Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion/Exclusion Criteria
2.2. Literature Search
2.3. Study Selection
2.4. Data Extraction
2.5. Quality and Risk of Bias Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Quality and Risk of Bias Assessment
3.4. Results of Individual Studies
3.4.1. Time Trial Performance
3.4.2. Heart Rate
3.4.3. Oxygen Uptake
3.4.4. Power Output
3.4.5. Perceived Effort
3.4.6. Countermovement Jump
3.5. Meta-Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naderi, A.; Earnest, C.P.; Lowery, R.P.; Wilson, J.M.; Willems, M.E.T. Co-ingestion of Nutritional Ergogenic Aids and High-Intensity Exercise Performance. Sports Med. 2016, 46, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Gilsanz, L.; López-Seoane, J.; Jiménez, S.L.; Pareja-Galeano, H. Effect of β-alanine and sodium bicarbonate co-supplementation on the body’s buffering capacity and sports performance: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 63, 5080–5093. [Google Scholar] [CrossRef] [PubMed]
- Elosegui, S.; López-Seoane, J.; Martínez-Ferrán, M.; Pareja-Galeano, H. Interaction Between Caffeine and Creatine When Used as Concurrent Ergogenic Supplements: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Combining Caffeine and Sodium Bicarbonate on Exercise Performance: A Review with Suggestions for Future Research. J. Diet. Suppl. 2021, 18, 444–460. [Google Scholar] [CrossRef]
- AIS Position Statement: Supplements and Sports Foods. 2022. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 29 September 2024).
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef]
- Sousa, T.; Fernandes, E.; Nunes, C.; Laranjinha, J.; Carvalho, F.; Pinho, D.; Morato, M.; Albino-Teixeira, A. Scavenging of nitric oxide by an antagonist of adenosine receptors. J. Pharm. Pharmacol. 2005, 57, 399–404. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Follmann, D.; Elliott, P.; Suh, I.; Cutler, J. Variance imputation for overviews of clinical trials with continuous response. J. Clin. Epidemiol. 1992, 45, 769–773. [Google Scholar] [CrossRef]
- Valentine, J.C.; Pigott, T.D.; Rothstein, H.R. How many studies do you need? A primer on statistical power for meta-analysis. J. Educ. Behav. Stat. 2010, 35, 215–247. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; pp. 1–694. [Google Scholar]
- Glaister, M.; Pattison, J.R.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J. Strength Cond. Res. 2015, 29, 165–174. [Google Scholar] [CrossRef]
- Oskarsson, J.; McGawley, K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl. Physiol. Nutr. Metab. 2018, 43, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.C.; Hawley, J.A.; Desbrow, B.; Jones, A.M.; Blackwell, J.R.; Ross, M.L.; Zemski, A.J.; Burke, L.M. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Handzlik, M.K.; Gleeson, M. Likely additive ergogenic effects of combined preexercise dietary nitrate and caffeine ingestion in trained cyclists. ISRN Nutr. 2013, 2013, 396581. [Google Scholar] [CrossRef] [PubMed]
- Berjisian, E.; McGawley, K.; Saunders, B.; Domínguez, R.; Koozehchian, M.S.; de Oliveira, C.V.C.; Rafiei, R.; Miraftabi, H.; Sarshin, A.; Naderi, A. Acute effects of beetroot juice and caffeine co-ingestion during a team-sport-specific intermittent exercise test in semi-professional soccer players: A randomized, double-blind, placebo-controlled study. BMC Sports Sci. Med. Rehabil. 2022, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Rodríguez-Fernández, A.; Ramirez-Campillo, R.; Raya-González, J. Effects of caffeine, beetroot juice and its interaction consumption on exercise-related fatigue. Kinesiology 2021, 53, 185–192. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, B.; Gao, J.; Del Coso, J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022, 15, 148. [Google Scholar] [CrossRef]
- Smirmaul, B.P.C.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2017, 117, 27–38. [Google Scholar] [CrossRef]
- Trice, I.; Haymes, E.M. Effects of caffeine ingestion on exercise-induced changes during high-intensity, intermittent exercise. Int. J. Sport Nutr. 1995, 5, 37–44. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Stensrud, T.; Brage, S.; Jensen, J. Caffeine Increases Exercise Performance, Maximal Oxygen Uptake, and Oxygen Deficit in Elite Male Endurance Athletes. Med. Sci. Sports Exerc. 2021, 53, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Esteves, G.P.; Swinton, P.; Sale, C.; James, R.M.; Artioli, G.G.; Roschel, H.; Gualano, B.; Saunders, B.; Dolan, E. Individual Participant Data Meta-Analysis Provides No Evidence of Intervention Response Variation in Individuals Supplementing With Beta-Alanine. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 305–313. [Google Scholar] [CrossRef]
- Fredholm, B.B. Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol Sci. 1979, 1, 129–132. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Lara, B.; Gutiérrez-Hellín, J.; González-García, J.; Del Coso, J. Time Course and Magnitude of Tolerance to the Ergogenic Effect of Caffeine on the Second Ventilatory Threshold. Life 2020, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sports Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44 (Suppl. 1), S35–S45. [Google Scholar] [CrossRef]
- McConell, G.K.; Bradley, S.J.; Stephens, T.J.; Canny, B.J.; Kingwell, B.A.; Lee-Young, R.S. Skeletal muscle nNOS protein content is increased by exercise training in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, 821–828. [Google Scholar] [CrossRef]
- Poveda, J.J.; Riestra, A.; Salas, E.; Cagigas, M.L.; López-Somoza, C.; Amado, J.A.; Berrazueta, J.R. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: Effects of acute exercise and long-term physical training. Eur. J. Clin. Investig. 1997, 27, 967–971. [Google Scholar] [CrossRef]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J. Physiol. 2012, 591 Pt 2, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590 Pt 15, 3575. [Google Scholar] [CrossRef] [PubMed]
- Tesch, P.A.; Karlsson, J.; Berman, Y.; North, K.N.; Harber, M.; Trappe, S. Muscle fiber types and size in trained and untrained muscles of elite athletes. J. Appl. Physiol. 1985, 59, 1716–1720. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. J. Appl. Physiol. 2013, 115, 325–336. [Google Scholar] [CrossRef]
- Stadheim, H.K.; Kvamme, B.; Olsen, R.; Drevon, C.A.; Ivy, J.L.; Jensen, J. Caffeine increases performance in cross-country double-poling time trial exercise. Med. Sci. Sports Exerc. 2013, 45, 2175–2183. [Google Scholar] [CrossRef]
- Kovacs, E.M.R.; Stegen, J.H.C.H.; Brouns, F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 1998, 85, 709–715. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Trilk, J.L.; Singhal, A.; O’connor, P.J.; Cureton, K.J. Ergogenic effects of low doses of caffeine on cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 328–342. [Google Scholar] [CrossRef]
- E Kelley, D.; Mandarino, L.J. Fuel selection in human skeletal muscle in insulin resistance: A reexamination. Diabetes 2000, 49, 677–683. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Regulation of fat metabolism in skeletal muscle. Ann. N. Y. Acad. Sci. 2002, 967, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Lehmkuhl, M.J.; Mccoy, L.B.; Stone, M.H. Carbohydrate Supplementation and Resistance Training. J. Strength Cond. Res. 2003, 17, 187–196. [Google Scholar] [CrossRef]
Study | Design | Blinding | Participants | Sport Discipline | Parcipants Age (M ± SD) | CAF | Nitrates |
---|---|---|---|---|---|---|---|
Handzlik and Gleeson (2013) [15] | Crossover | Double blind | 14 men | Cycling | 22 ± 3 years | Beverage (1 period) | CBJ (2 periods) |
Lane et al. (2014) [14] | Crossover | Double blind | 12 men, 12 women | Cycling and triathlon | 31 ± 7 years (male) 28 ± 6 years (female) | Gum (2 periods) | CBJ (2 periods) |
Glaister et al. (2015) [12] | Crossover | Double blind | 14 women | Cycling and triathlon | 31 ± 7 years | Capsule (1 period) | CBJ (1 period) |
Oskarsson et al. (2018) [13] | Crossover | Double blind | 7 men, 2 women | Running | 30.4 ± 6.3 years (male) 31.5 ± 9.2 years (female) | Capsule (1 period) | CBJ (1 period) |
Castillo et al. (2021) [17] | Crossover | Double blind | 16 men | NS | 22.8 ± 4.9 years | Beverage (1 period) | CBJ (1 period) |
Berjisian et al. (2022) [16] | Crossover | Double blind | 18 men | Soccer | 19.8 ± 2.2 years | Capsule (1 period) | Nitrate beverage (1 period) |
Study | Sequence Generation (Selection Bias) | Allocation Concealment (Selection Bias) | Blinding of Participants and Personnel (Performance Bias) | Blindings of Outcome Assessment (Detection Bias) | Incomplete Outcome Data (Attrition Bias) | Selective Outcome Reporting (Reporting Bias) | Other Sources of Bias |
---|---|---|---|---|---|---|---|
Handzlik and Gleeson (2013) [15] | |||||||
Lane et al. (2014) [14] | |||||||
Glaister et al. (2015) [12] | |||||||
Oskarsson et al. (2018) [13] | |||||||
Castillo et al. (2021) [17] | |||||||
Berjisian et al. (2022) [16] |
Experimental Design | Subjects | Supplementation | Performance Trials | Variables Measured | Performance Results | Physiological Results | |
---|---|---|---|---|---|---|---|
Handzlik and Gleeson (2013) [15] | Double-blind RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 14 male cyclists (22 ± 3 years old) | CAF 0.5 g/kg (75 min before) CBJ 140 mL (8 mmol NO3−) (70 mL 150 min before and 70 mL 75 min before) PLA | 30 min at 60% VO2max in cycle ergometer TTE trial at 80% VO2max | Performance variables TTE RPE (each 5 min at 80% VO2max) Physiological variables Mean HR VO2 and VCO2 Carbohydrate and fat oxidation RER Salivary NO3− and NO2− Salivary cortisol | TTE: CAF = CBJ = CAF + CBJ = PLA RPE: CBJ + CAF < CAF = PLA = CBJ (in15 min TTE trial) | Mean HR, VO2 and VCO2, carbohydrate and fat oxidation and RER CAF = CBJ = CAF + CBJ = PLA Salivary NO3− and NO2− Pre-SUP < post-SUP: CAF and CAF + CBJ Salivary cortisol: Post-exercise > during exercise > pre-exercise |
Lane et al. (2014) [14] | Double-blind RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 14 male (31 ± 7 years old) and 12 female (28 ± 6 years old) cyclists or triathletes | CAF 3 mg/kg (2 mg/kg 40 min before and 1 mg/kg 10 min before) CBJ 280 mL (16.8 mmol NO3−) (140 mL 8–12 h before and 140 mL 120 min before) PLA | 43.83 km (male) or 29.35 km (female) TT on cycle ergometer | Performance variables Mean power TT completion time Physiological variables BM Plasma caffeine Plasma NO3− and NO2− HR RPE | Mean power CAF + CBJ and CAF > PLA = CBJ TT completion time CAF + CBJ and CAF < PLA = CBJ RPE CAF = CBJ = CAF + CBJ = PLA | BM Pre-TT = post-TT Plasma caffeine Pre-SUP < post-SUP: CAF and CAF + CBJ Plasma NO3− and NO2− Pre-SUP < post-SUP: CAF and CAF + CBJ HR CAF = CBJ = CAF + CBJ = PLA |
Glaister et al. (2015) [12] | Double-blind counterbalanced RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 14 female cyclists or triathletes (31 ± 7 years) | CAF 5 mg/kg 1 h before CBJ 70 mL (7.3 mmol NO3−) 2.5 h before PLA | 20 km TT on a racing bicycle seated on a motor-braked turbo trainer | Performance variables Power output Cadence RPE Physiological variables Plasma caffeine Plasma NO3− and NO2− HR VO2 RER TSI, [HbO2], [HHb], iEMG | Power output CAF = CAF + CBJ > CBJ = PLA Cadence and RPE CAF = CBJ = CAF + CBJ = PLA | Plasma caffeine Pre-SUP < post-SUP: CAF and CAF + CBJ Plasma NO3−: Pre-SUP < post-SUP: CAF and CAF + CBJ Plasma NO2−: Pre-SUP < post-SUP: CBJ CAF = CAF + CBJ > CBJ = PLA RER CAF > PLA = CBJ VO2, tissue oxygenation, iEMG CAF = CBJ = CAF + CBJ = PLA |
Oskarsson et al. (2018) [13] | Double-blind counterbalanced RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 7 male (30.4 ± 6.3 years) and 2 female (31.5 ± 9.2 years) endurance runners | CAF 4–6 mg/kg 45 min before CBJ 70 mL (7.3 mmol NO3−) 2.5 h before PLA | Treadmill running tests: 5 min at 70% VO2max and 5 min at 80% VO2max 1 km self-paced TT | Performance variables Running economy RPE at submaximal and maximal test 1 km running TT Physiological variables VO2 RER HR Max. HR Peak blood lactate | All variables CAF = CBJ = CAF + CBJ = PLA | All variables CAF = CBJ = CAF + CBJ = PLA |
Castillo et al. (2021) [17] | Double-blind RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 16 male endurance athletes (22.8 ± 4.9 years) | CAF 6 mg/kg 35 min before CBJ 140 mL 2 h and 30 min before PLA | Half-squat power test: 4 × 8 all-out repetitions with 3 min rest between them (using differences inertial loads) CMJ Before, 30 s after and 180 s after | Performance variables Total mean power in half squat power test CMJ height | Total mean power CAF = CAF + CBJ > PLA No differences between groups in CMJ height | |
Berjisian et al. (2022) [16] | Double-blind RCT with a crossover design (CAF, CBJ, CAF + CBJ, PLA) | 16 semi-professional male soccer players (19.8 ± 2.2 years) | CAF 5 mg/kg 60 min before CBJ 60 mL (6.4 mmol NO3−) 2.5 h before * PLA | YYIR1 2 × 20 m shuttle run at a gradually progressive speed with 10 s active recovery CMJAS 3 jumps with 30 s rest between them Immediately before and after YYIR1 Stroop word-color test | Performance variables Distance covered during YYIR1 CMJAS jump height CMJAS power output Stroop test performance RPE Physiological variables HR GI symptoms | Distance covered during YYIR1, maximum CMJAS height or power output, Stroop test performance and RPE CAF = CBJ = CAF + CBJ = PLA | HR max CAF = CBJ = CAF + CBJ = PLA GI symptoms Upper GI symptoms: CAF = CBJ = CAF + CBJ = PLA Sum scores: CAF + CBJ > PLA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilsanz, L.; Del Coso, J.; Jiménez-Saiz, S.L.; Pareja-Galeano, H. Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3352. https://doi.org/10.3390/nu16193352
Gilsanz L, Del Coso J, Jiménez-Saiz SL, Pareja-Galeano H. Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(19):3352. https://doi.org/10.3390/nu16193352
Chicago/Turabian StyleGilsanz, Laura, Juan Del Coso, Sergio L. Jiménez-Saiz, and Helios Pareja-Galeano. 2024. "Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis" Nutrients 16, no. 19: 3352. https://doi.org/10.3390/nu16193352
APA StyleGilsanz, L., Del Coso, J., Jiménez-Saiz, S. L., & Pareja-Galeano, H. (2024). Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis. Nutrients, 16(19), 3352. https://doi.org/10.3390/nu16193352