Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Venous Blood Collection
2.4. Urine Collection
2.5. Dietary Analysis
2.6. Muscle Strength and Endurance
2.7. Electromyography
2.8. Body Composition Assessment
2.9. Muscle Quality
2.10. Serum and Urinary Proteins and Hormones
2.11. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Fat-Free Mass and Muscle Quality Scores
3.3. Muscular Performance and Strength
3.4. Muscle Activation
3.5. Serum and Urinary Analyses
3.6. Dietary Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Messier, V.; Rabasa-Lhoret, R.; Barbat-Artigas, S.; Elisha, B.; Karelis, A.D.; Aubertin Leheudre, M. Menopause and sarcopenia: A potential role for sex hormones. Maturitas 2011, 68, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, X.Q.; Lei, W.L.; Wang, T.; Sheng, A.L.; Luo, Z.G. Nuclear facto кB controls acetylcholine receptor clustering at the neuromuscular junction. J. Neurosci. 2010, 30, 11104–11113. [Google Scholar] [CrossRef] [PubMed]
- Borrás, C.; Ferrando, M.; Inglés, M.; Gambini, J.; Lopez-Grueso, R.; Edo, R.; Mas-Bargues, C.; Pellicer, A.; Viña, J. Estrogen replacement therapy induces antioxidant and longevity related genes in women after medically induced menopause. Oxid. Med. Cell. Longev. 2021, 2021, 8101615. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.; He, L.; Liang, Y.; Qin, H.; Yu, B.; Chiang, L.; Xue, L. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed. Pharmacother. 2018, 102, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Guyre, P.M.; Pioli, P.A. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J. Immunol. 2010, 184, 5029–5037. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and menopause: The role of estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef]
- Larson, A.A.; Shams, A.S.; McMillin, S.L.; Sullivan, B.P.; Vue, C.; Roloff, Z.A.; Batchelor, E.; Kyba, M.; Lowe, D.A. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am. J. Physiol. Cell Physiol. 2022, 322, C1123–C1137. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.J.; Hasni, S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Calvani, R.; Azzolino, D.; Picca, A.; Tosato, M.; Landi, F.; Cesari, M.; Marzetti, E. Protein intake and sarcopenia in older adults: A systematic review and meta-analysis. Int. J. Environ. Res. Public. Health 2022, 19, 8718. [Google Scholar] [CrossRef]
- Kaya, R.D.; Nakazawa, M.; Hoffman, R.L.; Clark, B.C. Interrelationship between muscle strength, motor units, and aging. Exp. Gerontol. 2013, 48, 920–925. [Google Scholar] [CrossRef]
- Buckinx, F.; Aubertin-Leheudre, M. Sarcopenia in Menopausal Women: Current Perspectives. Int. J. Womens Health 2022, 14, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, R.; Karim, A.; Muhannad, T.; Alkahtani, S.A.; Kamli, H.; Ahmad, F. Degradation of neuromuscular junction contributes to muscle weakness but not physical compromise in chronic obstructive pulmonary disease patients taking lipids-lowering medications. Respir. Med. 2023, 215, 107298. [Google Scholar] [CrossRef] [PubMed]
- Reif, R.; Sales, S.; Hettwer, S.; Dreier, B.; Gisler, C.; Wölfel, J.; Lüscher, D.; Zurlinden, A.; Stephan, A.; Ahmed, S.; et al. Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 2007, 21, 3468–3478. [Google Scholar] [CrossRef] [PubMed]
- Bushell, T. The emergence of proteinase-activated receptor-2 as a novel target for treatment of inflammation-related CNS disorders. J. Physiol. 2007, 581 Pt 1, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, E.; Saka, M.; Mackenzie, C.; Drummond, R.; Wheeler-Jones, C.; Kanke, T.; Plevin, R. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br. J. Pharmacol. 2007, 150, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Drey, M.; Sieber, C.C.; Bauer, J.M.; Uter, W.; Dahinden, P.; Fariello, R.G.; Vrijbloed, J.W. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp. Gerontol. 2013, 48, 76–80. [Google Scholar] [CrossRef]
- Monti, E.; Sarto, F.; Sartori, R.; Zanchettin, G.; Löfler, S.; Kern, H.; Narici, V.; Zampieri, S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: A narrative review. J. Cachexia Sarcopenia Muscle 2023, 14, 730–744. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Pratt, J.; De Vito, G.; Segurado, R.; Pessanha, L.; Dolan, J.; Narici, M.; Boreham, C. Plasma neurofilament light levels associate with muscle mass and strength in middle-aged and older adults: Findings from GenoFit. J. Cachexia Sarcopenia Muscle 2022, 13, 1811–1820. [Google Scholar] [CrossRef]
- Hanada, M.; Ishimatsu, Y.; Sakamoto, N.; Akiyama, Y.; Kido, T.; Ishimoto, H.; Oikawa, M.; Nagura, H.; Takeuchi, R.; Sato, S.; et al. Urinary titin N-fragment as a predictor of decreased skeletal muscle mass in patients with interstitial lung diseases. Sci. Rep. 2023, 13, 9723. [Google Scholar] [CrossRef]
- Oshida, N.; Shida, T.; Oh, S.; Kim, T.; Isobe, T.; Okamoto, Y.; Kamimaki, T.; Okada, K.; Suzuki, H.; Ariizumi, S.; et al. Urinary levels of titin-N fragment, a skeletal muscle damage marker, are increased in subjects with nonalcoholic fatty liver disease. Sci. Rep. 2019, 9, 19498. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Tsutsumi, R.; Hara, K.; Matsuo, M.; Sakaue, H.; Oto, J. Urinary titin N fragment as a biomarker of muscle atrophy, intensive care unit-acquired weakness, and possible application for post-intensive care syndrome. J. Clin. Med. 2021, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Niazi, I.; Signal, N.; Farina, D.; Taylor, D. Optimal automatic detection of muscle activation intervals. J. Electromyogr. Kinesiol. 2012, 48, 103–111. [Google Scholar] [CrossRef]
- Naimo, M.A.; Varanoske, A.N.; Hughes, J.M.; Pasiakos, S.M. Skeletal muscle quality: A biomarker for assessing physical performance capabilities in young populations. Front. Physiol. 2021, 12, 706699. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Sugimoto, K.; Fujimoto, T.; Yasunobe, Y.; Xie, K.; Onishi, Y.; Yoshida, S.; Takahashi, T.; Kurinami, H.; Akasaka, H.; et al. The utility of the ultrasonographic assessment of the lower leg muscles to evaluate sarcopenia and muscle quality in older adults. J. Cachexia Sarcopenia Muscle 2021, 6, 53–61. [Google Scholar] [CrossRef]
- Goulet-Pelletier, J.C.; Cousineau, D. A review of effect sizes and their confidence intervals, Part I: The Cohen’s d family. Quant. Meth Psychol. 2018, 14, 242–265. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Richardson, H.; Ho, V.; Pasquet, R.; Singh, R.J.; Goetz, M.P.; Tu, D.; Goss, P.E.; Ingle, J.N. Baseline estrogen levels in postmenopausal women participating in the MAP.3 breast cancer chemoprevention trial. Menopause 2020, 27, 693–700. [Google Scholar] [CrossRef]
- Moosmann, B.; Behl, C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc. Nat. Acad. Sci. USA 1999, 96, 8867–8872. [Google Scholar] [CrossRef]
- Nilsen, J. Estradiol and neurodegenerative oxidative stress. Front. Neuroendocrinol. 2008, 29, 463–475. [Google Scholar] [CrossRef]
- Strehlow, K.; Rotter, S.; Wassmann, S.; Adam, O.; Grohé, C.; Laufs, K.; Böhm, M.; Nickenig, G. Modulation of antioxidant enzyme expression and function by estrogen. Circ. Res. 2003, 93, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Murakoshi, M.; Ikada, R.; Tagawa, M. Regulation of prostatic glutathione-peroxidase (GSH-PO) in rats treated with a combination of testosterone and 17 beta-estradiol. J. Toxicol. Sci. 1999, 24, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.P.; Feng, W.; Xing, D.; Weathington, N.M.; Blalock, J.E.; Chen, Y.; Oparil, S. Estrogen modulates inflammatory mediator expression and neutrophil chemotaxis in injured arteries. Circulation 2004, 110, 1664–1669. [Google Scholar] [CrossRef]
- Nilsen, J.; Mor, G.; Naftolin, F. Estrogen-regulated developmental neuronal apoptosis is determined by estrogen receptor subtype and the Fas/Fas ligand system. J. Neurobiol. 2000, 43, 64–78. [Google Scholar] [CrossRef]
- Borrás, C.; Gambini, J.; López-Grueso, R.; Pallardó, F.V.; Viña, J. Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim. et Biophys. Acta 2010, 1802, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.C.; Van Remmen, H. Age-associated alterations of neuromuscular junction. Exp. Gerontol. 2011, 46, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ito, M.; Ohkawara, B.; Masuda, A.; Ohno, K. Differential effects of spinal motor neuron-derived and skeletal muscle-derived Rspo2 on acetylcholine receptor clustering at the neuromuscular junction. Sci. Rep. 2018, 8, 13577. [Google Scholar] [CrossRef]
- Matsumoto-Miyai, K.; Sokolowska, E.; Zurlinden, A.; Gee, C.E.; Lüscher, D.; Hettwer, S.; Wölfel, J.; Ladner, A.P.; Ster, J.; Gerber, U.; et al. Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 2009, 136, 1161–1171. [Google Scholar] [CrossRef]
- Stephan, A.; Mateos, J.M.; Kozlov, S.V.; Cinelli, P.; Kistler, A.D.; Hettwer, S.; Rülicke, T.; Streit, P.; Kunz, B.; Sonderegger, P. Neurotrypsin cleaves agrin locally at the synapse. FASEB J. 2008, 22, 1861–1871. [Google Scholar] [CrossRef]
- Jara, J.H.; Singh, B.B.; Floden, A.M.; Combs, C.K. Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J. Neurochem. 2007, 100, 1407–1420. [Google Scholar] [CrossRef]
- Hughes, J.P.; Staton, P.C.; Wilkinson, M.G.; Strijbos, P.J.; Skaper, S.D.; Simon, J.; Arthur, C.; Reith, A.D. Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death Of hippocampal neurons. J. Neurochem. 2003, 86, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.R.; Pober, J.S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 2001, 20, 6482–6491. [Google Scholar] [CrossRef] [PubMed]
- Das, A. “Inflammaging” and Estradiol among Older U.S. Women: A Nationally Representative Longitudinal Study. Biodemography Soc. Biol. 2017, 63, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Celemín, L.; Pasko, N.; Blomart, V.; Thissen, J.P. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E1279–E1290. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, X. Positive and negative signaling components involved in TNFalpha induced NF-kappaB activation. Cytokine 2008, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J. Ubiquitin signaling in the NF-κB pathway. Nat. Cell Biol. 2005, 7, 758–765. [Google Scholar] [CrossRef]
- Sipilä, S.; Finni, T.; Kovanen, V. Estrogen influences on neuromuscular function in postmenopausal women. Calcif. Tissue Int. 2015, 96, 222–233. [Google Scholar] [CrossRef]
- McNeil, C.J.; Doherty, T.J.; Stashuk, D.W.; Rice, C.L. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 2005, 31, 461–467. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Beretich, K.N.; Chen, M.; Funderburk, L.K. Decreased serum levels of C-terminal agrin in postmenopausal women following resistance training. J. Aging Phys. Act. 2020, 28, 73–80. [Google Scholar] [CrossRef]
- Tintignac, L.A.; Brenner, H.R.; Rüegg, M.A. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol. Rev. 2015, 95, 809–852. [Google Scholar] [CrossRef]
- Petrella, J.K.; Kim, J.S.; Tuggle, S.C.; Bamman, M.M. Contributions of force and velocity to improved power with progressive resistance training in young and older adults. Eur. J. Appl. Physiol. 2007, 99, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R. Low muscle mass. Clin. Geriatr. Med. 2010, 26, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary protein intake is protective against loss of grip strength among older adults in the Framingham offspring cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Isanejad, M.; Mursu, J.; Sirola, J.; Kröger, H.; Rikkonen, T.; Tuppurainen, M.; Erkkilä, A.T. Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br. J. Nutr. 2016, 115, 281–1291. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper from the Prot-Age Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein intake and frailty: A matter of quantity, quality, and timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein intake and muscle health in old age: From Biological Plausibility to Clinical Evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef]
- Valenzuela RPonce, J.A.; Morales-Figueroa, G.G.; Muro, K.A.; Carreón, V.R.; Alemán-Mateo, H. Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: Implications for dietary strategies to prevent sarcopenia. Clin. Interv. Aging 2013, 8, 1143–1148. [Google Scholar] [CrossRef]
- Beasley, J.M.; Rillamas-Sun, E.; Tinker, L.F.; Wylie-Rosett, J.; Mossavar-Rahmani, Y.; Datta, M.; Caan, B.J.; LaCroix, A.Z. Dietary intakes Dietary intakes of Women’s Health Initiative Long Life Study participants falls short of the dietary reference intakes. J. Acad. Nutr. Diet. 2020, 120, 1530–1537. [Google Scholar] [CrossRef]
- Fenton, A. Weight, shape, and body composition changes at menopause. J. Midlife Health 2021, 12, 187–192. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Gavin, K.M.; Kohrt, W.M.; Klemm, D.J.; Melanson, E.L. Modulation of energy expenditure by estrogens and exercise in women. Exerc. Sport. Sci. Rev. 2018, 46, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef]
Body Composition Variables | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
Total Body Mass (kg) | PRE-M | 60.56 ± 11.60 | 0.02 * | 1.56 |
POST-M | 77.13 ± 9.31 | |||
Total Body Water (L) | PRE-M | 30.31 ± 3.96 | 0.14 | 0.71 |
POST-M | 32.66 ± 2.38 | |||
Percent Body Fat (%) | PRE-M | 30.52 ± 8.42 | 0.01 * | 1.76 |
POST-M | 41.84 ± 3.57 | |||
Fat Mass (kg) | PRE-M | 19.07 ± 8.41 | 0.01 * | 1.74 |
POST-M | 32.26 ± 6.46 | |||
Visceral Fat Mass (kg) | PRE-M | 0.26 ± 0.21 | <0.001 * | 3.49 |
POST-M | 0.92 ± 0.24 |
Muscle Composition Variables | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
Arms Fat-Free Mass (kg) | PRE-M | 3.98 ± 0.7 | 0.13 | 0.74 |
POST-M | 4.33 ± 0.3 | |||
Legs Fat-Free Mass (kg) | PRE-M | 13.28 ± 1.5 | 0.33 | 0.28 |
POST-M | 13.61 ± 1.6 | |||
Trunk Fat-Free Mass (kg) | PRE-M | 19.13 ± 2.25 | 0.069 | 1.25 |
POST-M | 21.57 ± 1.5 | |||
Appendicular Fat-Free Mass (kg) | PRE-M | 17.1 ± 2.0 | 0.25 | 0.43 |
POST-M | 17.9 ± 1.7 | |||
Upper Body Muscle Quality (RS/FFM) | PRE-M | 0.05 ± 0.01 | 0.009 * | 1.75 |
POST-M | 0.02 ± 0.02 | |||
Lower Body Muscle Quality (RS/FFM) | PRE-M | 0.13 ± 0.02 | 0.025 * | 1.36 |
POST-M | 0.09 ± 0.03 |
Muscular Strength Variables | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
Upper-Body 1RM (kg) | PRE-M | 36.65 ± 6.31 | 0.07 | 0.96 |
POST-M | 29.02 ± 9.67 | |||
Lower-Body 1RM (kg) | PRE-M | 100.15 ± 17.11 | 0.37 | 0.21 |
POST-M | 94.33 ± 36.58 | |||
Upper-Body Relative Strength (kg/kg) | PRE-M | 0.58 ± 0.07 | 0.016 * | 1.82 |
POST-M | 0.38 ± 0.14 | |||
Lower-Body Relative Strength (kg/kg) | PRE-M | 1.67 ± 0.24 | 0.043 * | 1.17 |
POST-M | 1.23 ± 0.51 | |||
Upper-Body Endurance (RTF at 70% 1RM) | PRE-M | 14.5 ± 3.4 | 0.38 | 0.18 |
POST-M | 13.6 ± 5.9 | |||
Lower-Body Endurance (RTF at 70% 1RM) | PRE-M | 24.3 ± 8.8 | 0.37 | 0.22 |
POST-M | 22.8 ± 2.9 |
Muscle Activation | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
Vastus Lateralis 1RM Max (mV) | PRE-M | 0.24 ± 0.07 | 0.012 * | 1.65 |
POST-M | 0.12 ± 0.08 | |||
Rectus Femoris 1RM Max (mV) | PRE-M | 0.23 ± 0.09 | 0.003 * | 2.25 |
POST-M | 0.08 ± 0.04 | |||
Vastus Lateralis RTF Max (mV) | PRE-M | 0.23 ± 0.09 | 0.014 * | 1.71 |
POST-M | 0.10 ± 0.04 | |||
Rectus Femoris RTF Max (mV) | PRE-M | 0.23 ± 0.13 | 0.042 * | 1.38 |
POST-M | 0.10 ± 0.02 | |||
Vastus Lateralis RTF Mean (mV) | PRE-M | 0.11 ± 0.04 | 0.032 * | 1.39 |
POST-M | 0.06 ± 0.03 | |||
Rectus Femoris RTF Mean (mV) | PRE-M | 0.09 ± 0.05 | 0.024 * | 1.51 |
POST-M | 0.03 ± 0.01 |
Proteins and Hormones | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
C-Terminal Agrin Fragment (pg/mL) | PRE-M | 1208.40 ± 370.78 | <0.001 † | 5.54 |
POST-M | 3860.20 ± 566.43 | |||
Titin N-Terminal Fragment (ng/mL) | PRE-M | 11.1 ± 1.24 | <0.001 † | 4.36 |
POST-M | 20.69 ± 2.84 | |||
Neurofilament Light Chain (ng/mL) | PRE-M | 100.88 ± 6.75 | 0.486 | 0.02 |
POST-M | 100.99 ± 2.89 | |||
Estradiol (pg/mL) | PRE-M | 399.41 ± 20.31 | <0.001 * | 25.79 |
POST-M | 26.36 ± 2.45 | |||
Neurotrypsin (ng/mL) | PRE-M | 253.02 ± 44.79 | 0.07 | 1.02 |
POST-M | 329.81 ± 12.59 | |||
Tumor Necrosis Factor-α (pg/mL) | PRE-M | 137.13 ± 34.80 | <0.001 † | 4.81 |
POST-M | 405.50 ± 70.72 |
Dietary Intake | Group | Mean ± SD | p-Value | Cohen’s d |
---|---|---|---|---|
Protein (g/kg) | PRE-M | 1.47 ± 0.27 | 0.011 * | 2.53 |
POST-M | 0.81 ± 0.23 | |||
Carbohydrate (g/kg) | PRE-M | 4.28 ± 1.23 | 0.48 | 0.64 |
POST-M | 2.91 ± 2.79 | |||
Fat (g/kg) | PRE-M | 1.02 ± 0.34 | 0.37 | 0.82 |
POST-M | 0.79 ± 0.22 | |||
Total Calories (kcal/kg) | PRE-M | 32.07 ± 8.23 | 0.067 | 1.37 |
POST-M | 19.58 ± 9.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willoughby, D.S.; Florez, C.; Davis, J.; Keratsopoulos, N.; Bisher, M.; Parra, M.; Taylor, L. Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients 2024, 16, 197. https://doi.org/10.3390/nu16020197
Willoughby DS, Florez C, Davis J, Keratsopoulos N, Bisher M, Parra M, Taylor L. Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients. 2024; 16(2):197. https://doi.org/10.3390/nu16020197
Chicago/Turabian StyleWilloughby, Darryn S., Christine Florez, Jaci Davis, Nikolas Keratsopoulos, Morgan Bisher, Mandy Parra, and Lemuel Taylor. 2024. "Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women" Nutrients 16, no. 2: 197. https://doi.org/10.3390/nu16020197
APA StyleWilloughby, D. S., Florez, C., Davis, J., Keratsopoulos, N., Bisher, M., Parra, M., & Taylor, L. (2024). Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients, 16(2), 197. https://doi.org/10.3390/nu16020197