecule expression in tnf-alpha-stimulated human endothelial cells via modulation of the nuclear factor kappaB pathway. Pharmacology 2010, 85, 27–35. [Google Scholar] [CrossRef]
- Kargar, H.M.P.; Noshiri, H. Protective effects of alpha-lipoic acid on anxiety-like behavior, memory and prevention of hippocampal oxidative stress in methamphetamine-treated rats. Psychopharmacology 2024, 241, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Della Giustina, A.; Goldim, M.P.; Danielski, L.G.; Florentino, D.; Mathias, K.; Garbossa, L.; Oliveira Junior, A.N.; Fileti, M.E.; Zarbato, G.F.; da Rosa, N.; et al. Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochem. Int. 2017, 108, 436–447. [Google Scholar] [CrossRef] [PubMed]
OA (n = 52) | OA + T2DM (n = 71) | p-Value a | |
---|---|---|---|
Male | 53.8% | 54.9% | p = 0.7521 |
Age | 47 (37.75–52.25) | 48 (36–53.75) | p = 0.6143 |
Duration of OA | 7 (5.5–9) | 8 (5.0–9.5) | p = 0.1157 |
Group without ALA (n = 37) | Group with ALA (n = 34) | p-Value a | |
---|---|---|---|
Male | 56.8% | 52.9% | p = 0.3472 |
Age | 47.5 (36.5–53) | 48 (35.75–54) | p = 0.7981 |
Duration of OA | 7.5 (5.0–8.5) | 8 (5.25–9.75) | p = 0.2873 |
Duration of T2DM | 6.5 (4.0–7.75) | 6 (4.25–8) | p = 0.5428 |
OA (n = 52) | OA + T2DM (n = 71) | p-Value a | |
---|---|---|---|
Kellgren-Lawrence grade | 2 (2–2) | 2 (2–1) | p a = 0.469 |
WOMAC pain | 11 (10–12) | 12 (11–13) | p a = 0.2091 |
WOMAC stiffness | 4 (3–5) | 5 (4–5) | p a = 0.0003 |
WOMAC Physical Function | 38 (36–40) | 40 (36–44) | p a = 0.0529 |
Total WOMAC score | 54 (51–56) | 56 (53.0–60.5) | p a = 0.0043 |
Lequesne Algofunctional Index | 5 (3.75–5) | 5 (4–6) | p a = 0.0117 |
VAS rest pain | 32 (26.75–39) | 35 (32–39) | p a = 0.0371 |
VAS movement pain | 52 (46–54.25) | 51 (48–55) | p a = 0.3074 |
VAS inflammation | 30 (28–32.25) | 32 (28.5–36) | p a = 0.045 |
VAS joint dysfunction | 23 (21–25) | 24 (22–28) | p a = 0.02 |
AIMS-FF | 2.8 (2.3–3.2) | 3 (2.65–3.2) | p a = 0.0367 |
AIMS-P | 2.5 (2.28–2.8) | 2.6 (2.2–2.8) | p a = 0.9283 |
AIMS-SF | 1.9 (1.6–2.1) | 2 (1.8–2.2) | p a = 0.0045 |
AIMS-EH | 2.15 (1.98–2.3) | 2.2 (1.9–2.4) | p a = 0.5849 |
AIMS-GHP | 2.7 (2.4–2.9) | 2.9 (2.6–3.2) | p a = 0.0035 |
OA (n = 52) | OA + T2DM (n = 71) | p-Value a | |
---|---|---|---|
Fasting blood glucose, mmol/L | 4.2 (4.02–4.38) | 6.84 (6.51–7.63) | p a < 0.001 |
C-peptide, ng/mL | 3 (2.51–3.55) | 4.54 (3.81–5.14) | p a < 0.001 |
HOMA-IR | 2.68 (2.47–2.83) | 3.46 (3.19–3.8) | p a < 0.001 |
HbA1c, % | 5.92 (5.38–6.33) | 6.72 (6.55–6.86) | p a < 0.001 |
DDS-17-EB | 1.2 (1.13–1.24) | 3.4 (3.15–3.66) | p a < 0.001 |
DDS-17-PRD | 1.1 (1.04–1.17) | 4.07 (3.84–4.24) | p a < 0.001 |
DDS-17-RRD | 1.13 (1.07–1.19) | 4.29 (4.0–4.5) | p a < 0.001 |
DDS-17-ID | 1.22 (1.13–1.26) | 3.99 (3.69–4.35) | p a < 0.001 |
Total DDS-17 score | 1.15 (1.13–1.19) | 3.91 (3.77–4.1) | p a < 0.001 |
PAID | 6 (6–6) | 34 (31–39) | p a < 0.001 |
OA (n = 52) | OA + T2DM (n = 71) | p-Value | |
---|---|---|---|
Leukocytes, 109/L | 6.83 (6.19–7.37) | 7.07 (6.64–7.57) | p a = 0.0664 |
Neutrophils, % | 53.5 (52–56.25) | 56 (52–61) | p a = 0.0332 |
Lymphocytes, % | 21 (19–23.25) | 20 (19–22) | p a = 0.0343 |
NLR | 2.55 (2.33–2.7) | 2.74 (2.54–3) | p a = 0.0003 |
CRP, mg/L | 4.86 (4.46–5.53) | 5.1 (4.83–5.51) | p a = 0.0624 |
Hydroxyproline, mg/L | 1.53 (1.36–1.67) | 1.61 (1.35–2.16) | p a = 0.066 |
MA, µmol/L | 4.61 (4.02–5.03) | 5.04 (4.54–5.42) | p a = 0.0008 |
Ceruloplasmin, mg/L | 388.5 (368.2–408.5) | 399 (388.5–410.2) | p a = 0.0088 |
Kallikrein, μg/L | 153.45 (145–158.4) | 156.8 (148.55–162.55) | p a = 0.0822 |
SOD, U/mL | 53.02 (46.81–57.23) | 55.3 (50.6–60.7) | p a = 0.0711 |
Catalase, U/mL | 16.74 (15.84–18.24) | 18.2 (16.35–20.95) | p a = 0.0051 |
α1-Antitrypsin, g/L | 1.69 (1.63–1.74) | 1.7 (1.58–1.81) | p a = 0.6375 |
α2-Macroglobulin, g/L | 1.91 (1.86–1.99) | 1.89 (1.77–2.05) | p a = 0.3204 |
OA (n = 52) | OA + T2DM (n = 71) | p-Value | |
---|---|---|---|
Serum IgA, g/L | 1.84 (1.73–1.97) | 1.93 (1.78–2.11) | p a = 0.0218 |
IgM, g/L | 1.02 (0.9–1.11) | 1.05 (0.94–1.21) | p a = 0.1328 |
IgG, g/L | 9.12 (8.49–9.66) | 9.08 (8.25–9.68) | p a = 0.6616 |
IgE, IU/mL | 38.8 (37.18–39.59) | 40.4 (36.3–45.85) | p a = 0.0214 |
T-Lymphocytes (CD3+, CD19−), % | 59.9 (56.78–62.75) | 60.6 (57.5–65.55) | p a = 0.0896 |
T-Helpers (CD4+, CD8−), % | 42.55 (40.35–43.43) | 43.5 (40.8–47.4) | p a = 0.0795 |
T-Cytotoxic Cells (CD4−, CD8+), % | 28 (25.48–30.65) | 27.7 (26.35–29.75) | p a = 0.7645 |
Immunoregulatory Index | 1.5 (1.4–1.6) | 1.6 (1.41–1.72) | p a = 0.047 |
Cytotoxic Cells (CD3+, CD56+), % | 4.7 (4.4–5.03) | 4.9 (4.3–5.45) | p a = 0.2383 |
NK Cells (CD3−, CD56+), % | 9.5 (9.2–9.8) | 9.7 (8.8–10.65) | p a = 0.2447 |
B-Lymphocytes (CD3−, CD19+), % | 9.75 (9.3–10.3) | 10.1 (9.6–10.8) | p a = 0.0709 |
Monocytes/Macrophages (CD14), % | 8.1 (7.9–8.4) | 8.2 (7.5–8.85) | p a = 0.5743 |
Group without ALA (n = 37) | Group with ALA (n = 34) | p-Value bc | |||
---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | ||
Kellgren-Lawrence grade | 2 (1–2) | 2 (1–2) | 2 (1.25–2) | 2 (1–2) | p b = 0.7395 |
p-value ac | pa = 0.233 | pa = 0.484 | pd = 9813 | p c = 0.7298 | |
WOMAC pain | 11 (10–13) | 11 (9–12) | 12 (11–13) | 9 (8–11) | p b = 0.4518 |
p-value ac | p a = 0.0321 | p a = 0.0014 | p d = 0.0364 | p c = 0.0390 | |
WOMAC stiffness | 5 (4–6) | 4 (4–5) | 5 (4–5) | 4 (3–4) | p b = 0.1993 |
p-value ac | p a = 0.0010 | p a = 0.0055 | p d = 0.8481 | p c = 0.1937 | |
WOMAC Physical Function | 40 (35–44) | 37 (35–39) | 40 (36.25–43.75) | 36.5 (35–38.75) | p b = 0.7996 |
p-value ac | p a = 0.055 | p a = 0.0049 | p d = 0.7032 | p c = 0.9538 | |
Total WOMAC score | 56 (53–61) | 52 (48–53) | 56.5 (53.25–59.75) | 50 (47–53) | p b = 0.8853 |
p-value ac | p a = 0.0028 | p a = < 0.001 | p d = 0.3222 | p c = 0.1876 | |
Lequesne Algofunctional Index | 5 (4–6) | 4 (3–5) | 5 (4–5.75) | 3 (2–4) | p b = 0.5299 |
p-value ac | p a = 0.0006 | p a = < 0.001 | p d = 0.0232 | p c = 0.0172 | |
VAS rest pain | 37 (32–40) | 30 (27–34) | 34 (32–38) | 30.5 (28–34) | p b = 0.1541 |
p ac-value | p a < 0.001 | p a < 0.001 | p d = 0.3632 | p c = 0.751 | |
VAS movement pain | 52 (48–54) | 50 (43–53) | 50.5 (46.25–58.5) | 46.5 (39.5–50.75) | p b = 0.624 |
p-value ac | p a = 0.0461 | p a = 0.0049 | p d = 0.2269 | p c = 0.0619 | |
VAS inflammation | 32 (28–34) | 27 (22–31) | 33 (29.25–37) | 26 (24–28.75) | p b = 0.3127 |
p-value ac | p a = 0.0113 | p a < 0.001 | p d = 0.2819 | p c = 0.5757 | |
VAS joint dysfunction | 24 (22–28) | 21 (19–24) | 24.5 (21.25–28.75) | 19 (17–22) | p b = 0.9586 |
p-value ac | p a = 0.0089 | p a = 0.0004 | p d = 0.1850 | p c = 0.0497 | |
AIMS-FF | 3.1 (2.7–3.2) | 2.7 (2.5–3) | 2.9 (2.6–3.18) | 2.5 (2.23–2.8) | p b = 0.3611 |
p-value ac | p a = 0.0121 | p a = 0.0026 | p d = 0.2024 | p c = 0.0142 | |
AIMS-P | 2.5 (2.2–2.8) | 2.3 (2–2.6) | 2.6 (2.4–2.78) | 2 (1.8–2.3) | p b = 0.4018 |
p-value ac | p a = 0.3564 | p a < 0.001 | p d = 0.0018 | p c = 0.0073 | |
AIMS-SF | 2 (1.9–2.2) | 1.9 (1.7–2) | 2 (1.73–2.2) | 1.75 (1.6–1.9) | p b = 0.3663 |
p-value ac | p a = 0.0241 | p a = 0.0146 | p d = 0.6271 | p c = 0.1003 | |
AIMS-EH | 2.2 (2–2.3) | 2.1 (1.9–2.2) | 2.1 (1.9–2.4) | 2 (1.7–2.1) | p b = 0.5388 |
p-value ac | p a = 0.2196 | p a = 0.0055 | p d = 0.1107 | p c = 0.0083 | |
AIMS-GHP | 2.9 (2.6–3.1) | 2.7 (2.4–3) | 2.9 (2.7–3.28) | 2.6 (2.43–2.7) | p b = 0.3616 |
p-value ac | p a = 0.0907 | p a = 0.0004 | p d = 0.1125 | p c = 0.2377 |
Group without ALA (n = 37) | Group with ALA (n = 34) | p-Value bc | |||
---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | ||
Fasting blood glucose, mmol/L | 6.87 (6.5–7.24) | 6.52 (6.17–6.8) | 6.8 (6.54–7.79) | 6.47 (5.8–6.99) | p b = 0.427 |
p-value ac | p a = 0.0271 | p a = 0.003 | p d = 0.3950 | p c = 0.881 | |
C-peptide, ng/mL | 4.49 (3.88–4.96) | 4.23 (3.78–4.92) | 4.55 (3.56–5.58) | 4.22 (3.88–4.79) | p b = 0.8674 |
p-value ac | p a = 0.4689 | p a = 0.1768 | p d = 5887 | p c = 0.8539 | |
HOMA-IR | 3.49 (3.19–3.75) | 3.4 (3.18–3.6) | 3.45 (3.2–3.83) | 3.35 (2.87–3.69) | p b = 0.8992 |
p-value ac | p a = 0.261 | p a = 0.093 | p d = 0.5498 | p c = 0.6452 | |
HbA1c, % | 6.7 (6.38–7.25) | 6.49 (6.34–6.96) | 6.73 (6.63–6.79) | 6.63 (6.41–6.94) | p b = 0.9449 |
p-value ac | p a = 0.2642 | p a = 0.3308 | p d = 6410 | p c = 0.5805 | |
DDS-17-EB | 3.4 (3.05–3.66) | 3.2 (3.11–3.29) | 3.4 (3.18–3.65) | 3.1 (2.94–3.19) | p b = 0.9266 |
p-value ac | p a = 0.0022 | p a = 0.0001 | p d = 0.1603 | p c = 0.0035 | |
DDS-17-PRD | 4.07 (3.82–4.23) | 3.89 (3.51–4.11) | 4.11 (3.92–4.25) | 3.73 (3.42–4.02) | p b = 0.4439 |
p-value ac | p a = 0.1843 | p a = 0.0022 | p d = 3343 | p c = 0.4406 | |
DDS-17-RRD | 4.3 (4.03–4.53) | 3.88 (3.69–4.18) | 4.25 (3.99–4.47) | 3.85 (3.72–3.98) | p b = 0.7385 |
p-value ac | p a = 0.0036 | p a < 0.001 | p d = 0.8931 | p c = 0.4718 | |
DDS-17-ID | 3.93 (3.57–4.29) | 3.86 (3.41–4.2) | 4.02 (3.75–4.41) | 3.66 (3.3–3.96) | p b = 0.4007 |
p-value ac | p a = 0.3898 | p a = 0.0183 | p d = 0.3343 | pc = 0.4405 | |
Total DDS-17 score | 3.88 (3.76–4.1) | 3.71 (3.57–3.78) | 3.97 (3.77–4.09) | 3.55 (3.45–3.72) | p b = 0.9634 |
p-value ac | p a = 0.6635 | p a = 0.7301 | p d = 0.0591 | p c = 0.7596 | |
PAID | 35 (32–39) | 31 (28–34) | 33.5 (30.25–37.75) | 29.5 (26.25–31.75) | p b = 0.3837 |
p-value ac | p a = 0.0012 | p a = 0.0002 | p d = 0.5524 | p c = 0.0293 |
Group without ALA (n = 37) | Group with ALA (n = 34) | p-Value bc | |||
---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | ||
Leukocytes, 109/L | 7.26 (6.64–7.63) | 7.04 (6.19–7.43) | 7.02 (6.63–7.29) | 6.55 (6.06–6.87) | p b = 0.2224 |
p-value ac | p a = 0.1534 | p a = 0.0024 | p d = 0.4177 | p c = 0.0622 | |
Neutrophils, % | 56 (50–59) | 54 (50–56) | 57 (53–61,75) | 55 (50.25–61.75) | p b = 0.0889 |
p-value | p a = 0.1366 | p a = 0.0054 | p d = 0.2945 | p c = 0.2517 | |
Lymphocytes, % | 19 (19–21) | 21 (19–22) | 20 (19–23.75) | 22 (20–24) | p b = 0.1237 |
p-value ac | p a = 0.3266 | p a = 0.1269 | p d = 0.3988 | p c = 0.0078 | |
NLR | 2.74 (2.55–2.94) | 2.52 (2.39–2.78) | 2.76 (2.54–3.08) | 2.42 (2.25–2.68) | p b = 0.4789 |
p-value ac | p a = 0.0132 | p a = 0.0023 | p d = 0.1228 | p c = 0.0893 | |
CRP, mg/L | 5.16 (4.95–5.48) | 4.85 (4.38–5.2) | 5.02 (4.63–5.54) | 4.58 (4.11–5.16) | p b = 0.1286 |
p-value ac | p a = 0.001 | p a = 0.0078 | p d = 0.7379 | p c = 0.0119 | |
Hydroxyproline, mg/L | 1.61 (1.22–1.87) | 1.64 (1.32–1.8) | 1.64 (1.38–2.27) | 1.47 (1.12–2.04) | p b = 0.497 |
p-value ac | p a = 0.7571 | p a = 0.1324 | p d = 0.6658 | p c = 0.7472 | |
MA, µmol/L. | 5.04 (4.69–5.39) | 4.81 (4.32–5.42) | 5.04 (4.44–5.6) | 4.44 (3.93–5.05) | p b = 0.8449 |
p-value ac | p a = 0.1056 | p a = 0.0031 | p d = 0.2647 | p c = 0.0546 | |
Ceruloplasmin, mg/L | 397.5 (387.1–410.5) | 390.2 (383.5–409.3) | 405 (391–408.4) | 388.1 (372.3–397.6) | p b = 0.5118 |
p-value ac | p a = 0.1491 | p a = 0.0019 | p d = 0.1113 | p c = 0.1272 | |
Kallikrein, μg/L | 153.7 (148.2–162.4) | 152.1 (146.7–156.9) | 157.5 (150.4–162.5) | 152.2 (145–159.5) | p b = 0.5885 |
p-value ac | p a = 0.2364 | p a = 0.1043 | p d = 0.4760 | p c = 0.7912 | |
SOD, U/mL | 57.5 (52.2–61.5) | 59.3 (55.5–63.3) | 54.75 (47.83–59.68) | 58.3 (53.7–63.58) | p b = 0.1837 |
p-value ac | p a = 0.2189 | p a = 0.0033 | p d = 0.5047 | p c = 0.5229 | |
Catalase, U/mL | 18.3 (16.8–20.1) | 20.5 (18.43–23.26) | 17.7 (15.23–21.73) | 21.95 (20.45–23.98) | p b = 0.8314 |
p-value ac | p a = 0.0146 | p a = 0.0014 | p d = 0.3173 | p c = 0.1258 | |
α1-Antitrypsin, g/L | 1.7 (1.57–1.78) | 1.7 (1.51–1.76) | 1.71 (1.59–1.83) | 1.61 (1.45–1.79) | p b = 0.6083 |
p-value ac | p a = 0.7571 | p a = 0.1744 | p d = 0.4584 | p c = 0.4303 | |
α2-Macroglobulin, g/L | 1.88 (1.78–1.99) | 1.99 (1.79–2.09) | 1.9 (1.7–2.11) | 1.93 (1.84–2.12) | p b = 0.7956 |
p-value ac | p a = 0.245 | p a = 0.0889 | p d = 0.5270 | p c = 0.6827 |
Group without ALA (n = 37) | Group with ALA (n = 34) | p-Value bc | |||
---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | ||
Serum IgA, g/L | 1.93 (1.79–2.11) | 1.87 (1.69–2.08) | 1.92 (1.76–2.09) | 1.84 (1.56–2.04) | p b = 0.9175 |
p-value ac | p a = 0.02204 | p a = 0.0251 | p d = 0.5421 | p c = 0.3422 | |
IgM, g/L | 1.08 (1.02–1.21) | 0.99 (0.84–1.19) | 0.99 (0.89–1.2) | 0.99 (0.71–1.13) | p b = 0.0811 |
p-value ac | p a = 0.2133 | p a = 0.1438 | p d = 0.8615 | p c = 0.4071 | |
IgG, g/L | 8.74 (8.26–9.41) | 8.81 (8.23–9.76) | 9.22 (8.19–9.74) | 8.59 (8.17–9.45) | p b = 0.4204 |
p-value ac | p a = 0.7399 | p a = 0.3303 | p d = 0.2929 | p c = 0.6786 | |
IgE, IU/mL | 40.4 (35.4–47.6) | 39.7 (34.6–43.9) | 40.6 (36.93–44.15) | 35.15 (32.75–38.08) | p b = 0.704 |
p-value ac | p a = 0.4275 | p a = 0.0008 | p d = 0.1145 | p c = 0.0244 | |
T-Lymphocytes (CD3+, CD19−), % | 61 (56.6–65.4) | 57.2 (53.8–64.9) | 60 (57.58–66.03) | 58.6 (53.13–63.18) | p b = 0.7255 |
p-value ac | p a = 0.1017 | p a = 0.099 | p d= 0.8525 | p c = 0.8001 | |
T-Helpers (CD4+, CD8−), % | 43.5 (41–46.9) | 42.6 (40.1–44.9) | 44.95 (40.28–47.85) | 40.45 (38.7–44.98) | p b = 0.872 |
p-value ac | p a = 0.4736 | p a = 0.0566 | p d = 0.2574 | p c = 0.2617 | |
T-Cytotoxic Cells (CD4−, CD8+), % | 28.2 (26.4–29.8) | 29.5 (26–30.8) | 27.45 (26.08–29.5) | 28.45 (27.1–32.25) | p b = 0.508 |
p-value ac | p a = 0.6838 | p a = 0.513 | p d = 0.1782 | p c = 0.2766 | |
Immunoregulatory Index | 1.61 (1.39–1.64) | 1.47 (1.4–1.67) | 1.59 (1.42–1.76) | 1.4 (1.27–1.55) | p b = 0.6247 |
p-value ac | p a = 0.2677 | p a = 0.0125 | p d = 0.0580 | p c = 0.056 | |
Cytotoxic Cells (CD3+, CD56+), % | 4.8 (4.3–5.5) | 4.8 (4.4–5.2) | 4.9 (4.33–5.4) | 4.85 (4.3–5.1) | p b = 0.7294 |
p-value ac | p a = 0.5724 | p a = 0.6939 | p d = 0.9795 | p c = 0.7251 | |
NK Cells (CD3−, CD56+), % | 10.3 (9–10.8) | 9.5 (8.7–10.7) | 9.4 (8.73–10.55) | 9.15 (8.5–9.78) | p b = 0.2332 |
p-value ac | p a = 0.1996 | p a = 0.3879 | p d = 0.5497 | p c = 0.1389 | |
B-Lymphocytes (CD3−, CD19+), % | 10 (9.7–10.5) | 9.9 (9.3–10.7) | 10.2 (9.45–10.9) | 9.65 (8.03–10.45) | p b = 0.7427 |
p-value ac | p a = 0.8741 | p a = 0.0887 | p d = 0.1601 | p c = 0.1499 | |
Monocytes/Macrophages (CD14), % | 8.2 (7.5–9) | 8.1 (7.2–8.7) | 8.15 (7.55–8.58) | 7.65 (7.13–8.48) | p b = 0.5684 |
p-value ac | p a = 0.2233 | p a = 0.2814 | p d = 0.9475 | p c = 0.4403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halabitska, I.; Oksenych, V.; Kamyshnyi, O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024, 16, 3349. https://doi.org/10.3390/nu16193349
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients. 2024; 16(19):3349. https://doi.org/10.3390/nu16193349
Chicago/Turabian StyleHalabitska, Iryna, Valentyn Oksenych, and Oleksandr Kamyshnyi. 2024. "Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus" Nutrients 16, no. 19: 3349. https://doi.org/10.3390/nu16193349
APA StyleHalabitska, I., Oksenych, V., & Kamyshnyi, O. (2024). Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients, 16(19), 3349. https://doi.org/10.3390/nu16193349