Unsupervised Exercise Intervention vs. Adherence to a Mediterranean Diet Alone: The Role of Bioelectrical Impedance Vector Analysis and Cardiovascular Performance in Liver-Transplanted Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Exercise Program and Dietary Intervention
2.3. Cardiopulmonary Exercise Testing
- Respiratory exchange ratio (RER) > 1.10.
- Heart rate (HR) > 85% according to age.
- Exercise duration between 8 and 12 min.
2.4. Body Composition Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Report 2022 Attività Annuale Rete Nazionale Trapianti. Available online: https://www.trapianti.salute.gov.it/imgs/C_17_cntPubblicazioni_605_allegato.pdf (accessed on 28 December 2023).
- Kim, S.; Park, M.; Song, R. Effects of self-management programs on behavioral modification among individuals with chronic disease: A systematic review and meta-analysis of randomized trials. PLoS ONE 2021, 16, e0254995. [Google Scholar] [CrossRef]
- Izzy, M.; VanWagner, L.B.; Lee, S.S.; Altieri, M.; Angirekula, M.; Watt, K.D. Understanding and managing cardiovascular outcomes in liver transplant recipients. Curr. Opin. Organ Transplant. 2019, 24, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Painter, P.L.; Luetkemeier, M.J.; Moore, G.E.; Dibble, S.L.; Green, G.A.; Myll, J.O.; Carlson, L.L. Health-related fitness and quality of life in organ transplant recipients. Transplantation 1997, 64, 1795–1800. [Google Scholar] [CrossRef]
- Dunn, M.A.; Kappus, M.R.; Bloomer, P.M.; Duarte-Rojo, A.; Josbeno, D.A.; Jakicic, J.M. Wearables, Physical Activity, and Exercise Testing in Liver Disease. Semin. Liver Dis. 2021, 41, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Amate, È.; Roqué-Figuls, M.; Fernández-González, M.; Giné-Garriga, M. Exercise interventions for adults after liver transplantation. Cochrane Database Syst. Rev. 2023, 5, CD013204. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.L.; Yoshida, E.M.; Abboud, R.T.; Fradet, G.; Levy, R.D. Impaired exercise performance after successful liver transplantation. Transplantation 2001, 72, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Berzigotti, A.; Saran, U.; Dufour, J.F. Physical activity and liver diseases. Hepatology 2016, 63, 1026–1040. [Google Scholar] [CrossRef]
- Krasnoff, J.B.; Vintro, A.Q.; Ascher, N.L.; Bass, N.M.; Paul, S.M.; Dodd, M.J.; Painter, P.L. A randomized trial of exercise and dietary counseling after liver transplantation. Am. J. Transplant. 2006, 6, 1896–1905. [Google Scholar] [CrossRef]
- Moya-Nájera, D.; Moya-Herraiz, Á.; Compte-Torrero, L.; Hervás, D.; Borreani, S.; Calatayud, J.; Berenguer, M.; Colado, J.C. Combined resistance and endurance training at a moderate-to-high intensity improves physical condition and quality of life in liver transplant patients. Liver Transpl. 2017, 23, 1273–1281. [Google Scholar] [CrossRef]
- Farrugia, M.A.; Le Garf, S.; Chierici, A.; Piche, T.; Gual, P.; Iannelli, A.; Anty, R. Therapeutic Physical Exercise Programs in the Context of NASH Cirrhosis and Liver Transplantation: A Systematic Review. Metabolites 2023, 13, 330. [Google Scholar] [CrossRef]
- Spillman, L.N.; Madden, A.M.; Richardson, H.; Imamura, F.; Jones, D.; Nash, M.; Lim, H.K.; Hellawell, H.N.; Rennie, K.L.; Oude Griep, L.M.; et al. Nutritional Intake after Liver Transplant: Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2487. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Ferrando, A.; White, M.G.; Dennis, R.A.; Xie, J.; Pauly, M.; Park, S.; Bartter, T.; Dunn, M.A.; Ruiz-Margain, A.; et al. Home-Based Physical Activity and Diet Intervention to Improve Physical Function in Advanced Liver Disease: A Randomized Pilot Trial. Dig. Dis. Sci. 2020, 65, 3350–3359. [Google Scholar] [CrossRef] [PubMed]
- Hickman, I.J.; Hannigan, A.K.; Johnston, H.E.; Elvin-Walsh, L.; Mayr, H.L.; Staudacher, H.M.; Barnett, A.; Stoney, R.; Salisbury, C.; Jarrett, M.; et al. Telehealth-delivered, Cardioprotective Diet and Exercise Program for Liver Transplant Recipients: A Randomized Feasibility Study. Transplant. Direct. 2021, 7, e667. [Google Scholar] [CrossRef]
- Gitto, S.; Golfieri, L.; Sofi, F.; Tamè, M.R.; Vitale, G.; Maria, N.D.; Marzi, L.; Mega, A.; Valente, G.; Borghi, A.; et al. Adherence to Mediterranean diet in liver transplant recipients: A cross-sectional multicenter study. Minerva Gastroenterol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Di Cosmo, S.; Lusignani, M.; Manini, M.; Accardi, R. Prevalenza e fattori di rischio di sovrappeso e obesità dopo il trapianto di fegato: Studio retrospettivo a tre anni dopo il trapianto [Prevalence and risk factors of overweight and obesity after liver transplantation: Retrospective study at three years after transplantation]. Prof. Inferm. 2018, 71, 3–10. [Google Scholar] [CrossRef]
- Rezende Anastácio, L.; García Ferreira, L.; Costa Liboredo, J.; de Sena Ribeiro, H.; Soares Lima, A.; García Vilela, E.; Correia, M.I. Overweight, obesity and weight gain up to three years after liver transplantation. Nutr. Hosp. 2012, 27, 1351–1356. [Google Scholar] [CrossRef]
- Saiman, Y.; Serper, M. Frailty and Sarcopenia in Patients Pre- and Post-Liver Transplant. Clin. Liver Dis. 2021, 25, 35–51. [Google Scholar] [CrossRef]
- Carey, E.J. Sarcopenia in solid organ transplantation. Nutr. Clin. Pract. 2014, 29, 159–170. [Google Scholar] [CrossRef]
- Kalafateli, M.; Mantzoukis, K.; Choi Yau, Y.; Mohammad, A.O.; Arora, S.; Rodrigues, S.; de Vos, M.; Papadimitriou, K.; Thorburn, D.; O’Beirne, J.; et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J. Cachexia Sarcopenia Muscle 2017, 8, 113–121. [Google Scholar] [CrossRef]
- Santos, B.C.; Ferreira, L.G.; Ribeiro, H.S.; Correia, M.I.T.D.; Lima, A.S.; Penna, F.G.C.E.; Anastácio, L.R. Bioelectrical impedance vector analysis in patients on the waiting list for liver transplant: Associated factors and prognostic effects. Nutrition 2022, 94, 111528. [Google Scholar] [CrossRef]
- Liguori, G.; American College of Sports Medicine (ACSM). ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2021. [Google Scholar]
- Karvonen, J.; Vuorimaa, T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 1988, 5, 303–311. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Ravaioli, F.; De Maria, N.; Di Marco, L.; Pivetti, A.; Casciola, R.; Ceraso, C.; Frassanito, G.; Pambianco, M.; Pecchini, M.; Sicuro, C.; et al. From Listing to Recovery: A Review of Nutritional Status Assessment and Management in Liver Transplant Patients. Nutrients 2023, 15, 2778. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 2012, 33, 2917–2927. [Google Scholar] [CrossRef] [PubMed]
- Skalski, J.; Allison, T.G.; Miller, T.D. The safety of cardiopulmonary exercise testing in a population with high-risk cardiovascular diseases. Circulation 2012, 126, 2465–2472. [Google Scholar] [CrossRef]
- Guazzi, M.; Bandera, F.; Ozemek, C.; Systrom, D.; Arena, R. Cardiopulmonary Exercise Testing: What Is its Value? J. Am. Coll. Cardiol. 2017, 70, 1618–1636. [Google Scholar] [CrossRef]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- Lukaski, H.C. Body Composition: Health and Performance in Exercise and Sport, 1st ed.; CRC Press Taylor & Francis Group: Orlando, FL, USA, 2017. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Pastori, G. BIVA SOFTWARE 2002; Department of Medical and Surgical Sciences, University of Padova: Padova, Italy, 2002; pp. 1–17. [Google Scholar]
- Oikonomou, I.M.; Sinakos, E.; Antoniadis, N.; Goulis, I.; Giouleme, O.; Anifanti, M.; Katsanos, G.; Karakasi, K.E.; Tsoulfas, G.; Kouidi, E. Effects of an active lifestyle on the physical frailty of liver transplant candidates. World J. Transplant. 2022, 12, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Kotarska, K.; Wunsch, E.; Kempińska-Podhorodecka, A.; Bogdanos, D.P.; Wójcicki, M.; Milkiewicz, P. Factors affecting health-related quality of life and physical activity after liver transplantation for autoimmune and nonautoimmune liver diseases: A prospective, single centre study. J. Immunol. Res. 2014, 2014, 738297. [Google Scholar] [CrossRef]
- Masala, D.; Mannocci, A.; Unim, B.; Del Cimmuto, A.; Turchetta, F.; Gatto, G.; Santoro, R.; Ettorre, G.M.; Boccia, A.; La Torre, G. Quality of life and physical activity in liver transplantation patients: Results of a case-control study in Italy. Transplant. Proc. 2012, 44, 1346–1350. [Google Scholar] [CrossRef]
- Yüksel Ergene, T.; Karadibak, D.; Dönmez, R.; Polat, K.Y. Effects of Early Resistance Training After Liver Transplantation Procedures: A Randomized Controlled Pilot Trial. Turk. J. Gastroenterol. 2022, 33, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Totti, V.; Tamè, M.; Burra, P.; Mosconi, G.; Roi, G.S.; Sella, G.; Ermolao, A.; Ferrarese, A.; Sgarzi, S.; Savino, G.; et al. Physical Condition, Glycemia, Liver Function, and Quality of Life in Liver Transplant Recipients After a 12-Month Supervised Exercise Program. Transplant. Proc. 2019, 51, 2952–2957. [Google Scholar] [CrossRef]
- Mascherini, G.; Zappelli, E.; Castizo Olier, J.; Leone, B.; Musumeci, G.; Totti, V.; Irurtia, A.; Roi, G.S.; Mosconi, G.; Sella, G.; et al. Bioelectrical impedance vector analysis (BIVA) in renal transplant recipients during an unsupervised physical exercise program. J. Sports Med. Phys. Fitness 2020, 60, 594–600. [Google Scholar] [CrossRef]
- Martins, P.C.; Alves Junior, C.A.S.; Silva, A.M.; Silva, D.A.S. Phase angle and body composition: A scoping review. Clin. Nutr. ESPEN 2023, 56, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, G.; Sofi, F.; Moscarelli, L.; Cirami, L.; Mancini, S.; Stefani, L. Exercise Prescription in Renal Transplant Recipients: From Sports Medicine Toward Multidisciplinary Aspects: A Pilot Study. J. Funct. Morphol. Kinesiol. 2020, 5, 10. [Google Scholar] [CrossRef] [PubMed]
Physical Exercise (n = 16) | Diet (n = 17) | p-Value | ES | |
---|---|---|---|---|
VO2 peak (mL/kg/min) | 21.4 ± 4.1 | 23.5 ± 6.5 | 0.283 | 0.386 |
VO2/HR | 12.5 ± 2.0 | 12.7 ± 2.8 | 0.790 | 0.082 |
Power (Watt) | 128.8 ± 34.0 | 142.4 ± 52.4 | 0.385 | 0.308 |
Ve/VCO2 Slope | 33.6 ± 6.0 | 33.6 ± 6.1 | 0.996 | 0.000 |
VO2/WL | 10.2 ± 0.9 | 10.6 ± 1.3 | 0.295 | 0.358 |
HR VT1 (bpm) | 97.8 ± 15.3 | 100.8 ± 15.8 | 0.574 | 0.192 |
HR VT2 (bpm) | 120.9 ± 21.4 | 124.2 ± 17.8 | 0.627 | 0.167 |
HR max (bpm) | 153.6 ± 18.0 | 152.9 ± 15.8 | 0.909 | 0.041 |
VE peak (L/min) | 70.8 ± 14.5 | 80.0 ± 22.8 | 0.183 | 0.481 |
SBP rest (mmhg) | 121.9 ± 10.3 | 123.8 ± 16.0 | 0.682 | 0.141 |
DBP rest (mmhg) | 73.4 ± 11.4 | 74.7 ± 7.2 | 0.702 | 0.136 |
SBP peak (mmhg) | 167.2 ± 21.6 | 165.3 ± 20.1 | 0.796 | 0.091 |
DBP peak (mmhg) | 71.9 ± 15.2 | 72.4 ± 11.3 | 0.919 | 0.037 |
Physical Exercise (n = 16) | Diet (n = 17) | p-Value | ES | |
---|---|---|---|---|
R/H (Ω/m) | 286.6 ± 33.8 | 308.8 ± 33.9 | 0.069 | 0.656 |
Xc/H (Ω/m) | 30.1 ± 5.7 | 32.3 ± 6.4 | 0.314 | 0.363 |
Z/H (Ω/m) | 288.3 ± 33.9 | 310.5 ± 34.2 | 0.071 | 0.652 |
PhA (°) | 6.0 ± 1.0 | 5.9 ± 0.7 | 0.847 | 0.116 |
R/H | Xc/H | Z/H | PhA | |
---|---|---|---|---|
VO2 peak | −0.013 | 0.294 | 0.019 | 0.557 * |
VO2/HR | −0.392 * | −0.107 | −0.391 * | 0.230 |
Power | −0.237 | 0.101 | −0.233 | 0.509 * |
Ve/VCO2 slope | 0.509 * | 0.112 | 0.506 * | −0.222 |
VO2/WL | 0.403 * | 0.267 | 0.403 * | 0.132 |
HR VT | 0.183 | 0.369 * | 0.316 | 0.377 * |
HR max | −0.002 | 0.053 | 0.001 | 0.213 |
VE peak | 0.087 | 0.392 * | 0.092 | 0.506 * |
SBP rest | −0.109 | −0.253 | −0.114 | −0.214 |
DBP rest | 0.198 | −0.075 | 0.193 | −0.135 |
SBP peak | 0.072 | −0.119 | 0.072 | −0.116 |
DBP peak | 0.278 | 0.296 | 0275 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascherini, G.; Corsi, M.; Falconi, E.; Cebrián-Ponce, Á.; Checcucci, P.; Pinazzi, A.; Russo, D.; Gitto, S.; Sofi, F.; Stefani, L. Unsupervised Exercise Intervention vs. Adherence to a Mediterranean Diet Alone: The Role of Bioelectrical Impedance Vector Analysis and Cardiovascular Performance in Liver-Transplanted Recipients. Nutrients 2024, 16, 190. https://doi.org/10.3390/nu16020190
Mascherini G, Corsi M, Falconi E, Cebrián-Ponce Á, Checcucci P, Pinazzi A, Russo D, Gitto S, Sofi F, Stefani L. Unsupervised Exercise Intervention vs. Adherence to a Mediterranean Diet Alone: The Role of Bioelectrical Impedance Vector Analysis and Cardiovascular Performance in Liver-Transplanted Recipients. Nutrients. 2024; 16(2):190. https://doi.org/10.3390/nu16020190
Chicago/Turabian StyleMascherini, Gabriele, Marco Corsi, Edoardo Falconi, Álex Cebrián-Ponce, Pietro Checcucci, Antonio Pinazzi, Domenico Russo, Stefano Gitto, Francesco Sofi, and Laura Stefani. 2024. "Unsupervised Exercise Intervention vs. Adherence to a Mediterranean Diet Alone: The Role of Bioelectrical Impedance Vector Analysis and Cardiovascular Performance in Liver-Transplanted Recipients" Nutrients 16, no. 2: 190. https://doi.org/10.3390/nu16020190
APA StyleMascherini, G., Corsi, M., Falconi, E., Cebrián-Ponce, Á., Checcucci, P., Pinazzi, A., Russo, D., Gitto, S., Sofi, F., & Stefani, L. (2024). Unsupervised Exercise Intervention vs. Adherence to a Mediterranean Diet Alone: The Role of Bioelectrical Impedance Vector Analysis and Cardiovascular Performance in Liver-Transplanted Recipients. Nutrients, 16(2), 190. https://doi.org/10.3390/nu16020190